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1. Introduction 

A key goal in manufacturing test is to maximize the quality of parts delivered to customers — ideally, 
shipping zero defective parts while reducing the cost of testing those parts. The purpose of testing is to 
develop confidence that a design or its specific implementation is functioning correctly or to identify the 
location and nature of the fault(s) within it (diagnosis). Because the numbers, types and locations of 
possible faults are huge, it is practical impossible that testing can guarantee a perfect design.  

Many different faults, as types and/or locations, show similar symptoms involving that one test pattern 
could detect all of them. It makes facts more tractable but actual testing complexity is still very large. It 
was observed that some faults are more probable than others so a test for the most frequent faults will 
produce higher confidence (but not sureness) in the perfection of the design.  

The advent of deep-submicron (DSM) designs has created new difficulty in clock skew and power 
delivery, while the latest nanometer technologies have demonstrated that defects are located 
predominantly in routing [1]. Inductive fault analysis of actual circuits suggests that bridging faults 
account for thirty to fifty percent of all faults [2]. Other studies also show that most silicon defects exhibit 
bridging fault behaviour and test strategies that use simple fault model, such as single stuck-at, do not 
satisfy the growing test quality requirements [3, and 4].  

Test strategies that are using simple fault model, such as the single stuck-at model, are not satisfying 
growing test quality requirements. Other test approaches, such as delay and IDDQ testing, are increasingly 
used for manufacturing testing of integrated circuits. A number of papers are showing that each such test 
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policy detects some sole defects [5, and 6]. Although, IDDQ testing has been successfully used for 
detection of shorts for a long time, the efficiency of this method in complex deep sub-micron circuits has 
recently become questionable. Consequently, a significant part of the testing must rely on other 
approaches such as voltage and delay testing. 

In [7] is investigated a characterization of hard-to-detect bridging faults. For circuits with large numbers of 
lines (or nodes), this characterization can be used in selecting target faults for test generation when it is 
impractical to target all the bridging faults (or all the realistic bridging faults). Pomeranz et al., [7], demonstrate 
that the faults selected based on the proposed characterization are indeed hard-to-detect by showing that the 
fault coverage of a given test set with respect to this subset is lower and more sensitive to the test set than the 
fault coverage obtained with respect to a random subset of the same size, with respect to the complete set of 
faults, and when possible, with respect to a subset of realistic bridging faults of the same size. Authors of [7] 
also demonstrated that a test set for the selected subset of faults detects other faults more effectively than when 
a test set is derived for a randomly selected subset of faults of the same size. 

An efficient algorithm is presented in [8] for identification of bridges between two lines in combinational 
CMOS logic, such narrowing down the two-line bridge candidates based on tester responses for voltage 
tests. Due to the implicit enumeration of bridge sites, no layout extraction or precomputed stuck-at fault 
dictionaries are required. The bridge identification is easily refined using additional test pattern results 
when necessary. Vogels et al., [8], did present results for benchmark circuits and four common fault 
models (dominant, composite, wired-AND, and wired-OR), evaluating the diagnosis against other 
possible fault types, and summarizing the quality of their results. 

Lechner et al., [9], discuss the significance of fault simulation techniques to investigate pragmatic circuit 
malfunction modes and test requirements. It is revealed for an ADC goal design that hard faults 
frequently cause minor rather than disastrous failure; hence have to be subject to test. In [10], Engelke et 
al. introduced the concept of a multiple-valued logic simulator that is able to more accurately determine 
the possible behaviour of a circuit in the presence of a bridging fault. However, this approach needs user 
defined mapping of a range of voltages to a logic value and the simulator takes care of certain voltages 
more closely than common bridge fault simulators that map all voltages to either logic 1 or 0. 

Bridging faults are hard to be studied at circuit’s logic level because most of the information about 
circuit’s layout and interconnects are missing [3, 8, and 9]. This information is available only after the 
technologically mapping and when all modules are placed and routed. For the past three decades, 
researchers have used the stuck-at fault model to represent faults in digital circuits. The stuck-at fault 
model has been used satisfactory to model faults in Transistor-Transistor-Logic (TTL) and n-channel 
Metal-Oxide-Semiconductor (nMOS) circuits. 

Most of the testing technology is still using traditionally developed tests using stuck-at model, because 
complete tests for this model are detecting most of the physical faults. However, bridging faults and other 
typical physical faults occurring on DSM circuits are hard to be modelled using stuck at concept. 

Among the bridging faults, the undetectable ones are still more difficult to test, for obvious reasons, but 
their invalidating effect on complete sets of tests designed for stuck-at faults is making them separate 
target [11, and 12].  Undetectable faults are, generally, due to re-convergent fan-out and redundant logic. 
Hazard-free multiplexers, as an example, have undetectable faults due to re-convergent fanout and 
redundancy. Bridging input lines of an AND gate, in TTL technology, is equivalent of a wired-AND gate. 
Such a bridging fault is undetectable. If all possible bridging faults between any only two nodes are 
considered, for P nodes the number of bridging faults will be P2 – P (either model) [13, and 14]. In 
practice, only the adjacent or overlapping wires in the circuit layout need to be considered. 

This paper will focus on the analysis of undetectable bridging faults, introducing accurate relationship 
between functions carried on p lines connected through a wired-OR or wired-AND bridging fault. 

2. Bridging Fault Model 

There are three advanced, deterministic fault models for DSM defect testing: the bridging fault model, the 
path-delay fault model the transition fault model, and the transition fault model [1].  

The bridging fault model, assumes that two or more wires are connected, but not intended to, by a 
resistive short line between them, which could be caused by a piece of metal from the sputtering process 
(Figure 1). For a shorted line w, one have to distinguish between the value one could actually observe on 
w and the value of w as determined by its source element; the latter is called driven value. Bridging faults 
models [15] are capturing device faults caused by short between circuit connections. In [15] there are 
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presented three bridging fault models valid for different CMOS technologies.  

These models are partitioned into a general framework, shared by all three models, and a technology-
specific part. The first model is based on Shockley equations and is valid for conventional but not deep 
submicron CMOS. The second model is obtained by fitting SPICE data. The third resistive bridging fault 
model uses Berkeley Predictive Technology Model and BSIM4. This third resistive bridging fault model 
is valid for CMOS technologies with feature sizes of 90nm and below, accurately describing non-trivial 
electrical behaviour in those technologies. Polian et al., [15], did obtain experimental results for ISCAS 
circuits showing that the test patterns obtained for the Shockley model are still valid for the Fitted model, 
but lead to coverage loss under the Predictive model. 

 
 
 
 
 
 
 
 
 

Figure 1. Bridging fault becomes active when two or more nets connected by a resistive short line 
between them are driven to opposite values 

For most manufacturing processes, one could appreciate that defects between metal lines are the most 
plausible fault mechanism. Efficient and accurate bridging fault modelling is essential for reducing test 
costs and enhancing quality of generated test patterns. 

There are two current models for wires shorted together: 

 Wired-AND/Wired-OR fault model. Several classic studies suppose that bridging faults are 
pure-short defects, involving that bridge resistance is low or negligible. 

 Dominant fault model. Bridging faults in CMOS technology require more complicated models. 
Whereas the stuck-at fault model assumes that a cell input or output is always tied to a fixed 
value, this bridging fault model assumes that one gate will dominate the value driven on the 
other net via the electrical path through the resistive short. If one net dominates, then the other 
may have an incorrect logic value at one or more of its fanouts. 

Figure 2 shows a general model of a bridging fault between two lines w and t, inducing a wired-function 
[13]. Such bridging fault is noted by (w, t) and the function introduced by the bridging fault is noted by 
Z(w, t). The fanout of Z is the union of the fanouts of the shorted signals. Note that the values of w and t 
in this model are their driven values but these are not observable in the circuit. 

 
 
 
 
 
 

 
 

 
Figure 2. Bridging fault model inducing a wired-function 

Induced wired-function Z has the property that Z(a, a) = a. What happens when x and y have opposite values 
value of Z depends only on the technology. For example, in CMOS the value of Z(a, a’) is, in general, non-
determinate but in many technologies (such as TTL or ECL), when two shorted lines have opposite driven 
values, one value (the strong one) overrides the other. If c  {0, 1} is the strong value, then Z(0, 1) = Z(1, 0) = 
c, and the function introduced by the bridging fault is AND if c = 0 and OR if c = 1. 

If there exists (at least) one path between x and y, then bridging fault (x, y) creates one or more feedback 
loops. Such a fault is referred to as a feedback bridging fault. A bridging fault that does not create 
feedback is referred to as a non-feedback bridging fault. A feedback bridging fault transforms a 
combinational circuit into a sequential one. Moreover, if feedback loop involves an odd number of 
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inversions, the circuit may oscillate. If the delay along the loop is small, the resulting oscillations have 
high frequency and may cause the affected signals to assume indeterminate logic values [13, and 14]. 

The multiple bridging fault models represents shorts involving more then two signal lines. A multiple 
bridging fault with p > 2 shorted lines can be modelled as being composed of p-1 bridging faults between 
two lines. Multiple bridging faults among lines r, s and t, as an example, could be represented by the 
bridging faults (r, s) and (s, t).  

This model assumes that only one group of lines are shorted. Masking relations may occur among the 
components of a multiple bridging fault [15], but most multiple bridging faults are detected by the tests 
designed to detect their component bridging faults. The number of feasible bridging faults is potentially 
larger than the number of single stuck-at faults in the same circuit. 

Stuck-at faults can be reduced, for testing but not for diagnosis, using functional (structural) equivalence 
and dominance relations. For bridging faults such similar collapsing techniques are not yet developed.   

3. Boolean Differential Characterization of Undetectable  
Bridging Faults 

The concept of Boolean difference, as developed by  J.P. Deschamps, M. Davio and G. Bioul [16], was 
introduced by Reed [17], and has been thoroughly investigated in papers due to A. Thayse and M. Davio 
[18], A. Thayse [19, and 20], etc. In these papers, various differential operators are introduced and 
described in connection with their application to switching functions.  

The Boolean differential calculus used here, in this paper, encompasses and generalizes the algebraic 
concepts introduced by these authors; it is considered here as a general method of analysis of an arbitrary 
Boolean function, and, as such, it could be applied to any classical switching problem. However, this 
representation tool seems particularly well suited for specific problems such as, for example, the 
diagnosis of switching circuits. 

The following two propositions [21]  describe dependencies of p internal functions of scalar function f 
and involved in bridging fault inducing wired-AND, and respectively wired-OR.  

Identifying internal line circuit being able to make up undetectable bridging faults help to avoid having 
such lines close enough in the local circuit layout. 

Proposition 1. Let 
110

,,,
piii lll   be p lines in a combinational circuit C implementing the scalar 

function f , and let us note with y y yi i ip0 1 1
, , ,


 local functions of these p lines. Then, a bridging fault 

inducing a wired AND between lines l l li i ip0 1 1
, , ,


is undetectable in C, if and only if:     
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Where it was noted with f (x, y) same function  f  but depending explicitly on both of primary variables x 
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Proof: It’s obvious that wired AND between lines l l li i ip0 1 1
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introduces new function in network C. 
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110 


piii yyyz  be this wired-AND. It could be remarked that faulty function f* has now this 

form: 
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Outlining first term in above sum: 
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And using identity: 
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the previous expression becomes: 
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Factoring term y(j) in (4), one can obtain: 
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Outlining last term in ring sum of (5): 
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Making obvious substitutions and re-arranging terms in (6), it becomes 
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Using previously introduced notation
110 


piii yyyz  , relation (7) could be re-written: 
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If bridging fault between lines l l li i ip0 1 1
, , ,


, equivalent of a wired-AND, is undetectable then, this 

identity, linking faulty function f* and f, hold: 
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Making discrete Taylor expansion [19] for f *(x, z), in z = 0: 
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And, yet using discrete derivative definition [16]: 

zfffzf  ))0,(),1,((),0,(),( ** xxxx       (11) 

Considering (8) and (10), and tacking in account that bridging fault is undetectable, it results:  
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And it finishes proof of the if part of Proposition 1.  

If (1) is true, then it results that:   
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And using notation
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inducing a wired-AND, between lines
110

,,,
piii lll  , is undetectable. It finishes up second part (only 

if) of the proof.  

Considering  p = 2, then (1) becomes: 
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Using discrete derivative definition [16] one could write (13) as follows: 
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Using an exclusive-disjunctive expansion one can obtain for both derivatives: 
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Multiplying (15) and (16) with 
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01

1
0

01
0

''

0

),(),(
ii

i
i

ii
i

yy
y

dy

df
yy

dy

df 



yxyx      (17) 

'

0

),(),(
01

0
1

01
1

'
ii

i
i

ii
i

yy
y

dy

df
yy

dy

df 



yxyx      (18) 

This way relation (14) is rewritten:  
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or, using exclusive-or properties: 
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For p = 2 relation (20) represents necessary and sufficient conditions of bridging fault undetectable when 
bridging fault, inducing an equivalent wired-AND, occurs only between two internal lines in circuit C.   
Similar conditions holds for bridging fault, inducing wired-OR, between p internal lines [21] in 
combinational circuit C: 
Proposition 2. Let l l li i ip0 1 1
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 be p lines in a combinational circuit C implementing scalar function f 
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where it was noted with f (x, y) function f depending both of primary variables x and internal 

variables ),,,(
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Considering  p = 2, in (21), then it is expanded as follows: 
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Using Boolean derivative definition, expression (22) becomes: 
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remarking that: 

 expression  
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Making Taylor expansion for both expressions, it results: 

1

1
0

1

1
00 1

),('

0

),(),(
i

i
i

i

i
ii

y
y

dy

df
y

y
dy

df

dy

df








yxyxyx    (24) 

0

0
1

0

0
11 1

),('

0

),(),(
i

i
i

i
ii

y
y

dy

df
iy

y
dy

df

dy

df








yxyxyx    (25) 

Multiplying (24) and (25) with 
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This way expression (22) becomes:  
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Equivalent to: 
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4. Conclusions 

Expressions (20) and (29) derived from (1) and respectively (21) are same as formulas suggested in [11] 
by K.L. Kodandapani and D.K. Pradhan, but presented without proofs. It makes both Proposition 1 and 
Proposition 2 generalizations [21] of formulas in [11]. This analytical tool will be continued with 
application intended to efficiently compute expressions involved in it. Known methods are suitable for 
low complexity bridging faults (low value of parameter p). Real situations however are involving 
bridging faults between arbitrary numbers of lines.  

Performances of such application will make it usable for analysis in practical and manufacturing 
situations. Using and developing algorithms called pseudo canonical expansions having at most as many 
terms as the best canonical ones [21, and 22], make calculus of expressions (1) and (21) feasible for more 
then 20 variables. Undetectable bridging faults, once detected, may require special design modifications 
including circuits partitioning [23, and 24] and circuit layout. 

Other way of extending this tool will consider different type of circuits including CMOS. Modelling 
physical faults involves closer relationship with semiconductor processes and appropriate statistics, and 
behaviour of such faults, but is not limited to them. 
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