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Abstract: This paper presents a control synthesis software tool for manufacturing systems with a driven dynamic event. This tool is 
based on an original control synthesis algorithm which solves the forbidden state problem (FSP) under the following hypothesis: 1) each 
event may occur at time instants specified by an interval or a union of intervals; 2) two types of events are considered: controllable and 
incontrollable events and 3) the evolution of time is discrete.  This tool generates a live and maximally permissive controller which  can 
1) act on the arriving date of controllable events or 2) completely forbid some controllable events. The aim is to guaranty the respect of 
the given specifications. 
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1. Introduction 

The theory of Discrete Event Systems (DES) supervision was initiated by the research work of Ramadge and 
Wonham [9][10]. This theory has triggered interest in the supervisory control and many approaches have 
been proposed to design maximally permissive controllers, using in particularly the Petri Net model [8].  

Thus, Yamalidou and al. [14], proposed a  maximally permissive controller synthesis method based on Petri 
nets and place invariants. This approach deals with totally controllable and observable plants. In [4] and [11], 
the authors take into account the uncontrollable nature of some events. The authors use the theory of regions 
in order to design a maximal permissive live controller made of a set of control places which may disable the 
firing of some controllable transitions. This approach has been extended to DES modeled by Petri nets with 
uncontrollable/ unobservable transitions [1].  

Taking into account the time information is crucial for realistic systems. This information can be used to 
compute more permissive control laws [12]. Timing introduces a new dimension of considerable interest in 
DES control, but also of significant complexity.  

A first attempt to take into account the influence of time in the process model is presented in [3]. The authors 
extend the theory of Ramadge and Wonham  by introducing forcible events and time constraints. Generally, 
discrete time approaches are characterized by a combinatorial explosion of the state space. Meanwhile, the 
control synthesis methodology, usually inspired by the Kumar algorithm [6], is rather easy to implement. 
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Some authors proposed approaches based on continuous time models [2][7][13][15]. These approaches are 
mainly based on Time Petri Nets and Timed Automata models. They are characterized by a compact state 
space. However, the control synthesis is based on polyhedral operations and it is difficult to implement. 

In this paper we present a control synthesis tool for time discrete event systems (TDES).  This tool is based 
on an original approach which solves the forbidden state problem (FSP) under the following hypothesis: 1) 
each event may occur at time instants specified by an interval or a union of intervals; 2) two types of events 
are considered: controllable and incontrollable events and 3) the evolution of time is discrete. This control 
synthesis technique is based on Time Controlled Petri Net model (TCPN), which is derived from the 
Controlled Petri Net model [5] by including a new time firing condition. Therefore, each transition of  the 
TCPN is characterized by a firing condition made of : 1) a time constraint and 2) a logic constraint. An 
enabled transition can be fired if both time constraint and logic constraint are satisfied.  

The proposed control synthesis approach consists in building the state space of the plant behavior under 
control by computing new time constraints and new logic constraints such that the forbidden states are no 
longer reachable and the controlled plant is deadlock free. The aim is to build a most permissive controller 
which guarantees the respect of the given specifications under the liveness constraint. A controller is said to 
be maximal permissive if it has the ability to restrict the behavior of the plant so that only the forbidden states 
are avoided. In our case, the maximal permissivity is measured by the number of admissible states under 
control. Liveness is the property of the controller to avoid deadlocks.  

The rest of the paper is organized as follows. Section 2 introduces the control synthesis approach. In Section 
3 we present the software tool that we developed. Section 4 discusses the complexity of the algorithm. Some 
conclusions and further directions are given in Section 5. 

2. Control Synthesis Approach 

Let us consider a plant, and a set of control specifications. Solving a control synthesis problem consists in 
building a controller so that the behavior of the closed loop system obtained by coupling the controller to the 
plant respects the given specifications. 

In this paper we present a formal synthesis method of a time controller based on the TCPN model of a plant. 
The control specifications are given by General Mutual Exclusion Constraints (GMEC) [4]. Each GMEC 
gives a condition on the markings of TCPN places that has to be respected. 

Definition 1: A TCPN model is a tuple N=(P, T, Pre, Post, M0, Is, C):  

 P is a finite set of places; 

 T is a finite set of transitions, PT=; 

 Pre : PxT, is the pre-incidence function, which defines the weight of arcs from places to 

transitions, where   denotes the set of natural numbers; 

 Post : TxP, is the post-incidence function, which defines the weight of arcs from transitions to 

places; 

 M0,  is the initial marking; 

 C is the set of control variables. A control variable Cj is associated to each controllable transition Tj; 

 U(Cj) : C Z, defines a control function which associates a control value to each control variable 
Cj, where Z  is the set of integer numbers; 

 Is : TQ+xQ,+ is a function which associates a time interval to each transition, where Q denotes the 
set of positive rational numbers. 

Is(Ti)=[ai, bi] 

ai  bi ; 0  ai <  ; 0  bi <  

where ai and bi are positive rational numbers.        ■ 

The set of input (resp. output) transitions of a place Pi is denoted by Pi (resp. Pi). The set of input (resp. 
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output) places of a transition Tj is denoted  by Tj (resp. Tj). A Petri net can also be represented by the 
incidence matrix W defined as W(p, t)=Post(Pi,Tj)-Pre(Pi,Tj). A marking of the Petri net, M:P, is a 

mapping that assigns to each place a non negative integer number of tokens. A transition Tj is enabled by a 
marking M if and only if M(Pi) Pre(Pi, Tj),  PiTj. A enabled transition can be fired if both the 
associated time condition and the logic condition are satisfied. Firing a transition Tj yields a new marking M’ 
such that M’=M+W(., Tj). The time condition Is(Tj)=[aj, bj] is satisfied if the amount of time elapsed since 
the last enabling moment of Tj belongs to the interval [aj, bj]. The logic condition of Tj is satisfied if the 
control function value U(Cj) 1.  

Let us consider the TCPN illustrated in figure 1. The transitions T1, T3, T4 and T6 are controllable. 
Therefore, we associate a control variable Cj to each transition Tj,  j{1, 3, 4, 6}. Initially only the places P1 
and P2 are marked. Therefore, the enabled transitions are T1 and T4. For instance, T1 can be fired if: 1) its 
firing is allowed by the controller and 2) an amount of time between 0 and 2 time units has elapsed since its 
last enabling moment. An example of GMEC is : M(P2)+M(P5)<2. Each marking that does not satisfy this 
constraint is considered to be forbidden. The behavior of a TCPN is modeled by a Time Reachability Graph 
(TRG).  

 

 

Figure 1. A Time Controlled Petri Nets 

 

Definition 2: A TRG is tuple G=(X, x, , X0, ), where: 

 X, is the set of macro-states; 

 x=  xi , where xi Xi, is the set of timed micro-states belonging to a given macro-state Xi; 

 =cu is the set of events occurring in the system; 

 X0, is the initial macro-state; 

  is the event time.          ■ 

Each node of the TRG, called a macro-state, represents a particular marking of the TCPN. A macro-
state Xi corresponds to a TCPN marking Mi. Each macro-state contains a set of timed micro-states 
xik which memorizes the evolution of the system due to the elapsing of time inside the same macro-
state. Each timed micro-state xki corresponds to particular value of the clocks associated to 
transitions enabled by the marking Mi. The set of forbidden macro-states is denoted XF. Obviously, 
all the timed micro-states belonging to a forbidden macro-state are also forbidden. The set of 
forbidden timed micro-states is denoted xF.  
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Lemma 1: Let us consider a TRG G=(X, x, , X0, ), associated with a plant. If G is strongly connected, 
then the plant has a reversible behavior.         ■ 

 

According to Lemma 1,  it is always possible to return to the initial state if the TRG associated to the plant is 
strongly connected [4]. 

We consider that the set of events  occurring in the system is divided into two subsets: c, the set of 
controllable events and  u, the set of uncontrollable events, such that =cu. The controller can act only 
on controllable events. 

Definition 3: A firing sequence is said to be uncontrollable, if and only if each of the timed micro-states 
reached during its firing are characterized by one of the following output configurations: 

1. only the time event , 

2. at least an uncontrollable event.         ■ 

Definition 4: Let us consider a TRG G=( X, x, , X0, ). A timed micro-state xik is said to be dangerous, if 
there exists at least one uncontrollable firing sequence starting in xik and leading to a forbidden state. ■ 

The set of dangerous timed micro-states is denoted xD. If all the micro-states xik  Xi are dangerous, then 
the macro-state Xi is dangerous. The set of dangerous macro-states is denoted XD. 

In our approach, we impose the reversibility condition. In other words, from every state of the system, there 
must exist at least a firing sequence leading to the initial state. Therefore, the behavior of the closed loop 
system respecting the control specifications and the reversibility condition is defined as follows. 

Definition 5: The set of admissible timed micro-states of the system, denoted XA,  is the biggest set of 
reachable timed micro-states such that: 

 XAXFXD = , 

 it is possible to reach the initial state of system starting from any reachable state, 

 the evolution from an acceptable state to an unacceptable one is done by the execution of a 
controllable event.         ■ 

A macro-state Xi is considered to be acceptable if and only if all the timed micro-states xik Xi are 
admissible. The set of admissible macro-states is denoted XA. 

The set XB= X-XA-XF-XD defines the deadlock macro-states. They represent TCPN markings from which 
no transition can be fired. The set xA (resp. XA) represents the biggest set of acceptable timed micro-states 
(resp. macro-states). Thus, the controlled time reachability graph (TRGc) Gc=(XA, xA, , X0, ) models the 
most permissive behavior. 

Definition 6: A controller is called most permissive if every macro-state XiXA is reachable during the 
evolution of the controlled system, and no macro-state XjXFXDXB  is  reachable.   ■ 

We propose the following control synthesis algorithm: 

Step 1: Initialization 

 Build the TRG associated to the TCPN model of the plant. 

Step 2: The cleaning 

 Define the set of forbidden macro-states XF. 

 Identify the set of dangerous timed micro-states xD and the set of dangerous macro-states XD. 

 Build the controlled time reachability graph (TRGc) by eliminating every macro-state XiXFXDXB and 
every timed micro-state xikXD; 

 If the TRGc is strongly connected, then go to Step 3. 

ELSE 
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Compute the strongly connected component (SCC) of  the TRGc; 

Replace XF by the set of macro-states outside the SCC.  

 Go to Step 2.1. 

Step 3: Computing new firing conditions so that the forbidden states, the dangerous ones and the deadlock 
states are no longer reachable. 

 Compute new time conditions for controllable TCPN transitions; 

 Compute the control variables to completely forbid the execution of some controllable TCPN transitions. 

In the sequel we present the tool that we developed to validate this control synthesis technique. 

3. Control Synthesis Tool For TDES 

The implementation of the algorithm was carried on using Microsoft Visual C++. For the graphic interface 
we used  the MFC classes and for solving the linear inequations system we used the CON’FLEX software. 
The user interface is intended to be as intuitive, consistent and easy to use as possible. This software tool is 
available at http://hp.agip.sciences.univ-metz.fr/qsl/interface-rdptempv1.exe. 

The architecture of the application is based on the object oriented paradigm. The Time Controlled Petri is 
implemented as class tpn, while the TRG and the TRGc are implemented in the same class rgt, by using 
adjacency lists. They are both composed of macrostates. A macro state corresponds to a marking and 
contains a vector of the valid transitions for the marking and the time micro states. For implementation 
reasons, we introduced micro states as the set of time micro states that have the same time pattern. The list of 
all macrostates is implemented in class List. For the application of the theory of regions, we used separate 
classes for each type of constraints: separation conditions, reachability conditions, cycle conditions. Each of 
these classes is a list of nodes containing the index of the node (with different signification for each class) 
and the vector of coefficients.  

The main program asks for an input file containing the TCPN and it takes the following steps: 1) create the 
TCPN structure ; 2) build the time reachability graph ; 3) perform the cleaning ; 4) compute the control 
variables ; 5) build the controlled time reachability graph with control variables.  

3.1. Create the TCPN structure 

The time controlled Petri net structure is constructed based on an input file of this form: 

 image: the name of the image file for the Petri net, if exists, else blank; 

 no of places: P 

 no of transitions: T 

 time limits; state of transition: for each transition Ti, Is(Ti) and 0 for controllable transitions, 1 for 
uncontrollable ones 

 arcs PT and their weight: Pre(PT) , followed by the matrix; 

 arcs TP and their weight: Post(PT), followed by the matrix; 

 the initial marking, as a vector; 

the Generalized Mutual Exclusion Constraints, written as a vector, or 0 if none. 

3.2. Build the TRG 

Building the TRG is done using the following algorithm: 

1. Initialization: 

a. Macrostate ms0 = macrostate corresponding to the initial marking; 

b. ms0 is added to the TRG and the List; 
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2. For each macrostate ms not visited 

a. for each microstate mss of ms not visited 

i. for each time microstate tms of mss not visited 

i.1. compute in firableTrs the firable transitions for this time microstate; 

i.2.   for each firable transition k: 

 i.2.1. compute new macrostate nms; 

 i.2.2. compare new macrostate with existing ones in the graph; 

 i.2.3. if new macrostate, then add it as a node in the graph and in the list of 
macrostates; 

 i.2.4. add the arc from tms to nms labeled by k 

i.3.   add an arc labeled time from tms to the next time micro state. 

The TRG and the list of macrostates will be written in two output text files. 

3.3. Perform the cleaning 

This operation consists of these main steps: 

1.0. Define the set of forbidden macrostates XF. 

2.0. Identify the set of dangerous time microstates xD and the set of dangerous macrostates XD. 

3.0. Build the controlled time reachability graph (TRGc) by eliminating every macrostate XiXFXDXB 
and every time microstate xi

kxD; 

4.0. IF the TRGc is strongly connected, THEN exit the cleaning. 

ELSE 

a. Compute the strongly connected component (SCC) of  the TRGc containing the initial 
macrostate; 

b. Replace XF by the set of macrostates outside the SCC.  

5.-1. Go to Step 1. 

The initial forbidden macrostates XF are computed during the building of the TRG, as those macrostates that 
do not respect the GMECs.  

The dangerous time microstates are computed by searching in the time reachability graph for all those time 
micro states that lead through uncontrollable transitions to forbidden macrostates or to dangerous time 
microstates. If we reach a dangerous or forbidden time microstate or macrostate through a controlled 
transition, then we perform one of the two following actions: i) if it is a time microstate, then we change the 
time interval for the transition such that this time microstate could not be created again; or ii) if it is a 
macrostate, then we add the transition and the source macrostate to the list of transitions to cut (the separation 
instances). 

The TRGc in step 3 is built using the same algorithm as above, with the difference that the new time limits 
and the separation instances are taken into account. The cleaning operation is performed until XF is the 
empty.  The TRGc for the TCPN in Fig. 1 is presented in Fig. 2. 
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Figure 2. A Time Controlled Reachability Graph 

3.4. Compute the control variables 

The aim of introducing control variables is to inhibit the firing of controllable transition leading outside the 
desired behavior.  The control variables are determined by using the theory of regions [4]. 

A transition which is absolutely not allowed to fire from a given TCPN marking (i.e. a macro-state of the 
TRG) defines a separation instance. The set separation instances is denoted by : 
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This technique consists in associating a control variable  Ck to each separation instance wk . We also 
define a control function U(Ck) as follows: 

U(Ck)/Xj = U(Ck)/Xi + Ck
m, 

where U(Ck)/Xj denotes the control function value in state Xj; U(Ck)/Xi denotes the control function value in 
state Xi and Ck

m is the incrementing value of the control function due to the occurring of the firing of 

transition Tm.  

The control law denoted U is defined by: 
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where Ck
m is the control value associated to firing the transition Tm.  

The control variables computing, based on the theory of regions, consists in solving a system of equations 
which represent the reachability conditions, the cycle equations and the separation conditions. We explain 
this technique using a simple example. 

Let us consider the TRG in figure 3. All transitions are supposed to be controllable and the macro-state X3 is 

forbidden. There is only one separation instant 3
1 1 3

T
w X X

 
  
 

. Consequently, only one control 

variable C1 is necessary.  

The macro-states X0, X1 and X2 must be reachable. Thus, the corresponding control function must be positive. 
The reachability conditions are: 

U(C1)/X0  1,                 (1) 

U(C1)/X1= U(C1)/X0+ C1
1  1,                  (2) 

U(C1)/X2 = U(C1)/X0+ C1
1 + C1

2  1.        (3) 

There is also only one elementary cycle. As the control function characterizes the associated macro-state, the 
cycle equation is:  

C1
1 + C1

2+ C1
3=0.                       (4) 

Furthermore, as the system must not reach the forbidden macro-state X3, we introduce the following 
separation condition : 

U(C1)/X3= U(C1)/X0+ C1
1+ C1

3 < 1.              (5) 

 
 

Figure 3. A simple TRG 

If at least a solution exists, solving the equations system (1)-(5) allows computing the control variable 
associated to each event and the control function of the initial macro-state. One of the solutions for the TRG 
given in figure 3 is  

U(C1)/X0= 1,  

C1
1=0, C1

2 =1, C1
3=-1.  

The most permissive TRGc and the evolution of the control function is shown in figure 4. 
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Figure 4. The corresponding TRGc 

The control function U(C1) is updated by the Petri net controller given in figure 5, according to the 
occurrence of the events T2, and T3. As C1

1=0, the transition T1 has no effect on U(C1
1). 

 

 

Figure 5. Petri net controller 

Let us consider now the TCPN illustrated in figure 1, with the control specification given by the CMEC 
M(P2)+M(P5)<2. 

The TRGc associate to this control synthesis problem is shown in fig. 2. For simplicity, we illustrate only the 
macrostates in fig. 6. One can notice two separation instances: firing transition T1 from the macrostate X2 and 
firing T4 from X1. With each separation instance we associate a control variable Ci, i=0,1. Furthermore, for 
each control variable we write the separation condition, the reachability conditions and the cycle conditions. 
In the sequel we give the conditions associated with the control variable C1. 

 

Figure 6. The graph of macrostates 

A macrostate is legal only if the value of the associated control function is more than 1.  As the macrostate 
X1’ is forbidden, this constraint is specified by the separation condition: 

U(C1)/X0   + C1
1+ C1

4 <1 

On the other hand, the macrostates X0, X1, X2, X3, X4, X5, X6, X7 must be reachable. This requirement is 
modeled by the reachability conditions: 

U(C1)/X0  1 
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U(C1)/X0   + C1
1 1 

U(C1)/X0   + C1
4 1 

U(C1)/X0   + C1
1 + C1

2 1 

U(C1)/X0   + C1
4 + C1

5 1 

U(C1)/X0   + C1
1 + C1

2 + C1
41 

U(C1)/X0   +C1
4 + C1

5+ C1
1 1 

U(C1)/X0   + C1
1 + C1

2 + C1
4 + C1

51 

Finally, for each elementary cycle is described by a cycle equation: 

C1
1 + C1

2+ C1
3=0, 

C1
4 + C1

5+ C1
6=0. 

All the inequations and equations are solved using the CON’FLEX software. If at least a solution exists, 
solving the equations system allows computing the control variable associated to each transition and the 
control function of the initial macro-state. For our example, one of the solutions is: 

U(C0)/X0= U(C1)/X0= 2; C0
1= C1

1=-1; C0
2= C1

2=1; C0
3= C1

3=0; C0
4= C1

4=-1; C0
5= C1

5=1; C0
6= 

C1
6=0; C0

7= C1
7=0. 

It is to be noticed that, in this case, the control variables C0 and C1 are redundant. Thus, one control variable 
is enough to control the system.  The Petri net controller is given in fig. 7. 

 

 

Figure 7. The Petri net controller 

3.5. Case study 

The application was tested on an AMD platform computer, with AMD Athlon Processor 1.54 GHz, 512 MB 
RAM running Windows XP operating system. The following table presents the results obtained testing 
various TCPN examples. We have excluded the amount of time taken by CON’FLEX to solve the linear 
system. 

 
No. macrostates 

before  
No. macrostates 

after  
No. Control 

Var. 
Time – time(CON’FLEX) 

Ex. 1 261 215 3 14.20 sec 

Ex. 2 261 232 3 13.72 sec 

Ex. 3 187 135 6 10.26 sec 

4. Algorithm Complexity 

Given a TCPN N=(P, T, Pre, Post, Is, C) and its initial marking M0, we consider r as the maximum value of 

matrices Pre, Post, Is, M0. Then we can define the size of the TCPN as )|||(| rTPn  . The 
algorithm complexity will be computed according to n. We denote by u and v the number of vertices 
(corresponding to macrostates) and arcs in the reachability graph.  

The building the TRG is based on the algorithm of building the reachability graph for a general Petri net to 
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which we added the time interval information. The algorithm is exponential in time and space, related to the 
size of the Petri net. Given that the Petri nets considered are bounded, the TRG is finite. 

The cleaning algorithm presented in section 3.3 has four main steps and their complexity will be discussed in 
the following. The first two steps has each an O(u+v) time complexity, as they involve a binary search in the 
graph. We presume that the vector comparing is performed in O(1) time complexity. The construction of the 
TRGc is done by rebuilding the reachability graph with the new constraints (markings and transitions to cut, 
new time intervals for the controlled transitions) and it takes exponential time in the size of the net. 
Computing the strongly connected component of the graph obtained at step 3 that contains the initial 
macrostate is performed in O(u2) time. Thus the complexity of the cleaning algorithm is of exponential time 
in the size of the Petri net. 

Computing the control variables involves computing the spanning tree of the controlled time reachability tree 
for building the separation condition and the reachability inequations and the basis cycles for the cycle 
equations. These operations are done in polynomial time (O(u2)) with respect to the size of the graph. Solving 
the linear inequation system is performed by the simplex algorithm implemented in the CON’FLEX 
software. The simplex algorithm takes polynomial time. The complexity of this step is polynomial in the size 
of the  graph. 

The memory management for the application is done by dynamic allocation. For implementation efficiency 
reasons we grouped the time microstates into microstates, according to their time patterns. Thus, a macrostate 
contains the associated marking, the indexes of the valid transitions that can be applied to the marking and 
the list of microstates. The graphs are implemented using adjacency lists. Each node of the graph contains 
only the indexes of the macrostate, microstate, time microstate, the information about these components 
being memorized in the list of macrostates. 

5. Conclusion 

In this paper we proposed control synthesis software tool for discrete event systems based on an original 
approach. This method is based on TCPN model. The controller can 1) fix the firing instant of controllable 
events, by acting on the corresponding time constraints or 2) it can completely forbid the firing of some 
controllable transitions using control variables. This approach provides a live controller which is maximally 
permissive in the sense of Petri nets marking. The complexity of the algorithm is also discussed. Our further 
research work deals with taking into account the unobservable nature of some events. 
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