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Abstract: This paper presents a systematic approach for nonlinear control design by using the gain scheduling technique to insure the 
transition of a nonlinear dynamical process from an actual operating condition to a desired one. The nonlinear system is represented in 
neighborhoods of equilibrium points by a family of polytopic uncertain linear systems. The nonlinear equations of the system are 
imbedded in the interior of an inclusion polyhedron. A robust control law is built so as to insure asymptotic stability to a given 
equilibrium within a maximal ellipsoidal region contained in the interior of the polyhedron. Given a pre-specified equilibrium curve 
connecting the initial and final points, it is shown how to fix a sequence of equilibrium points together with the local associated ellipsoids 
covering the curve and enabling a convergent control sequence. State feedback and output feedback for the local robust control synthesis 
are considered, together with local performance criteria. A simple numerical experiment is provided to illustrate both the effectiveness of 
the synthesis and the performance achieved.  
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1. Introduction 

The control of nonlinear dynamical systems over a wide range of operating conditions has attracted a great 
deal of attention in recent years. Fixed controllers are definitely not adequate to control these kind of systems. 
An adaptive controller or a varying controller structure is needed to meet the control demands at multiple 
operating points. The common approach to solve a complex problem is to use the strategy of divide and 
conquer. This strategy leads to multiple models or multiple controllers approaches to deal with nonlinear 
systems. Some of the approaches used frequently are: multiple models adaptive control [1, 25], supervisory 
control [18], the Quasi-LPV approach [6, 20] and gain scheduling [19, 20, 2]. Multiple models adaptive 
control is a model-based form of gain scheduled. It uses a set of paired models and controllers. The 
model/controller pairs are fixed. As a result, any model based controller design strategy can be applied. It also 
uses a weighting function to decide which model or combination of models fits the data best. Then a 
corresponding controller or combination of controllers is used to send an input to the plant. In supervisory 
control, a supervisor selects the best feedback controller from a set of linear controllers and switches into 
feedback to cause the output of the process to track a set point. The supervisor decides which controller to put 
in feedback with the process by comparing performance signals generated by the candidate controllers. The 
Quasi-LPV approach is based on the possibility of rewriting the plants equations in a form where nonlinear 
terms can be hidden with newly defined, time-varying parameters that are then included in the scheduling 
variable. Since nonlinear terms involve the state, this means that some state variables must be relabeled as 
parameters in various part of the model. 
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Because a practical unified theory for nonlinear control does not currently exist, engineers must often resort to 
techniques not based on a completely rigorous theory, but demonstrated to work in practical situations. Gain 
scheduling is among the most familiar of these techniques. It is an effective way of controlling systems whose 
dynamics change with the operating conditions. It is normally used in the control of nonlinear plants where 
the relationship between the plant dynamics and operating conditions is known, and for which a single linear-
time invariant model is insufficient. In its standard form, this procedure is executed by linearizing the systems 
dynamics about a family of equilibrium points, also called operating points and applying linear control theory 
at each design point to derive local linear control laws. The local performance of gain-scheduled controllers is 
usually good, which makes them attractive for practical applications. Unfortunately, gain scheduling doesn’t 
provide guarantees on the stability and performance of the closed-loop systems at operating conditions 
between the scheduling points. Although, there is a long history of gain scheduling in applications [13, 20, 
22], the theoretical treatments of gain scheduling as a worthy design methodology for nonlinear control are 
rare until the 1990s [19, 20, 21]. As mentioned, a major limitation of linearization gain scheduling is that 
stability properties of the closed loop system can be guaranteed only in a neighborhood of the equilibrium 
manifold. A notion of extended local linear equivalence has been proposed to address this problem [14]. 
Along these lines, we find the idea of stability-based switching. In [15, 16], it’s considered scheduling the 
controller transition based on stability properties of the linear points designs. The idea is to select operating 
conditions and to perform linear point designs so that each operating condition is in the capture region of a 
neighboring operating condition. In this manner, one can assure stable transitions among operating conditions 
by appropriately switching controllers. 

In this work, we develop an alternative gain scheduling procedure that exhibits some of the performance 
properties of standard gain scheduling, but provides stability guarantees between the scheduling points [23]. 
In particular, we consider the use of the gain scheduling approach to the problem of stable guaranteed 
transition from an actual operating point to a desired one by using a pre-specified path in the equilibrium 
manifold of the nonlinear system connecting the operating points. A polytopic uncertain linear system is used 
to describe the nonlinear system in a polyhedral region around an equilibrium point. A Lyapunov function for 
the uncertain linear system is used to estimate ellipsoidal stability regions of maximal volume of the nonlinear 
system in the interior of the polyhedron. Repeating the procedure on the pre-specified path in the equilibrium 
manifold connecting the two operating conditions, we can cover the path by a set of ellipsoids included in the 
polyhedrons. The algorithm developed assure closed loop stability of the nonlinear system and local 

performance (pole assignment, 2H  or H  norm minimization) by using results from quadratic stability [2] 
and convex optimization, mainly linear matrix inequalities (LMI) [3].  The paper is organized as follows: 
Section 2 is devoted to give some preliminary results. In section 3 the stable transition  problem is stated and a 
transition algorithm is formulated to solve such a problem. Section 4 concerns the local robust control laws 
synthesis and some insights are given for the practical problem of output scheduling. Finally, a simple 
numerical example is presented in section 5. 

2. Some Previous Results 

The algorithm developed in this paper applies to nonlinear systems with input-affine models of the form 

    0   )),(),(()()()()(:  ttutxftutxGtxFtx . (1) 

Where nXtx )( is the state vector, X is an open set, mUtu )( is the control input, U is the 

set of all admissible controls such that Uu )(. is a measurable function. The operating space of the system 

(1) is UX  x  with operating vector    ux, . The second form in (1) will be used for 

convenience. We assume that the nonlinear function f  is Lipschitz defined in a neighborhood of the 

equilibrium points of the nonlinear system.  

2.1. Gain Scheduling Formulation 

Let Z  be the scheduling space, i.e, the set of scheduling variables sZtz )( . The scheduling space 

Z  is a connected compact set. In many cases there will exist a function Zs :  that projects the 
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operating vector   onto a lower dimensional scheduling space Z , thus )(sz   with 

   dimdim z . It is assumed that there exists an equilibrium manifold [20] which is parameterized 

through the scheduling variable, Ztz )( . That is, there exist continuous functions, XZx :0  and 

UZu :0  such that  

   0)(),( 00 zuzxf , 
(2) 

for all  )( Ztz  . The scheduling variable can be a function of the state, input, and  exogenous signals. 

Although the scheduling variable is a function of time, in the gain scheduled controller implementation, it is 
viewed as a parameter in the design process. The Jacobian linearization of the nonlinear plant around the 

equilibrium    )(),( 00 zuzx is written as  

   )()()()()()()(:)( 00 zutuzBzxtxzAtxz   , 
(3) 

where 
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For each  z , that is jtt ztz
j
)( , the nonlinear system   is represented locally by the linear time 

invariant system  jz  

     )()( )()()()()(),()(:)( j
eqj

j
eqjLj utuzBxtxzAtutxftxz   , 

(5) 

where    )(),(, 00)()(
jj

j
eq

j
eq zuzxux   and Lf  denote the local approximation of  the nonlinear function 

f (1). Based on the plant equilibrium manifold and linearization, a linear time invariant controller 
)( j

LC  is 

designed for selected values of jz . The global gain scheduled controller C  is implemented by combining 

these linear controllers 
j

j
LCC )(  using real time measurements of )(tz  to vary the controller’s 

parameters. 

2.2. Geometric Tools 

In this section we describe the geometric tools that will be used, the polyhedrons [17] used in the local 
approximation of the nonlinear equations of the process around the equilibrium points; and the ellipsoids [3], 
that allow the estimation of asymptotic stability regions in the neighborhood of the equilibrium points. 

Definition 1  A polyhedron P  is the intersection of a finite number of half spaces 
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where T
ia is the i-th row of the matrix A  and   is  meant component wise. 

Definition 2  An  ellipsoid E  centered at n
cx  can be represented by the expression  

 0,1)()(:ˆ 1   T
c

T
c

n SSxxSxxxE . (7) 

The maximum volume ellipsoid E  contained in the polyhedron P  is given by [3, 24] 
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It’s a classical convex optimization problem that will be used forward in the robust control laws design. 

2.3. Quadratic Stability 

Consider a polytopic uncertain linear system described 0t  by the equations 

ADAtAxtx       ),()( , (9) 

where AD  is a polytopic uncertain domain given by 
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 x 1,0,::  . (10) 

We first study stability of the system (9-10), that is, we ask whether all trajectories of the system (9-10) 
converge to zero as t . A sufficient condition for this is the existence of a quadratic function 

0  ,)(  QQV T   that decreases along every nonzero trajectory of the system. If there exists such a 

Q , we say that the system (9-10) is quadratically stable and we call V a quadratic Lyapunov function. Since 

 xQAQAxxVdtd TT  ))((  , a necessary and sufficient condition for quadratic stability of (9-10) is  

Ai
T
i NiQAQAQ ,,1    ,0    ,0  . (11) 

or  the dual condition  

Ai
T
i NiSASAQS ,,1    ,0   ,01   . (12) 

Quadratic stability can also be interpreted in terms of invariant ellipsoids [3]. Let E  denote the ellipsoid 

centered at cx  (7). The ellipsoid E  is said to be invariant for the system (9-10) if for every trajectory of the 

system, Etx )( 0  implies 0  ,)( ttEtx  . This is the case if and only if the matrix S  satisfies (12). 
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2.4. Local Approximation of the Nonlinear System 

We assume that, for any inclusion polyhedron )( jP represented as in the equation (6) associated to the 

equilibrium point  )()( , j
eq

j
eq ux  of the system (1), is possible to construct a set 

     )()()( ,     ,,1,,,1,,,1; , j
BBAA

j
i

j
i PuxNjNiNiBA

BA
  . (13) 

So that the model (1) satisfies the inclusion condition: 
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Where 0  denotes the convex hull. Under this condition, all trajectories of the nonlinear system (1) 

corresponding to input trajectories )(tu  for which the operating vector   )(, jPux   for all 0t  are 

also trajectories of the linear differential inclusion (14) [3].  
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Thus the evolution of (1) is captured by an uncertain linear model generated by considering all possible linear 

combinations of a given set of linear models. In order to compute the inclusion polyhedron )( jP , we define a 

domain of validity from an admissible error n  between the nonlinear system (1) and its linear 

approximation calculated in the j-th equilibrium point  )()( , j
eq

j
eq ux . Fixing an approximating error leads to a 

polyhedron into the state space. We show the case of a non linearity depending on one variable in the figure 
(1). We have the following result. 

Proposition 1 Giving an approximating error n between the nonlinear system (1) and its linear 

approximation calculated in the j-th equilibrium point  )()( , j
eq

j
eq ux  (5), then there is an inclusion polyhedron 

 nibxaxP i
T
i

nj 2,,1;:)(   that contains the non linearities of the system (1).   � 

Proof   Let the error vector   nT
n   ,,1   then we have for every component in equations (1) 

and (5) 

iLii ff  , (16) 

The equation (16) leads to a polyhedron into the space state X, such that  

Njnixtx j
i

j
ii ,,1,,,1;)( )()(

eq     . 
(17) 

Choosing 
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(18) 
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The polyhedron 
)( jP will be symmetric with respect the j-th equilibrium point. We write 
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Remark 1  If there are linear components in the nonlinear vector function (1), we make 
0i . 

Remark 2  We have adopted a numerical procedure in order to find (19). We define a mesh in the state space 
and we impose the condition (16) then using (18) the symmetric polyhedron (19) is obtained. 

Considering every possible combination generated by the extreme values taken by the non linearities of the 

system   (1) in the interior of  
)( jP , we can construct an uncertain linear system 

)( j
I  such that 
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where the matrices  )()( , j
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The notation   )()( jj
ieqx   must be interpreted as the evaluation of the corresponding Jacobian matrix in 

every possible combination around the j-th equilibrium point. However, for a practical system, finding the 
polytopic uncertain domains may be a difficult task especially in the case when the non linearities have 
several arguments. Some works have been recently devoted to the approximation of nonlinear systems by 
means of piecewise affine models and can be usefully used to extend the proposed approach for nonlinear 
system control [11, 12]. 
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Figure 1. Local approximation of the nonlinear system 

3. Transititon Algorithm Formulation 

The guaranteed transition from an actual operating point to a desired one is an interesting control engineering 
problem. In this section, we develop a transition algorithm to switch local robust controllers. This algorithm 
insures the stable transition between operating points and allows for the local definition of performance 

indexes (pole assignment, 2H  or H  norm minimization) in the neighborhood of the equilibrium points 

supplied by the gain scheduling technique.  

3.1. Statement of the Problem 

We are interested in finding a scheduled control that guarantees a suitable transition between an initial 
operating point and a final operating point. To assure a stable transition too, we are searching for an 
intermediary equilibrium points set, such that, every intermediary equilibrium point 1i  is supposed to be in 
the interior of the asymptotic stability region of the point i . The problem is to find that set of equilibrium 
points, and the associated control laws designed to insure, for instance, a suitable fast transient response.  

Problem 1  Find a state feedback global control law mUu )(. that guarantees the transition of the 

nonlinear system   (1)  from the initial operating point    000 ,ux  to the final operating point 

   fff ux ,  assuring the closed loop stability of   and certain local control criteria (pole 

assignment, 2H  or H  norm minimization). 

3.2. Transition Algorithm 

The following assumptions are made: 

i. There are functions XZx :0  and UZu :0  such that    0)(),( 00 zuzxf for all 

 )( Ztz  . That is, there is a family of equilibrium points parameterized by the scheduling variable z 

written as     Zzzuzxfux  ,0)(),(:, 00  

ii. There is a path zC  in   depending on the scheduling variable z connecting the points 0x  and 
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fx . This means that it is possible to specify a path C  parameterized now by the scalar 10   , such 

that 00
xC 

  and fxC 
1 . 

iii. The pairs   NjzBzA jj ,,1,)(),(   are assumed to be stabilisable. 

After the scalar parameterization we can write the equilibrium point set as  
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Under the previous assumptions the state transition from an actual operating condition 0x  to a desired 

operating condition fx  may be established using a pre-specified path in the state space as is stated in the 

following algorithm. 

1. Choose the initial equilibrium point as    ffeqeq uxux ,, )1()1(  . Do 1 ,1 )(  jj  . (The control law 

is implemented off line). 

2. Fix the approximation error   nT
n   ,,1   such that niff iiLi ,,1;   .  

3. Find the j-th inclusion polyhedron )( jP (19) around the equilibrium point  )()( , j
eq

j
eq ux . 

4. )()( jPtx   represents  the nonlinear system    (1) by the polytopic uncertain linear system 
)( j

I  

(20-22) 

5. Built a state feedback robust control law 
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 0,1)()(: 1   T
c

T
c

n SSxxSxxxE , (24) 

contained in the inclusion polyhedron )( jP , by the resolution of the optimization problem (to be developed 
in section 4)  

j

PE

ts

Evolume

jj

j










 
         

sConstraint ePerformanc

sConstraintStability  hat   uch 

)(   maximize

)()(

)(

. (25) 

6. Compute the following equilibrium point  )1()1( ,  j
eq

j
eq ux  by the resolution of the optimization 

problem  (by dichotomy) 
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j
10

E)(x

  

j











  such that

minimize

)(0






. (26) 

The objective is to find the point such that  )()1( jj
eq Einteriorx   insuring that the intersection among 

the successive ellipsoids is not empty. The above optimization problem will provide the minimum number of 
commutations from the initial to the final point. The resulting policy may not be robust in the sense that 

)1( j
eqx  is almost on the boundary of the attraction domain of )( j

eqx so that to insure convergence the switch 

has to be fired in a very small neighborhood of )1( j
eqx  which may result in a very long response time. A 

way to avoid this drawback is to introduce a parameter   and make   

   1 ,0  , )()1(   min
j

min
j , 

yielding the following equilibrium point as  

   )(),(, )1()1()1()1(   jojoj
eq

j
eq uxux  . 

which is forced to belong to the interior of the attraction domain as deeply as   is increased. 

7. If the initial point )(
0

jEx   Then    00
)1()1( ,, uxux j

eq
j

eq   and return to step 3 

8. If 0
)1( xx j

eq   Then the design is complete and the global control law is given by (27) else return to 

step 3 

 

 
 


























)1()1()1()1()1(

)1()2()2()2()2()2(

)(
1

1

)()()()()(

  ,)()(

  ,)()(

  ,)()(

 )(

ExuxtxKtu

EExuxtxKtu

EExuxtxKtu

xu

eqeq

eqeq

j
Nj

j

NN
eq

N
eq

NN

Global  . (27) 

3.3. Transition Study  f0 xx   

In the following, we study the transition between two operating conditions of a dynamical nonlinear system 

 . We denote a trajectory of (1) as )),(,( 0 utxts  and the trajectory converging to eqx  as 

  eqxutxts ),(, 0 . 

Lemma 1  Consider a set n and the equilibrium point eqx . If the trajectory 

  eqxutxts ),(, 0  then   utxts ),(, 01  for some  01 tt . 

In the following we show that the global robust control law (27) supplied by the transition algorithm assures 
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the nonlinear system transition from the initial equilibrium point 0x  to the final equilibrium point fx . 

Proposition 2 If the initial condition belongs to the N-th invariant ellipsoid centered at )(N
eqx  denoted as 

 )()(
00 )( N

eq
N xExtx   then the trajectory   fGlobal xxuxtxts  )(,)(, 00   for  )(xuGlobal  

given by equation (27).           □ 

Proof  Without loosing any generality, we assume the number of controllers equals to 3N . If 

 )3()3(
0 eqxEx   and       1)1(2)2(

0 , eqeq xExEx   the algorithm shows that only controller 

  )3()3()3()3( )()( eqeq uxtxKtu   is on, by the lemma 1,   )3()3(
0 )(,,

eq
xtuxts  . As 

      1)1(2)2(
0 , eqeq xExEx   there is not convergence to )2(

eqx  neither to )1(
eqx . By construction, we can 

find some instant  01 tt  and a controller   )2()2()2()2( )()( eqeq uxtxKtu   such that 

   )2()2(
1

)3(
01 )()(,, eqxEtxtuxts   and the trajectory   )2()2(

11 )(),(,
eq

xtutxts  . Repeating this 

reasoning we can find some instant  12 tt  and controller   )1()1()1()1( )()( eqeq uxtxKtu   such 

that    feq xxEtxtutxts  )1()1(
2

)2(
12 )()(),(,  and   fxxtutxts

eq
 )1()1(

22 )(),(, . That 

implies the transition from 0x  to fx .        ■ 

4. Robust Control Synthesis 

Based on the nonlinear system equilibrium manifold and linearization, a linear time invariant controller 
)( j

LC  

is designed for selected values of the scheduling variable. The global gain scheduled controller C  is 

implemented by combining these linear controllers 
j

j
LCC )(  using real time measurements of the 

scheduling variable to modify the control parameters. The local controller 
)( j

LC  will be a robust one and will 

be designed for the j-th polytopic uncertain linear system 
)( j

I (20-22).  In the following, we will drop the 

indices related to the linear local models to unclutter displayed equations, though the indices are retained for 
emphasis when discussing particular variables. 

4.1. Scheduled State Feedback Control 

We consider in this section the case of state feedback synthesis as in equation (23). The state feedback robust 

control law that assigns the poles of the polytopic uncertain linear system 
)( j

I  (20-22) in the convex region 

),,()(
ccc

j
cR  (see figure 2) and that maximizes the ellipsoid volume )( jE  (24) contained in the 

inclusion polyhedron )( jP (19) is given by the following theorem, which itself, combines the results from [5] 
and those from section 2. 
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Figure 2.  Convex region ),,()(
ccc

j
cR   

Theorem 1  Let the symmetric positive definite matrix nnS  x 0   and the matrix  nmR  x 0  be 

solutions of the optimization problem   
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Then the invariant stability domain 

 






 


1)()(: )(10)()( j

eq
Tj

eq
nj xxSxxxE , 

corresponds to the maximal volume ellipsoid contained in the inclusion polyhedron )( jP (19), and the state 

feedback robust control law calculated for the j-th equilibrium point  )()( , j
eq

j
eq ux  of the nonlinear dynamical 

system  (1) 



 

 Studies in Informatics and Control, Vol. 16, No. 2, June 2007 162 

      )()(100)()()()( )()()( j
eq

j
eq

j
eq

j
eq

jj uxtxSRuxtxKtu 


 

assigns the poles of the polytopic uncertain linear system 
)( j

I  (20-22) in the convex region 

),,()(
ccc

j
cR  ; Nj ,,1  , ni 2,,1  , AA Ni ,,1 ,  BB Ni ,,1 . (The * denotes a 

Transpose Block Matrix          □ 

Remark 3  Theorem 1 requires  NNNn BA 132   LMIs and   Nmnn  21  unknowns.  

In the quadratic concept, it is easy to add any LMI constraints such as 2H  or H  norms bounds [23]. The 

idea of ellipsoid volume maximization, that is, the local attraction domains of the equilibrium scheduling 
points, is in the spirit of having a small number of switches between the local robust control laws, for a given 

transition fxx 0 . The synthesis problem definition in Theorem 1 would imply local fast response 

performances, a necessary condition to get good enough global time response. 

4.2. Scheduled Output Feedback Control 

In the case of scheduled state feedback control, the switching policy implies the guaranteed transition from 
the initial state to the final one. The extension of the approach to the case of partial information about the state 
in real time is much more involved. Two propositions for scheduled output control are discussed below: the 
first one concerns scheduled control with observers, the second is based on dynamic output control.   

4.2.1. Scheduled observer based controllers 

Following the principle of scheduled state feedback in the context of partial state information, the first natural 
idea to come is to think about state estimation. For control purpose, the will to estimate an unmeasurable 
linear combination of the state variables is clearly justified, in the case of linear models without uncertainty 
by the well known separation principle. In our case (nonlinear system described as piecewise uncertain linear 

one) no such principle directly holds.  However, the 2H  robust filtering problem [8, 9] may be of some use 

for the proposal of a scheduled output control strategy. Let us consider the following linear time invariant 
system 








)()()(

)()()(

twDtCxty

twBtAxtx

w

w
. (28) 

Where nx  is the state, mw  is the zero mean white noise input with identity power spectrum 

density matrix and qy  is the measured output. It is assumed that 

All matrix dimensions are known 

Matrix )()( mnxqnM   defined as 











w

w

DC

BA
M , (29) 

is unknown but it belongs to a given convex bounded polyhedral domain MD . Hence, from [7] each 

uncertain matrix of this set can be written as an unknown convex combination of N  given extreme matrices 

NMMM ,,, 21  , that is, MDM   if and only if 
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



N

i
ii MM

1

 , (30) 

holds for some 0,,01  N   such that 11  N  . 

The problem to be dealt is to design a full estimate x̂  of x  given by yx .ˆ   where   is a linear, finite 

dimensional, and time-invariant operator producing at any time the estimation error xxe ˆ:  , such that, the 
controlled transfer function from the noise input w  to the estimation error e  satisfies the following: 

Problem 2  Let a guaranteed estimation performance index )(  such that 

)()(sup
2
2




sTM
DM M

, (31) 

and given 0 denote   the set of all filters    such that (31) holds for  )( . Among all 

feasible filters, find the optimal one that minimizes )(  over  . 

In the above problem, the feasible set   is used to impose a particular class of linear, finite dimensional, 
and causal operators. In the present case, we consider   as the set of all linear time-invariant operators 
with state space realization of the form 

)()(ˆ)(ˆ tyBtxAtx
dt

d
ff  , (32) 

where the matrices nn
fA  x  , qn

fB  x   are to be determined. In other words   is taken as the set 

of all strictly proper linear time-invariant operators of order n . It is assumed that the initial conditions of 
system (28) and the filter (32) are the same (to be discussed later on). Connecting the filter to the system (28) 

we can write the transfer function )(sTM  as 

  BAsICsTM
~~~

)(
1

 , (33) 

where matrices A
~

, B
~

 and C
~

 of compatible dimensions are given by 











ff ACB

A
A

0
:

~
, 










wf

w

DB

B
B :
~

,   IIC :
~

. (34) 

The next theorem gives a solution, expressed in terms of LMI, to the 2H  robust filtering problem (problem 2). 

Theorem 2   [8, 9]  Assume that MDM  is fixed but arbitrary and the scalar 0  is given. Then, the 

transfer function )(sTM  satisfy the inequality 
2

2
)(sTM  for all MDM   if and only if the filter 

transfer function is expressed as 

   FVZUQUsIIsT T
f

1
111)( 





  , (35) 
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where the pair  VU ,  satisfy the relation IUVXY T  and the matrices TWW  , TZZ  , 

TYY  , Q, F and G are the solutions of the following convex problem expressed in terms of LMI  

  WTrace
GFQYZW ,,,,,

, (36) 
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(38) 

 

� 

The scheduled observer based controllers policy will be based on the belonging of the state estimate 

0  ),(ˆ ttx  to the ellipsoid )(ˆ jE  given by the equation 

 






 


1)ˆ()ˆ(:ˆˆ )(10)()( j

eq
Tj

eq
nj xxSxxxE  

where the symmetric positive definite matrix nnS  x 0  results from the Theorem 1. This scheduling 

policy obviously relies on the state estimate quality, hence, there is some heuristic degree. Another heuristic 
degree is added by the assumption of identical initial conditions between the system and the filter. Practically, 
the choice of the equilibrium states for the filter initialization at each switching would reduce the 
approximation.  

4.2.2. Scheduled dynamic output control 

A “time open loop” switching policy can be considered. As far as every intermediary equilibrium point is 
placed in the attraction domain of the following equilibrium point, it’s obvious that if the local transition is 
made to last for a long time (asymptotic convergence to the equilibrium point) the global convergence would 
hold but this lead to a very poor response time. The successive transitions and thus the response time can be 
improved by imposing both a fast dynamic for the local robust controllers and also by taking the equilibrium 
points to be far enough in the interior of the attraction domain of the successive equilibrium point (parameter 
  in section 3.2).  

The linear uncertain system around the j-th equilibrium point is described by 








)()(

)()()(

tCxty

tButAxtx
, (39) 

where nx   is the state vector, mu  is the control signal, and qty )(  represent the measured 

output. The polytopic uncertain domain is given by 
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We consider for the local controller 
)( j

LC  a dynamic output control of the form 








)()(

)()()(

txCtu

tyBtxAtx

cc

cccc


, (41) 

where cx  is the dynamic output control state vector. For a strictly proper dynamic output control, the global 

dynamic system will be represented 0  t  as 











)()(

)()(
~

tXCtz

tXAtX

ee

eee
Ai


, (42) 

with 

 ce
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c

e
c
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


 . 

We propose a dynamic output control strictly proper in order to quadratically stabilize the system (39-40) 
with a positive Lyapunov decay rate  , while maximizing the stability ellipsoid volume   

   






   0,,1: 2 x 2)(1)(2 Tnnj

eqe
Tj

eqe
n

e SSSXXSXXXE , (43) 

contained in the inclusion polyhedron  

 )2(2,1,:2 nibXaXP ie
T
i

n
e  . (44) 

The inclusion polyhedron must be written as (19). The polyhedron size is calculated as it was proposed early, 

hence, by fixing an approximation error n  between the nonlinear system and its linear approximation. 
The equilibrium points associated to the primal state variables are obtained by solving the algebraic system 
equations 

  0, eqeq uxf  

and the equilibrium points associated to the dual state variables (dynamic output control) are chosen to be 
zero. The dual state variables are equally approximated by a polyhedral region in order to have a compact 
domain, and so, a well posed optimization problem. The following result shows the way to assure quadratic 
stability with a positive Lyapunov decay rate   for the system (39-40) while maximizing the stability 

ellipsoid volume E  (43) contained in the inclusion polyhedron P (44). 

Theorem 3  Let the symmetric positive definite matrices nnYX  x 00 ,   and the matrices 

nmnn LM  x 0 x 0 ,   and qnF  x 0   solutions of the optimization problem 
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Then, (43) is the maximum stability volume ellipsoid contained in the inclusion polyhedron (44) and the 
strictly proper dynamic output control (41) defined for the j-th equilibrium point of the nonlinear system 

stabilizes quadratically the system (39-40) with a positive Lyapunov decay rate  , AA Ni ~~ ,,1  and 

)2(2,,1 ni  .         □ 

Proof  The closed loop system (42) is asymptotically stable with a positive Lyapunov decay rate equal to   if 

there exists a symmetric positive definite matrix nnS 2 x 2  such that 

02~~  SSASA T
ee AiAi

 , (49) 

where S et 1S are matrices partitioned into four blocks of dimension n x n such that 







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
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VY
S TT ˆˆ    ,ˆˆ 1 , 

where   111ˆ   YVYVYX T
 resulting in the matrix inequality (46). Substituting S in (8) by the 

partitioned matrix  


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




YI

IX
 

gives (47). Introducing the new variables 

TT
cc

T
c UVAMUBFVCL  ,, , (50) 

and multiplying (49) on the left and right by the matrices T
eT  and eT where 



 

Studies in Informatics and Control, Vol. 16, No. 2, June 2007  167


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Te , 

gives (48).            ■ 

Remark 4  Theorem 3 requires  NNn
A

1)2(2 ~   LMIs and   Nqmnn  213  unknowns.  

The previous matrix inequalities are not linear but bilinear. However, the particular structure of the matrix 
inequalities allows us the use of relaxation algorithms [10] for every uncertain linear model. The quadratic 
Lyapunov function of the system (42) is 

  e
jT

ee XSXXV )( . (51) 

The positive Lyapunov decay rate means 

   )(2)( )( tXVtXV
dt

d
e

j
e  , (52) 

thus 

   )0()(
)(2

e
t

e XVtXV e
j . (53) 

So that the asymptotic stability of the augmented system (42) can be expressed as 

)0()()(
)(

)(
e

tj
e XStX e

j  , (54) 

where  )( )( jS is a Lyapunov matrix depending constant [3]. Doing 

e
tj

j

S 0
)(

)( )(   , 

with 0t  the initial operation time, we can evaluate (54) at 
)(

0
jtt  , yielding 

)0()( ee XtX e
 . (55) 

In other words, the positive Lyapunov decay rate )( j  plays the role of a constant time for the augmented 

system (42). By changing  , it will be possible to modulate the neighborhood around an attractive 
equilibrium point, by fixing a minimum time transition such that the augmented system’s state is into the 
attraction domain of the following equilibrium point.  By this way, we’ll have a scheduled dynamic output 
control technique based on a minimum time transition 1 jj  

1,,1  ,
)(0  Njtt

jj 



 . (56) 

5. Numerical Application 

The objective of this section is simply to illustrate the implementation of the transition algorithm, Let a 
mechanical vibrational system [4] represented for the state equations  

  









)()(1)()()(

)()(

2
2

112

21

tutxtxtxtx

txtx




. (57) 

The operating vector is  Tuxx ,, 21  and doing   0, 00 uxf  yields 
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12  ,0 xux  , (58) 

resulting in the equilibrium manifold 

  1221  )58(satisfy   ,:,,  xuxuxx T   . (59) 

We study the feasibility of the approach by considering the state feedback synthesis for the transition 

     0 ,5.00 ,5.0:, 21 xx  in  . However, to show the robustness of the algorithm with respect to the 

initial condition selection, we choose    4.0 ,1:, 21 xx  belonging to the attraction domain of  0,5.0  

The figures 3, 4 and 5 show the state variables and the control signal, respectively. We see that the transition 
time is 7 sec. And the control signal presents discontinuities at the instants of commutation. Finally, the figure 
6 allows us to see the state trajectory in the interior of the stability invariant ellipsoids and these contained in 
the inclusion polyhedrons. 
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 Figure 3.  Evolution of the state variable 1x  
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 Figure 4.  Evolution of the state variable 2x  
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Figure 5. Evolution of the control signal 
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Figure 6.  State trajectory for the initial condition 

   4.0 ,1:, 21 xx , inclusion polyhedrons and 

stability invariant ellipsoids for the considered 

transition. 
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6. Conclusion 

We have developed an algorithm that guarantees the closed loop stable transition of a nonlinear system from 
an actual operating point to a desired one. A polytopic uncertain linear system is used to describe the 
nonlinear system in a polyhedral region around an equilibrium point. A Lyapunov function for the uncertain 
linear system is used to estimate ellipsoidal stability regions of maximal volume of the nonlinear system in the 
interior of the polyhedron. Repeating the procedure using a pre-specified path in the equilibrium manifold of 
the nonlinear system connecting the two operating conditions, we can cover the path by a set of ellipsoids 
included in the polyhedrons that assure the closed loop stability of the nonlinear system. In the case of state 
feedback, the robust control laws scheduling is executed when the state trajectory reaches the attraction 
domain of the following equilibrium point. If we can only measure the output, we have two approaches: 
observer-based controller and dynamic compensation. In the first one, the scheduling policy is based on the 
belonging of the estimated state to the stability ellipsoid of the next equilibrium point. In dynamic 
compensation, the scheduling function is of open loop type, where we fix a minimal duration of every 
individual transition. Current investigation is doing in order to take into account dynamic performance not 
only in a local way but in a global one. 
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