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Abstract: The multi-objective scheduling research derives its importance from the need to address the real scheduling problem, 
which is transformed in a single objective. A schedule that is good for one objective function may in fact be quite insignificant for 
another. Decision-makers must carefully evaluate the trade-offs involved in considering several different criteria in practical 
scheduling applications.  

In this paper, a hybrid approach that combines ant system optimisation and fuzzy logic concept is introduced to facilitate the multi-
objective optimisation Flexible Job Shop Scheduling Problem (FJSP). The scheduling problem has two main characteristics namely 
the flexibility of machines that have the possibility to process all the operations with different processing times and the taking into 
account different and independent criteria that must be optimized simultaneously. The considered objectives are to minimise 
makespan, the workload of the critical machine and the total workload of machines. Based on the concept of the ant system and 
fuzzy controller, the ant system parameters are controlled for multi-objective evolution. The efficiency of the proposed approaches 
is compared with other approaches by defining the lower bounds for each criterion. 
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1. Introduction  
Recently, it has been verified that approaches issues from the soft computing, such as fuzzy logic, genetic 
algorithms, ant system and tabu search, are simple, practical, adaptable and computationally efficient to 
solve a flexible job shop scheduling problem including hard single industrial objective.  However, the 
single objective is insufficient in practical case.  

Frequently, the decision-maker can not clearly give a particular preference to a criterion. For example, the 
minimisation of the makespan Cmax may be of primary importance and, the minimisation of the workload 
W machine and the total workload WT of secondary interest. 

Various approaches have been developed in the multi-objective optimisation domain. Two classes of 
multi-objective optimisation procedure exist (Collette et al., 2002) (Hsu et al, 2002):  

 The Non-Pareto approach consists in the transformation of a multi-objective problem into a 
mono-objective based on an aggregation operator mixing the different objectives into a weighted 
sum. The weighted sum translates multiple objectives into a single objective value. Recently, 
(Kacem et al., 2002) consider the homogenisation approach for dealing with this potential scale 
difference. (Cochran et al., 2003) discuss several schemes for weighting the objectives. 
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 The Pareto approach is based on the Pareto optimisation concept. This approach satisfies two 
objectives: converge to the Pareto front and also obtain diversified solutions scattered all over 
the Pareto front, (Zitzler and Thiele, 1999). A few researchers have dealt with multi-objective 
scheduling in flexible job shop scheduling. The complexity of the problem has a major role to 
play in this. Firstly (Esquivel et al., 2002), (Kacem et al., 2002b) and (Xia et al., 2005) 
investigate the generation of multi-objective schedule in classical and flexible job shops. 
Secondly (Iima et al., 1999) and (Itoh et al., 1993) consider the minimisation of a function that 
concerns all the objectives study in classical job shop. 

In this paper, a method of the Ant System and the Fuzzy Logic Controller (AS-FLC) is proposed for 
solving multi-objective FJSP. Thus, the formulation of FJSP is described in section 2. Then, in section 3, 
the approach to hybridising the ant system with the fuzzy model for controlling the ant system research 
mechanism is defined. The last section will be devoted to the presentation of some results and some 
conclusions relating to this research work. 

2. Problem Formulation 

A flexible job shop production workshop is characterised by a non linear production. In fact, the FJSP 
may be formulated as follows. Let us consider a set of n jobs which are carried out by m machines {M1, 

M2,..., Mm }. Each job Jj consists of a sequence of nj operations 1, 2, ,, ,...,
jj j n jO O O . Each routing has to 

be performed to achieve a job. The execution of each operation i of a job Jj, noted Oi,,j requires one 
resource or machine selected from a set of available machines. The assignment of the operation Oi,,j to the 
machine Mk entails the occupation of the latter one during a processing time called pti,j,k. 

The problem is thus to determine both an assignment and a sequence of the operations on all machines 

that minimize some criteria. All machines MM k   are available at t = 0.  

 A set of J independent jobs and each job consists of one fixed sequence of operations.   There 
are no precedence constraints among operations of different jobs. 

 Each job is characterised by the earliest starting time rj and the latest finishing time dj. 

 Denote by ri,,j the ready date of the operation Oi,,j.  

 A started operation can not be interrupted.  

 Each machine can not perform more than one operation at the same time.  

 Our objective is to find an operation ordering set satisfying a multi-objective function under 
problem constraints. In this paper, we consider the balance and compromise between the 
workload for all machines and the makespan Cmax of jobs to be performed.  

In this study, the following criteria had been minimized: 
C1: makespan or maximal completion time of the all jobs: 
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C2: critical machine workload or the maximum of workloads for all machines.:  
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 where, wk characterise the workload of the machine Mk. 
C3: total workload of the machines (which represents the total working time of all machines):  
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The criteria C2 and C3 give a physical meaning to the FJSP, which referring to reducing total processing 
time and finding the workload compromise between the set of available machines.  

3. The Ant System Optimisation and Fuzzy Controller 

Initially, the ant colony optimisation (ACO) was described by Dorigo in his PhD thesis (Dorigo et al., 
1992) and was inspired by the ability and the organisation of real ant colony using external chemical 
pheromone trails acting as a means of communication. The main idea is that of a parallel search over 
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several constructive computational solutions based on characteristics problem data and on a dynamic 
memory structure containing information on the quality of the previous obtained solutions. Generally, the 
behaviour of ant system optimisation mechanism depends on many unsure parameters, incomplete 
knowledge of the real ant system attitude and the imprecise information for identification of the 
relationship between the strategy choice of the parameters and the global behaviour of the ant system 
metaheuristics. In our context, the fuzzy sets theory are applied for adapting and tuning the ant system 
parameters to improve the searching ability of ant system in finding the global optimum taking into 
account of the criteria described in section 1. 

3.1. Ant System Scheduling 

The ant system approach was inspired by the behaviour of the real ants. The ants depose the chemical 
pheromone when they move in their environment; they are also able to detect and to follow pheromone 
trails. 

In our case, the pheromone trail describes how the ant system builds the solution of the FJSP problem. 
The probability of choosing a branch at a certain time depends on the total amount of pheromone on the 
branch, which in turn is proportional to the number of ants that used the branch until that time. The 

probability , ,
f

i j kP  that an ant will assign an operation Oi,,j to job jJ  to an available machine Mk. Each of 

the ants builds a solution using a combination of the information provided by the pheromone trail , ,i j k  

and by the heuristic function defined by , ,i j k = , ,i j kpt . 

Formally, the probability of picking that an ant fth will assign an operation Oi,j of job jJ  to the machine 

Mk is given in equation 4. 
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In this equation, D denotes the set of available non-executed operations set and where  and  are 
parameters that control the relative importance of trail versus visibility. Therefore the transition 
probability is a trade-off between visibility and trail intensity at the given time. 

Adapting  and  parameters automatically permits firstly to improve the ability of ant system in finding the 
global multi-objective solution and secondly to fine tuning them with respect the criteria defined in section 1. 

The main idea is to use the fuzzy controller to compute new strategy parameter values of the ant system 

favourability probability , ,
f

i j kP  taking into account the workload W and the total workload WT. 

3.2. Updating the Fheromone Trail 

To allow the ants to share information about good solutions, the updating of the pheromone trail must be 
established. After each iteration of the ant system algorithm, equation 5 describes in detail the pheromone 

update used when all ants have completed their own scheduling solution denote fS , that represent the ant 
solution. In order to guide the ant system towards good solutions, a mechanism is required to assess the 
quality of the best solution. The obvious choice would be to use the best makespan Lmin = Cmax of all 
solutions given by a set of ants with minimisation of the criteria C2 and C3. 
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Where fL represent the makespean of the solution fS  given by the fth ant. 

After all the ants have completed their tours, the trails levels on all of the arcs need to be updated. The 
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evaporation factor  ensures that pheromone is not accumulated infinitely and denotes the proportion of 
old pheromone that is carried over to the next iteration of the algorithm. Then for each edge the 
pheromone deposited by each ant that used this edge are added up, resulting in the following pheromone-
level-update equation:  

, , , , , ,
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f
i j k i j k i j k
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           (6) 

where NA defines the number of ants to use in the colony.  

3.3. Tabu Search Optimisation 

A simple tabu search was also implemented for this optimisation FJSP problem. The proposed is to allow 
the ants to build their solutions as described in section 3.1 and then the resulting solutions are taken to a 
superior solution by the tabu search mechanism (Liouane et al, 2007). 

Each of these ant solutions is then used in the pheromone update stage. The tabu search is performed on 
every ant system solution, every iteration, so it needs to be fairly fast. In the case of the FJSP problem, the 
method is to pick the machine responsible for the Cmax and check if any operations Oi,,j could be swapped 
between other machines which would result in a lower makespan. 

Following their concept, the tabu search considers one problem machine at a time and attempts to swap 
one operation from the problem machine with any other (non-problem) machine in the solution (non-
problem operations). Then the ants are used to generate promising scheduling production solutions and 
the tabu search algorithm is used to try to improve these solutions. 

3.4. Hybridation of the Ant System and the Fuzzy Logic Controller 

Based on the fuzzy logic, the fuzzy characterisation of the workload and the total workload the fuzzy logic 
controller of the ant system appears very useful when the processes are too complex for analysis using 
conventional techniques and where the available information is interpreted qualitatively and approximately.  

Applying fuzzy logic for adapting such parameters regularly does not only enrich the searching ability of 
the ant system mechanism in finding the very good solution but also permits fine tuning them taking into 
account  the criteria (C2 and C3) described in section 2.  

The basic fuzzy logic controller concept is introduced to automatically adjust the two  and  parameters at the 
different stages in the ant system scheduling mechanism and change the exploration strategy of the research space. 

3.4.1. Criteria Aggregation by Fuzzy Logic Controller 

In this section, the multi-objective FJSP is considered in which two criteria defined in section 2 (C2, C3), 
they are combined by aggregation of the criteria based on the fuzzy inference. For this, the fuzzy 
controller is used to aggregate the objectives. The decision-maker has to preset the objective criteria and 
the upper bound values are calculated for every criterion. According to the fuzzy logic, the fuzzy 
controller is based on four principal components: 

 The knowledge base: shaping the expertise base of the control parameters. 

 The fuzzification interface: that transforms the crisp parameters values into fuzzy data. 

 The inference process: that represents the criteria aggregation based on the knowledge base. 

 The defuzzification interface: that transforms the aggregation results into the values parameters 
action. 

3.4.2. Lower Bounds Criteria and Fuzzification 

A lower bound b
iC  for each criterion value is determined by (Kacem et al., 2002b) (Saad et al., 2006). 

So, the following relations are demonstrated: 

( ) , , 1,...,b
i i cC x C x S i n     

where S represents the set of feasible solutions, nc is the number of criteria and Ci is the criterion of the 
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solution x, and: 
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where E(x) : round the elements of x to the nearest integer. 
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The fuzzy characterisation of the criteria is given by the membership function )(xci shown in Figure 1. 

According to the criteria objective, at the kth iteration of the ant system algorithm, the quality of solutions 

is evaluated. The upper bounds of the 2
hC  and 3

hC  represent the highest feasible solution obtained by the 

ant system scheduling mechanism at the kth iteration. The lower bound is calculated by (Kacem et at 
2002a). 

 
 
 
 
 
 
 
 
 
 
 
 

The two considered fuzzy subsets are the subset of the best solutions according to the criterion iC , noted 

ibest  and the subset of the bad solutions according to the criterion iC , noted ibad , and membership 

functions is given in figure 1. Then, the quality of each solution x is characterized by ( ( ))best
i iC x  and 

( ( ))bad
i iC x . 

3.4.3. Control Ant System Parameters 

Based on a number of experiments and opinion of the expertise in scheduling domain, the fuzzy decision 
rules were constructed for controlling the evolution of the parameters ( and  ) related to the ant 

system strategy research solutions. The ant system strategy is given by the following basis rules:  

 If C2(x) is best2 and C3 (x) is best3 then  decrease and   increase, for the next iteration of ant 

system algorithm  
 If C2(x) is bad2  and C3 (x) is bad3 then  increase and   decrease, for the next iteration of ant 

system algorithm 

Ci
b Ci

h 

1 

µ 

Ci 
Figure 1. Fuzzy characterisation of the criteria 

besti badi 
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In order to implement and facilitate the fuzzy logic controller, the control ant system vector are noted 

with  T U , 2 U  and   the decision strategy matrices 22A   that represent the expert 

decision for increasing or decreasing parameters ( and ). The equivalent basis rules are given by:  

 If C2(x) is best2 and C3 is best3 then UA 
1 U  

 If C2(x) is bad2 and C3 is bad3 then UA 
2 U  

In our case, the  U  represent the control ant system vector for the next iteration,  











20

05.0
A 1 , 










5.00

02
A 1  represent respectively decision strategy of first and second rule. 

3.4.4. Defuzzification and the Fuzzy Inference System 

Based on the theory of the fuzzy logic, the fuzzy controller concerns the non linear system represented by 
a set of fuzzy rules of which the consequent part are linear equations. The non linearity is transformed in 
weighted sum of these linear state equations.  

According the form of basis rules and the fuzzification phase described previously, the final output of the 
fuzzy logic controller is inferred as follows: 

   
   

1 22,3 2,3

2,3 2,3

min ( ( )) min ( ( ))
 U

min ( ( )) min ( ( ))
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



    (10) 

3.4.5. The Set Up Parameter Values 

The set up parameter values used in the ant system scheduling algorithms and the fuzzy logic controller 
are often very important in getting good results, however the appropriate values are very often entirely 
problem dependent (Dorigo et al. 2002), and cannot always be derived from features of the problem itself. 
Generally, these parameters are defined by the expertise in the production domain: 

 the control vector  ,
T

U   precise how the ant system mechanism exploits the fuzzy 

controller for adapting the compromise between the pheromone trail and the heuristic 
information, 

 the  determines the degree to which pheromone trail is used as the ants build their 
solution. The lower value, the less ‘attention’ the ants pay to the pheromone trail, but the 
higher values implicate the ants then perform too little exploration,  

  determines the extent to which heuristic information is used by the ants, 

 the matrices 1A  and 2A  perform how the fuzzy controller increases or decreases the control 

vector for adapting multi-objective optimisation problems, 

 0 is the value to which the pheromone trail values are initialised. Initially the value of the 

parameter should be moderately high to encourage initial exploration, while the pheromone 
evaporation procedure will gradually stabilise the pheromone trail, 

  is the pheromone evaporation parameter and is always set to be in the range 

[0 1]  . It defines how quickly the ants ‘forget’ past solutions. A higher value makes 

for a more aggressive search; it tests a value of around 0.5-0.75 to find good solutions, 
 NAdefines the number of ants to use in the colony, a low value speeds the algorithm up 

because less search is done, a high value slows the search down, as more ants run before 
each pheromone update is performed. A value of 10 appeared to be a good compromise 
between execution speed and the quality of the solution achieved. 

It is interesting to note that for each value of parameters the ant system scheduling meta-heuristics yields 
a good solution. Moreover, its convergence speed depends essentially on the number of used ants NA.   
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3.4.6. Building a Solution Steps 

The main steps in the strategy of the FJSP by ant system and fuzzy logic controller algorithm are given 
below: 

- Initialise parameters 0, , , ,NA     . 

- Create an initial solution and an empty tabu list of a given size. 
In order to generate feasible and diverse solutions, initial ants are represented by solutions 
issued from the heuristic rules (SPT, DL, FIFO, etc) and a random method. Heuristics are 
used to approximate the optima as near as possible. 

- Repeat the following steps until the termination criteria are met: 
- Find new solution by ant system procedure scheduling given in section 3.1.  
- Evaluate the quality of the new solution.  
- If a new solution is improved then the current best solution becomes new solution 
- else If no new solution was improved then apply the tabu search optimisation 

given in section 3.3.  
- Add solution to the tabu list, if the tabu list is full then delete the oldest entry in 

the list.  
- Apply the updating pheromone trail procedure given in section 3.2  

- Compute the upper bound of criteria hC2  and hC3  given in section 3.4.2 

- Apply the fuzzy controller and compute U+ by the FLC model 
- END Repeat 

4. Benchmark and Simulation Results 

All results of the ant system and fuzzy logic controller optimisation (AS-FLC) are presented for 1000 
iterations with 10 the number of ants, and each run was performed 10 times. The algorithms have been 
coded in VB language and tested using a P4 Pentium processor 2.4 GHz and Windows XP system. 

To illustrate the effectiveness and performance of the algorithm proposed in this paper, four 
representative benchmark FJSP instances, represented by problem nxm, based on practical data have been 
selected to compute. These benchmark instances are all taken from of (Kacem et al., 2002a), (Xia et al., 
2005), and (Saad et al., 2006). The benchmark concerns the (8x8), (10x7), (10x10) and (15x10) instances 
problems. The different results obtained by proposed approach, Ant System and Fuzzy Logic Controller 
(AS-FLC), is presented and compared with the other methods in table 3. 

The different results obtained by our approach are compared with the other methods: 

 “AL+CGA” refers to (Kacem et al., 2002a) : the Pareto optimality approach based on the 
hybridation of evolutionary algorithms and fuzzy logic. 

 “PSO-SA” refers to (Xia et al., 2005): the hybridation of particle swarm optimisation and 
the simulated annealing methaheuristics. 

 “MOGA” refers to (Saad et al., 2006): the Choquet Integral for Criteria Aggregation by the 
genetic algorithms. 

 “classic GA” refers to classical genetic algorithm. 

The simulation conditions are presented in table 2 and the parameters values of NBA, 0 and  are 
presented in table 1. 

 

 

 n m NA 0  
Instance1 8 8 10 0.1 0.2 
Instance 2 10 7 10 0.1 0.2 
Instance 3 10 10 10 0.05 0.1 
Instance 4.1 15 10 10 0.05 0.25 
Instance 4.2 15 10 10 0.05 0.25 

Table 1: Parameters values. 
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- Instance 1 (8 jobs/27 operations/8 machines):  rj = 0, j 
-  Instance 2 (10 jobs/29 operations/7 machines): r1 = 2, r2 = 4, r3 = 9, r4 = 6, r5 = 7,   r6 =5, r7 = 7, r8 = 4, r9 = 1 

and r10 = 0. 
- Instance 3 (10 jobs/30 operations/10 machines): rj = 0, j. 
- Instance 4.1 (15 jobs/56 operations/10 machines): r1 = 5, r2 = 3, r3 = 6, r4 = 4, r5 = 9, r6 = 7, r7 = 1, r8 = 2, r9 = 

8, r10 = 0, r11 = 14, r12 = 13, r13 = 11, r14 = 12, and r15 = 5. 
- Instance 4.2 (15 jobs/56 operations/10 machines): rj = 0,  j  

Table 2: Simulation conditions. 

nxm  b
iC  classic GA AL+CGA PSO+SA MOGA AS+FLC 

C1 12 16 16 15 16 15 
C2 10  13 12 13 13 

 
8x8 

C3 73 77 75 75 75 73 
C1 11  15  11 11 
C2 9  11  10 11 

 
10x7 

C3 60  61  64 61 
C1 7 7 7 7 7 7 
C2 5 7 5 6 5 5 

 
10x10 

C3 41 53 45 44 44 43 
C1 23  23  23 23 
C2 10  11  11 11 

 
15x10 

(1) C3 91  95  99 91 
C1 11   12  12 
C2 10   11  12 

 
15x10 

(2) C3 91   91  91 

Table 3: Comparison of results. 

In the majority of cases, the obtained results by AS+FLC  indicate that this approach can yield better 
results  contrary to other methods such as Genetic Algorithm and fuzzy logic (Kacem et al, 2002), 
Particle Swarm Optimization and Simulated Annealing (Xia et al, 2005), the Genetic Algorithm by 
Choquet Integral  (Saad et al, 2006)... Concerning the FJSP instances, the results obtained by the 
AS+FLC show that the given solutions are generally acceptable and satisfactory. The values of the 
different objective functions show the efficiency of the suggested approach, table 3. Moreover, the 
proposed method enables us to obtain good results in a polynomial computation time.  

 
* O1 O2 O3 O4 
J1 M51 :[0,3] M5 :[3,6] M6 :[9,11]  
J2 M3 :[0,3] M4 :[7,9] M7 :[9,10] M5 :[10,14] 
J3 M7 :[0,2] M4 :[9,13] M1 :[13,14]  
J4 M2 :[0,1] M6 :[1,6] M2 :[14,16]  
J5 M1 :[0,3] M4 :[3,7] M6 :[7,9] M7 :[10,13] 
J6 M3 :[3,4] M8 :[4,8] M2 :[9,14]  
J7 M3 :[4,6] M8 :[8,13] M4 :[13,16]  
J8 M1 :[3,5] M2 :[5,9] M8 :[13,14] M5 :[14,15] 

Table 4: Optimisation solution of problem 8 x 8 (Cmax = 15, WT = 73, W = 13) 

 

* O1 O2 O3 
J1 M1 :[0,1] M3 :[1,2] M4 :[2,3] 
J2 M1 :[2,4] M10 :[4,5] M10 :[5,7] 
J3 M10 :[3,4] M8 :[4,5] M7 :[5,6] 
J4 M7 :[1,2] M3 :[3,6] M4 :[6,7] 
J5 M9 :[0,2] M9 :[2,3] M4 :[3,4] 
J6 M6 :[0,2] M9 :[3,5] M9 :[5,6] 
J7 M1 :[1,2] M8 :[2,4] M6 :[4,5] 
J8 M5 :[0,2] M2 :[2,5] M2 :[5,7] 
J9 M3 :[2,3] M7 :[4,5] M6 :[5,6] 
J10 M6 :[2,3] M7 :[3,4] M4 :[4,6] 

Table 5: Optimisation solution of problem 10 x 10 (Cmax = 7, WT = 43, W = 5) 
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* O1 O2 O3 O4 
J1 M1 :[5,6] M2 :[6,7] M3 :[11,12] M9 :[18,20] 
J2 M4 :[3,4] M3 :[4,6] M10 :[16,17] M4 :[17,18] 
J3 M7 :[6,7] M9 :[10,11] M2 :[11,13] M4 :[13,14] 
J4 M5 :[4,5] M5 :[5,6] M6 :[12,13] M10 :[19,20] 
J5 M9 :[9,10] M6 :[10,12] M2 :[13,15] M4 :[15,17] 
J6 M2 :[5,6] M1 :[14,15]   
J7 M1 :[1,2] M2 :[7,8]   
J8 M7 :[2,3] M4 :[4,6] M4 :[6,8] M1 :[15,16] 
J9 M10 :[8,9] M3 :[9,11] M7 :[15,19] M8 :[20,22] 
J10 M10 :[0,1] M8 :[1,3] M10 :[13,14] M2 :[15,17] 
J11 M7 :[14,15] M10 :[15,16] M3 :[16,18] M7 :[19,20] 
J12 M8 :[13,15] M5 :[15,19] M6 :[19,21] M7 :[21,23] 
J13 M10:[11,13] M9 :[13,16] M10 :[17,19] M2 :[19,21] 
J14 M1 :[12,14] M9 :[16,18] M8 :[18,20] M5 :[21,23] 
J15 M1 :[6,8] M6 :[8,10] M3 :[12,14] M5 :[19,21] 

Table 6: Optimisation solution of problem 15 x 10(1) (Cmax = 23, WT = 91, W = 11) 

* O1 O2 O3 O4 
J1 M1 :[0,1] M2 :[3,4] M3 :[5,6] M9 :[7,11] 
J2 M4 :[0,1] M3 :[1,3] M10 :[7,8] M4 :[8,9] 
J3 M7 :[1,2] M9 :[2,3] M2 :[4,6] M4 :[7,8] 
J4 M5 :[0,1] M5 :[1,2] M6 :[5,6] M10 :[10,11] 
J5 M9 :[0,1] M6 :[1,3] M7 :[3,5] M4 :[5,7] 
J6 M2 :[0,1] M1 :[6,7]   
J7 M1 :[5,6] M2 :[6,7]   
J8 M7 :[0,1] M8 :[2,3] M4 :[3,5] M1 :[7,8] 
J9 M10 :[1,2] M3 :[3,5] M7 :[5,9] M8 :[9,11] 
J10 M10 :[0,1] M8 :[3,5] M10 :[6,7] M2 :[7,9] 
J11 M7 :[2,3] M10 :[5,6] M3 :[8,10] M7 :[11,12] 
J12 M8 :[0,2] M5 :[2,6] M6 :[6,8] M7 :[9,11] 
J13 M2:[1,3] M10 :[3,5] M10 :[8,10] M2 :[10,12] 
J14 M1 :[3,5] M9 :[5,7] M8 :[7,9] M5 :[10,12] 
J15 M1 :[1,3] M6 :[3,5] M3 :[6,8] M5 :[8,10] 

Table 7: Optimisation solution of problem 15 x 10(2) (Cmax = 12, WT = 91, W = 12) 

* O1 O2 O3 
J1 M1 :[1,2] M5 :[5,6] M7 :[6,9] 
J2 M7 :[2,5] M1 :[5,7]  
J3 M7 :[5,6] M3 :[7,8] M5 :[5,10] 
J4 M1 :[3,5] M4 :[9,10] M5 :[10,11] 
J5 M2 :[5,6] M1 :[7,9] M4 :[10,11] 
J6 M3 :[2,6] M3 :[6,7] M3 :[8,10] 
J7 M7 :[0,2] M6 :[2,6] M6 :[7,8] 
J8 M4 :[0,1] M4 :[1,9] M2 :[9,11] 
J9 M5 :[1,5] M2 :[6,8] M7 :[9,11] 
J10 M2 :[1,5] M6 :[6,7] M1 :[9,10] 

Table 8: Optimisation solution of problem 10 x 7 (Cmax = 11, WT = 61, W = 11) 

5. Conclusion 

In this paper, a new approach based on the combination of the ant system with the fuzzy controller 
techniques for solving flexible job-shop scheduling problems, is presented. The results for the 
reformulated problems show that the ant system with the fuzzy controller techniques can find an 
optimised solution for different problems that can be adapted to deal with the FJSP problem. The detail 
concepts of implementation for the multi-objective FJSP are presented and their performances are 
compared using computational benchmarks. 

The numerical simulation results have shown that the ant system algorithm with the fuzzy logic controller can 
find good quality of solutions for many different problems, furthermore for multi-objective optimisation FJSP. 

The performances of the new approach are evaluated and compared with the results obtained from other 
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methods. The obtained results show the effectiveness of the proposed method. Ant system algorithms and 
the fuzzy logic controller techniques described are very effective and they alone can outperform all the 
alternative techniques. The comparison study, based on benchmark simulation, shows that our AS-FLC 
algorithms significantly surpass previous approaches in term of both quality and time execution. 
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