
Studies in Informatics and Control, Vol. 16, No. 2, June 2007 171

A Genetic Algorithm Based Application for a Flexible 
System 

S. Wadhwa, J. Madaan, and R. Raina  

Indian Institute of Technology—Delhi (IIT-D), 

Hauz Khas, New Delhi, India 

Abstract: Based on the rapid technical development in the last decade, the automation in many areas of production & distribution 
has developed significantly. This leads to complex situations where decisions have to be taken within a short time and among 
several alternatives – often without the human intervention. This paper considers flexible system as a mixed model flexible flow 
line, where ‘n’ independent jobs are required to be processed on ‘m’ different machines, where all the jobs have the same processing 
order on the machines. Here the objective is to find the ordering of the jobs on the machines that minimizes the make-span. Further, 
it proposes the use of evolutionary based heuristic of genetic algorithm on the flow line scheduling problem. Proposed architecture 
has been developed to depict the application of genetic algorithms to optimize production schedules in a flexible flow line system 
representing a flexible system. Results show that the implementation of the genetic algorithm is very effective as compared to 
standard sequencing rules like shortest processing time, total processing time, etc. and at the same time easy to use. Finally this 
paper intends to discuss some of these interesting results with a focus on application of lead-time reduction in an interesting flexible 
system like RES (Reverse Enterprise System). 
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1. Introduction 

The rapid advancement of technology is resulting in shortened life cycles and putting great pressure on 
organizations to achieve shorter and shorter manufacturing lead times. Hence, one of the important 
focuses of manufacturing enterprises is to find ways and means of reducing the manufacturing lead times 
to be able to respond quickly for changing market demands. Towards this end, scheduling has always 
been considered as one of the most important issues for lead time reduction in a mixed model flexible 
system. Due to this complexity of scheduling problems an efficient and effective advanced scheduling 
approaches are in great demand. Considering a mixed model flow shop scheduling problem, where ‘n’ 
independent jobs required to be processed on ‘m’ different machines, as a case representing a flexible 
system. Flow shop scheduling has been proved to be NP-hard in strong sense [Garey et. al, 1979]. Till 
now, mathematical programming, constructive heuristics and meta-heuristics have been proposed for a 
generic flow shop scheduling [Reeves, 1995; Ogbu, 1990; Wang et. al, 2003, Chan et. al 2005], where it 
is usually assumed that the buffer size between every two successive machines is infinite. However, in 
real practice, such as the petrochemical processing industries, reverse logistics system and electronic chip 
manufacturing system, buffer is non-existent. In such case, a job is called blocked if its operation on a 
certain machine has finished but the machine after that is still busy.  

A number of knowledge-based system (KBS) techniques for reconfiguring flexible systems have been 
proposed in the literature. Wadhwa & Brown (1989) had proposed potential of basic Petri net concepts for 
graphic representation, specification purposes, and control of flow in a flexible system. Since these KBS 
technique rely heavily on past experience. The required information sometimes may not be available or 
difficult to be obtained. Hence genetic algorithm (GA) is well a suited tool to tackle such complex 
reconfiguration problems, because GA uses information-randomized (genes) exchange to exploit to tackle 
complex scheduling problems. 

Rapid evolution in computer technology has shown advancement in the field of artificial intelligence (AI) 
and some of the AI techniques have been applied to the business in recent years [Grupe et. al, 2004]. 
Since the initial conception by John Holland in 1975, there has been a growing interest in Genetic 
Algorithms (GAs) – optimization algorithms based on the principles of natural evolution. Based on the 
mechanics of artificial selection and genetics, GAs are population-based evolutionary searching 
techniques, which combine the concept of survival of the fittest among solutions with a structured yet 
randomized information exchange and offspring creation [Goldberg, 1989]. They have been used widely 
for parameter optimization, classification and learning in a wide range of applications. Recently, 
production scheduling has emerged as an application. This paper deals with finding of an ordering of the 
jobs on the machines or sequences that optimizes the make-span. The area of flow-shop scheduling has 
been a very active field of research during the last 50 years since Johnson’s seminal work in 1954. The 
desire to seek the perfect solution is driven by the high dependence of a manufacturer’s performance and 
profitability on schedule optimization. Multiple implications of the results obtained from the present 
study can made towards developing schedule for lead-time reduction in flexible systems. 
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This paper presents a genetic algorithm based architecture which has been developed to find the best 
sequence for scheduling the product orders with the objective of minimizing the make-span of the whole 
process. Its applicability has been demonstrated by the means of a simulator developed as a part of this 
paper. The simulator is developed in Java and incorporates the basic principles of genetic algorithm like 
crossover and mutation along with modifications like elitism. The effect of varying the basic parameters 
of the genetic algorithm on the running of simulation for calculating make-span has also been presented.   

2. What is Flexible System? 

Several attempts have been made in the literature to define, model, and measure the performance of the 
flexible system. Many definitions of a flexible system can be found in the literature. For instance, 
Carlsson (1989) cite a flexible system as a system which accommodates greater output variation, as the 
firm’s response to uncertainty, especially in the form of fluctuations in demand, but also market 
imperfections. Benjaafar and Ramakrishnan (1996) cite the following definition from literature the 
capacity of a system to assume different positions or to assume a certain number of different states. 
Wadhwa and Rao (2000) view flexible system as system that has ability to deal with change by 
judiciously providing and exploiting controllable options dynamically. Further, Wadhwa and Rao (2003) 
use many flexibility concepts to discuss multiple entity flows from an enterprise synchronization 
perspective in the context of supply chains. There is a growing work on flexibility in manufacturing and 
supply chain systems that may be viewed as flexible systems (Wadhwa and Rao, 2004). However there is 
need to promote research in flexibility in reverse enterprise systems (RES) also. In our opinion the 
flexibility needs in reverse enterprise systems are higher than most conventional systems and hence RES 
also need to be treated as flexible systems. For instance, a flexible scheduling for product return may be 
devised, which can ensure a reduction in lead time among the closed loop supply-chain partners (nodes). 
This will reduce the time required for product differentiation, cost of time delays, and its effect on asset 
recovery in a Reverse Enterprise System (Wadhwa & Madaan, 2004) as a whole. Our ongoing research 
(e.g. Wadhwa and Madaan, 2006) reflects good possibilities in this direction. In this paper we first focus 
on flexible systems. Then we consider the case of flexible flow lines and show how GA applications can 
help improve the performance of these flexible systems. The performance is compared between GA based 
approach and other strategies. Finally we outline how a similar approach may also be applied to reverse 
enterprise systems viewed as flexible systems.  

3. Motivation for Study  

With respect to its modeling potential, GA can model a wide spectrum of manufacturing systems 
scenarios. This tool can be very effective in cases with a large variety of jobs/products following the same 
sequence on a large number of machines/system nodes. The flexible flow-shop scheduling problem we 
consider here is known to be NP-complete (non-deterministic polynomial) in the strong sense when 
number of machines, m ≥ 3 [Garey et. al. 1976]. If m = 2 Johnson’s algorithm obtains an optimal solution 
in polynomial time. Being NP-hard, there are no mathematical techniques yet available to solve these 
problems for optimality. For a simple n jobs and m machines schedule, the upper bound on the number of 
solutions is (n!)m. This paper deals with the simplification of FSP, which is the Permutation Flow-shop 
Scheduling Problem (PFSP). Here in the PFSP, job passing is not permitted, i.e. the processing sequence 
of jobs is the same for all machines. Under this consideration, ‘n!’ schedules are possible. Traditional 
approaches to schedule optimization are computationally slow in such enormous search space. Thus, 
brute force methods are not an option in this situation. 

Moreover, traditional sequencing rules provided a limited number of solutions which were rarely optimal. 
Therefore need to develop an algorithm to find the best sequence for scheduling the product orders with 
the objective of minimizing the make-span of all the jobs is there. Hence GA is a tool used for solving 
combinatorial and optimization problems [Grupe et. al, 2004]. In cases with large search space, genetic 
algorithm is effective in providing solutions close to optimal. Thus GA is computationally fast as it 
directionally searches a limited amount of feasible solutions rather than searching all solutions 
simultaneously. 

4. Literature Review 

The area of flow-shop scheduling has been an active field of research during the past few decades since 
Johnson’s seminal work back in 1954. Many researchers have used genetic algorithms for solving 
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scheduling problems. The effectiveness of GA is enhanced by the fact that traditional scheduling 
problems are considered to be NP-hard and therefore they cannot be solved for the optimal solution in 
finite amount of time [Wadhwa & Chopra, 2000]. 

Wang et al. (2006) in their work propose an effective hybrid GA model for flow-shop scheduling with 
limited buffer. Here local search based on graph model is employed and multiple crossover and mutation 
operators are used simultaneously, so that exploration & exploitation abilities can be well balanced. The 
effects of buffer size & decision probability on optimization quality are discussed. 

Wadhwa et al. (2005) indicates the existence of complex interactions between the sequencing flexibility, 
process concurrency, processor load balancing, and manufacturing lead time. This paper intends to 
discuss some of the interesting results with a focus on the inherent mechanisms of sequencing flexibility-
enabled lead-time reduction. 

Further Sadegheih (2006) displays the use of GA to optimize production schedules. According to them, 
the advantage of GA is that it provides a general purpose solution to the scheduling problem, with the 
peculiarities of any particular scenario being accounted for in fitness function without disturbing the logic 
of the standard optimization routine. They also show that overall Simulated Annealing (SA) needed 
longer computation time than GA. 

Ruiz et al. (2006) proposed new GA for a generalized permutation flow-shop scheduling problem. 
Extensive comparison with other algorithms showed that the proposed GA outperforms all other 
algorithms. Their problem has a number of unrelated parallel machines at each stage, sequence dependent 
setup times, and machine eligibility. The statistically results indicate that the proposed algorithm is 
between 53% & 135% better than the second best method. 

Grupe and Jooste (2004) in their work describe GA as being applied to solve business problems. There 
exists a cardinal rule of computing, “use the right tool for the right problem.” They present the criteria for 
the application of GA. They also point out the limitations of GA, the major ones being that not all 
problems can be framed in the mathematical manner that GA demands. Moreover, development of a GA 
and interpretation of the results requires an expert who has both programming and 
statistical/mathematical skills demanded by the GA technology in use.  

Silva et al. (2005) in their work discuss the methodologies that can be used to optimize a logistic process 
of a supply chain described as a scheduling problem which are NP-hard. They introduced the concept of 
cross-docking centers which are facilities where goods can be deposited for short periods of time before 
being picked up. Here a new objective function called Global Expected Lateness is proposed, in order to 
describe multiple performance improvement criteria. This function minimizes the sum of the lateness 
absolute values of all delivered orders. Based on the optimization methodologies proposed, the results 
show that dispatching heuristics are outperformed by the GA meta-heuristics. 

It is useful to apply GA in the flexible systems. The reason is that these systems are very complex 
and involve intricate control strategies to exploit flexibility. For instance Wadhwa and Rao (2006) 
compare the performance of three flexibility types in the manufacturing context. Chan et al. 
(2004) have also discussed flexible systems and their inherent complexity. Wadhwa and Rao 
(2000) have discussed various types of flexibility and described the underlying complexity to deal 
with such systems. It is proposed that GA can be used in many of these systems to improve their 
performance. The GA approach can also help to improve our knowledge to manage flexible 
systems more effectively. Wadhwa and Madaan (2006) have shown how knowledge management 
can help to improve RES viewed as flexible systems. Klassen & Angel (1998) illustrated a 
comparative study for measuring the impact of manufacturing flexibility in environmental 
management systems. Hokey et al. (2006) have shown how nonlinear mixed-integer programming 
model and GA may be applied to RES systems for performance benefits. However there is a need 
to show how RES may be seen as flexible systems and thereby more results and experiences can 
be translated and used in RES viewed as flexible systems. 

Hurink (2005) defines the basic structure of local search and moves on to iterative improvement of local 
search and then to simulated annealing, tabu search and genetic algorithm. He considers the problems 
with minimization of objective function as the criterion.  

Whitley (2005) covers the canonical genetic algorithm as well as more experimental forms of genetic 
algorithms including parallel island models and parallel cellular genetic algorithms. He also illustrates 
genetic search by hyper-plane sampling. The theoretical foundations of genetic algorithms are reviewed, 
include the schema theorem, as well as recently developed exact models of the canonical genetic 
algorithm.  
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In this paper we use a mix model flexible line to show the usefulness of GA applications. More complex 
flexible systems such as FMS and RES will have even a greater need for GA based approaches. The 
approach presented here may be extended to other flexible systems also. A simulation model of a sample 
flexible flow shop is used to show the benefits of GA. 

5. Sample Flexible System Model 

A sample flexible flow-shop may be viewed to comprise of a set N = {J1, J2... Jn} of n independent jobs 
that have to be processed on a set M = {M1, M2... Mn}of m different machines. Each job requires a 
known, deterministic, and non-negative span of time for completion at each flexible machine. The 
machines are flexible as they can process different job types. The machine flexibility (Browne et al 1984) 
here reflects the changeover time at a machine to process a changed job. The operation time of each job at 
each machine is different. This time is called processing time and it is denoted as pij (i = 1… n, j = 1… 
m}. In a flow-shop, all jobs have to be processed sequentially on the machines and have the same 
processing order. The objective is to find an ordering of the jobs on the machines that optimizes some 
given criterion. The criterion used in this project is the minimization of the total completion time of the 
schedule, often referred to as make-span, Cmax. The problem is classified as n/m/F/Cmax [Conway et. al, 
1967] or the three parameter notation (α/β/γ) can be followed [Graham et. al, 1979]. α indicates the state 
of the problem, which in out case is the flow-shop, i.e. F. β field cumulates a set of explicit constraints. In 
case of permutation flow-shop scheduling, β is replaced by permu. γ field indicates the objective to be 
optimized. Hence our problem can be represented as F/permu/Cmax. This scope of this work is limited 
only to permutation schedules, i.e. job passing is not permitted, and therefore, the processing sequence of 
the jobs is same for all the machines. 

It is important to note several additional conditions to the problem. All operations are independent 
and available for processing at time zero. All m machines are continuously available. Each 
machine i can process at most one job j at a time. Each job j can be processed on at most one 
machine i at a time. The processing of a given operation cannot be interrupted, i.e. no preemption 
is allowed. Setup or removal times are sequence independent and are included in the processing 
times or otherwise are negligible and can be ignored. If a job needs a machine downstream which 
is unavailable, it has to wait at its current position till the machine becomes available, i.e. no 
buffers have been provided into the system. A simulation model for the flexible flow shop is 
developed. This is integrated with a GA based scheduling system to help improve the make-span 
performance of the flexible system. 

6. The GA Application Model 
The GA based application model of the flexible system starts with an initial population which is obtained 
by use of standard sequencing rules along with some random chromosomes. Each chromosome is then 
evaluated by calculating the value of make-span. This value of make-span is used to calculate the fitness 
value of each chromosome. Fitness value is inversely proportional to the make-span. Based on this fitness 
value, we start the process of selection for the next generation. The chromosome with the best fitness 
value is directly placed in the new population. This step is called elitism and it prevents the loss of the 
best solution because of evolutionary techniques. The remaining chromosomes for the next generation are 
selected on the basis of roulette wheel selection. Each chromosome is given a section of roulette wheel 
based on its fitness value as explained in last chapter. Then random numbers are generated and the 
chromosome corresponding to the region in which the random number falls is selected. After selection, it 
is the time to apply the crossover and mutation operators on the intermediate population. Once these 
operations are complete, the new population is ready to be evaluated again. This process repeats till a 
specified number of iterations. 

Algorithm for the GA has been demonstrated below. 

[Start] Generate random population of n chromosomes (suitable solutions for the problem) 

[Fitness] Evaluate the fitness f(x) of each chromosome x in the population 

[New population] Create a new population by repeating following steps until the new population is 
complete.  
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[Selection] Select two parent chromosomes from a population according to their fitness (the better fitness, 
the bigger chance to be selected)  

[Crossover] With a crossover probability, cross over the parents to form new offspring (children). If no 
crossover was performed, offspring is the exact copy of parents.  

[Mutation] With a mutation probability mutate new offspring at each locus (position in chromosome). 

[Accepting] Place new offspring in the new population.  

[Replace] Use new generated population for a further run of the algorithm. 

[Test] If end condition is satisfied, stop, and return the best solution in current population. 

[Loop] Go to step [new population]. 

The mathematical model for make-span calculation is as follows. Let (π1, π2, π3... πn) be a permutation. 
Computing the finish time C (π i, j) for the ith job of the given permutation π and the machine j, can be 
done as follows: 

C(π 1, 1) = p π 1,1 

C(π i, 1) = C(π i-1 , 1) + p π i,1     i = 2, ..., N 

C(π 1, j) = C(π 1, j – 1) + p π 1, j     j = 2, ..., M 

C(π i, j) = max{C(π i-1, j), C(π i, j – 1)} + p π i, j   i = 2, ..., N; j = 2, ..., M 

Under these specifications, the value of the objective function, the make-span, Cmax, is given by   C(πN, 
M) – completion time for the last operation on the last machine. 

Make-span of the PFSP, Cmax = C (π N, M)    

The value of the fitness function of chromosome i is given by F (i), where 

F(i) = (Minimum make-span in the population) / (Make-span of chromosome i)  

The section on the roulette wheel occupied by chromosome i is given by R (i), where 

R(i) = { F(i) / ΣF(i) } * 360  

7. A GA Based Architecture 

To solve the PFSP, an overall approach has been developed and cases in literature related to GA 
application in other domains have been studied and analyzed. This paper conducts an in depth 
study of the GA algorithm has been carried out to understand overall functions. An overall 
architecture for GA based optimization of a flow-shop scheduler model has been developed as 
shown in Figure 6.1. It has been designed using a modular approach. The key modules identified 
are scheduler model, which provides the basic input population and the fitness function for the 
particular problem; the extractor, which extracts the input data from the scheduler; GA module 
which implements GA techniques like selection, crossover, and mutation to the data and the 
checker module which checks whether the result obtained is optimal. If the solution is optimal, it 
is sent as output; else it is sent to the changer module for generating a new population. These 
modules suitably interact with scheduling environment and with each other in order to fulfill the 
functionality of GA directed improvement process. Based on the architecture designed, software 
codes have been developed to test the efficacy of the approach. These codes provide a simple and 
robust method to apply GA to the flow-shop scheduling problem. The code has been written in 
Java and also provides a user friendly Graphical User Interface as shown in Figure 6.2. 
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Figure 6.1. Architecture of GA in Detail as Applied to Scheduler Model 

 

Figure 6.2. Graphical User Interface for the GA Scheduler 

Here the GUI acts as a link between the end-user and the software code. The input parameters for the GA 
scheduler are the number of machines and the number of jobs to be processed on the machines. The 
software has been successfully tested for the problem size as high as 1000 machines and 1000 jobs. The 
GUI also provides an option to the user to enter the crossover probability and the mutation probability but 
care must be taken while entering these values as the performance of GA is seriously affected by them. 
The user must also set the number of iterations for which he wishes to run the software and also the size 
of the population used. The affects of variation in these parameters have been shown in the next chapter. 
The GA scheduler also provides an option to the user to load the input values by reading from a file. For 
this the user must enter the full path of the input file in the GUI. Similarly the output file path must also 
be entered in the GUI. 

The parallel approach of GA has been illustrated in Figure 6.3. It shows that a population sample consists 
of chromosomes from various regions of the search space rather than being limited to a particular region. 
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This allows the GA to traverse a large search space and look for optimal solutions without falling into 
local minima.  

The working of the genetic algorithm can be visualized by Figure 6.4. Here, a plot of the best value of 
make-span during iteration against the iteration number is made. It can be seen that how the genetic 
algorithm progresses from one generation to another, thereby improving the solution value. The flat 
regions in the figure are the local minima but GA mostly manages to escape from such positions because 
of its intrinsic evolutionary features like crossover and mutation. 

Figure 6.3. Population Sample 

 

Figure 6.4. Working of GA 
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7.1. Model Experiments 

In this section we compare the results obtained by the use of the GA Scheduler with those obtained by 
standard sequencing rules like first-in first-out, shortest processing time, total processing time, etc. Figure 
6.5 is for a 100 jobs 100 machines case whereas in Figure 6.6 we run the software for a massive search 
space with 1000 jobs 1000 machines case. As is evident from the inspection of both figures, the 
performance of the GA Scheduler is far better than the standard sequencing rules, thus demonstrating the 
efficacy of the approach.  

Figure 6.5. Comparison of GA with standard sequencing rules: 100 machines 100 jobs data 

 

Figure 6.6. Comparison of GA with standard sequencing rules: 1000 machines 1000 jobs data 
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8. Model Sensitivity Analysis 
As expected from an evolutionary technique like genetic algorithm, the next generation always tends to 
improve the solution. Increasing the number of iterations effectively increases the number of generations 
or evolutions. As a result, the chromosomes tend to move away from the local optima towards a globally 
optimal solution. This can be seen in Figure 7.1 where the make-span value keeps on decreasing as we 
increase the number of iterations. If we increase the number of iterations further, the solution will keep on 
improving till we reach global optima. Selecting the right number of iterations depends on the problem 
size and one requires experience to make correct decision.  

 

Figure 7.1. Effect of changing the number of iterations 

Figure 7.2. Effect of changing the size of the population 
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Here Figure 7.2 shows the effect of varying the number of chromosomes on the performance of GA by 
considering 100 machines 100 jobs case. It shows clearly that having a wider set of chromosomes to 
choose from results in reaching the optimal value earlier. This can be attributed to the fact that genetic 
algorithm uses tools like crossover and mutation which can help to arrive at the desired sequence of jobs 
if we have sequences from different areas of the search space. Selecting the right population size depends 
on the problem size and one requires experience to make correct decision.  

Crossover probability determines how often crossover will be performed. If there is no crossover, 
offspring are exact copies of parents. If there is crossover, offspring are made from parts of both parent's 
chromosome. If crossover probability is 100%, then all offspring are made by crossover. If it is 0%, 
whole new generation is made from exact copies of chromosomes from old population. Crossover is 
made in hope that new chromosomes will contain good parts of old chromosomes and therefore the new 
chromosomes will be better. However, it is good to leave some part of old population survives to next 
generation. 

Figure 7.3 shows the effect of changing the crossover probability. As we can see, having crossover 
probability in the range < 0.6 leads to more number of iterations to reach the optimal solution. Having 
crossover probability in the range > 0.8 can result in the loss of good chromosomes of the previous 
population, which leads to slower convergence to the optimal solution. Our results show that the 
crossover probability should be in the range 0.6 to 0.8 for better working of the GA as documented in 
literature. 

 

Figure 7.3. Effect of changing the crossover probability 
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Figure 7.4 shows the effect of changing the mutation probability on the value of make-span. Our results 
show that the value of mutation probability which gives good results should be in the range of 1%. This 
result has been validated even in the past research works.  
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Figure 7.4. Effect of changing mutation probability 

9. Comparison of GA with Other Approaches 
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Figure 9.1. Representation of different structures for flexible flow line system for RES 
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very effective in cases with a large variety of products following the same sequence on a large number of 
processing facilities. Therefore recognizing the inherent complexity of the product return process, 
proposed GA based tool can help to achieve improved performance of the reverse logistics network 
linking initial collection points, centralized return centers, and the manufacturing facilities in the system. 

11. Conclusion  

With the objective to minimize the total completion time (make-span or lead time), PFSP is very difficult 
to solve effectively due to the NP-hardness. In this paper we have proposed the use of GA for permutation 
flow-shop scheduling problem under the make-span minimization criteria.  

Here architecture has been developed to depict the application of genetic algorithms to achieve improved 
production schedules in a flow-shop. Based on this architecture, a simulator integrated with genetic 
algorithm for solving the mixed model flexible flow-shop scheduling problems has been developed. The 
simulator has been incorporated with a user-friendly GUI, which acts as an interface between the end user 
and the simulator. Based on the input parameters entered by the end-user, the scheduler is capable of 
providing near optimal solutions, in the form of a sequence with minimum make-span, very quickly. 
Hence, this tool can be very effective in cases with a large variety of jobs following the same sequence on 
a large number of machines. Despite numerous merits, the proposed model and solution procedure point 
to a number of directions for future work. The model can be expanded to include the element of risk and 
uncertainty present in real manufacturing scenarios. Research is in progress to model more complex 
systems, for instance, the multilevel flexible product return system for requiring transport control 
decisions in RES. Our future research will involve the extension of this tool to include the element of risk 
and uncertainty involved in the reverse logistics network design problem. Various flexible system 
domains where GA based applications can play an important role, include, flexible manufacturing 
systems, multi-product supply chains, flexible supply chains, multi-product reverse logistics and reverse 
enterprise systems etc. 
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