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Abstract: In this paper, we propose a design methodology for Petri net controllers for the forbidden state-transition problem by 
taking into account the time constraints. The aim of the proposed approach is to solve a Forbidden state-transitions time depending 
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1. Introduction 
The complexity of discrete event systems (DES) makes more difficult the realization of an effective and 
realistic control device.  In this paper, bounded Petri nets are used for modelling DES, hereafter also 
referred to as plants.  For a discrete model of a plant and a set of specifications, the goal of control 
synthesis is to determine a supervisor represented by a given set of legal markings which guarantees the 
desired behaviour.  Supervisory control allows the avoidance of a set of forbidden states defined by some 
General Mutual Exclusion Constraints (GMEC) by adding some control places. 

The pioneer work of Ramadge and Wonham [8] [9] proposed an automata-based framework for Discrete 
Event Systems control and addressed the existence and synthesis of the most permissive supervisor. Their 
approach is based on automata and formal language modeling. Unfortunately, the lack of structure of 
automata models limits the development of efficient control synthesis algorithms. To overcome these 
disadvantages, Petri nets (PN) were used to model plants to control and to design supervisors. Plant Petri 
net modes’ transitions are fully observable and can be either controllable or uncontrollable. Structural and 
behavior properties of Petri net models are used to design efficient optimal real-time control policies for 
forbidden state problems of safe marked graphs [5], state machines [2], general Petri nets [6], and general 
marked graphs [3]. 

Consideration of time is crucial for realistic characterization of systems and hence leads to two types of 
concerns: the checking or validation of certain temporal specifications, and the control which requires 
temporal specifications.  It is therefore important to integrate time in the specifications and synthesis.  For 
this purpose, we introduce a new class of General Mutual Exclusion Constraints (GMEC) called Time 
Floating General Mutual Exclusion Constraints (TFGMEC), for which we propose a solution method 
inspired by a supervisor modelled by control places added to the initial Petri net model. 

This paper is organized as follows. Section 2 presents the Time Floating General Mutual Exclusion 
Constraints.  Section 4 is comprised of three subsections.  In the first one, we give some terminology and 
definitions of the supervisory control problem.  Theory of regions and the syntheses methodology are 
then introduced in subsections 3.2 and 3.3. 

2. Time Floating General Mutual Exclusion Constraints (TFGMEC) 
A Petri net is a tuple N= (P, T, Pre, Post, M), where P is a finite set of places, T is a finite set of 
transitions, with PT=, Pre:PxTN and Post: PxTN are respectively the pre-incidence function that 
defines weighted arcs from places to transitions and the post-incidence function that defines weighted 
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arcs from transitions to places, where N is the set of non-negative integers and M : PN is the marking 
vector whose ith component, M(pi), is the number of tokens in the ith place. M0 is an initial marking.  

A timed place Petri net, or p-timed Petri net, has been adopted in this study.  Time constants are 
associated with places; places are the steps or tasks that the project comprises.  A token deposited in a 
place becomes available after that period of time (time execution of the task). 

A p-timed Petri net is formally a bipartite directed graph: TPN=(N, h), where 

 N is a normal Petri net as previously defined, 
 h : PR+ is the place time function which represents the time delay associated with the 

relevant place. 

The legal markings set corresponds to a linear inequalities set wMk called General Mutual Exclusion 

Constraints (GMEC), where mncw  , cnk  , m is the number of places, cn the number of constraints 

and M the current marking.  These constraints can describe (generalized) mutual exclusion, deadlock 
prevention constraints, and others [1]. For example, we might wish to enforce the constraint 
M(p1)+M(p2)1, which means that at most one of the two places p1 and p2 can be marked, or, in other 
words, both places cannot be marked at the same time. 

Time is an important factor to integrate to the plant model.  Taking into account timed specifications 
makes the discrete model more realistic.  This paper is concerned with timed specifications defined by 
GMEC.  More precisely, a GMEC is considered in an interval of time and is not considered outside this 
interval.  This kind of GMEC is called Time Floating General Mutual Exclusion Constraints (TFGMEC).  

Definition 1. Time Floating General Mutual Exclusion Constraints are GMEC considered only in an 
interval of time [Tmin, Tmax].  TFGMEC are defined by a set of linear inequalities wM[Tmin, Tmax] k. 

In the everyday life, many timed specifications can be defined by TFGMEC. 

Examples: i) A production system sharing two resources in the interval of time [8 a.m., 12 p.m.] but only one 
outside this interval.  ii) A plane which may not fly in a certain air lane in the interval of time [11 p.m., 6 a.m.]. 

Starting from a no-timed Petri net plan model and giving timed specifications, the goal of the control 
syntheses is to generate a set of control places to be added to the Petri net plan model.  Control places, 
representing the supervisor, guarantee the desired behavior. 

To solve TFGMEC problem (Figure 1a), the key idea consists of introducing into the plant model a global 
clock counting time.  A P-timed Petri net is used for the global clock modelling (Figure 1b). 

 

(a) TFGMEC daily time cycle    (b) Global clock timed Petri net model 

Figure 1. Global Clock Modelling 

According to the TFGMEC, the time cycle  considered may be daily cycle, weekly cycle, etc. In the     
P-timed Petri net model of the global clock, di represents the time delay associated with the relevant place 

Phi. Note that  id . 

Example 1: Consider the plant Petri net model and its reachability graph RG(N, M0) shown in Figure 2, which 
represents a production system sharing two resources R. For some noisiness reasons, one of the two resources 
must be stopped from 10 p.m. until 7 a.m. Formally, the TFGMEC which must be enforced is M(p)[10 p.m., 7 a.m.]1.  
In other words, place p may not contain more than one token in the interval of time   [10 p.m., 7 a.m.]. 
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(a) Petri net model  (b) Reachability graph 

Figure 2. Plant Model 

In Figure 3, a Petri net N1 model of the system (plant + global clock) depicted in Figure 2 is given.  When 
a token arrives in the global clock place Ph1 it becomes available after a period d1 equal to nine hours, this 
being the period in which the TFGMEC is considered.  In other words, a token in Ph1 means that the 
current time is inside the interval [10 p.m., 7a.m.] while a token in Ph2 means that the current time is 
outside this interval. 

Assumption 1: A resource should not cease working until it has finished its task. 
 

Figure 3. Petri Net Model of the Plant and Its Global Clock 

Reachability graph RG(N1, M0) of Figure 4 corresponds to the reachable states of the example of Figure 3.  
Transition t1 fired from the marking M2 leads to M3 and violates the TFGMEC specification M(p)[10 p.m.,7 

a.m.]1.  In fact, in M3, the current time is inside the interval [10 p.m., 7 a.m.] (M(Ph1) = 1) and two resources R 

are used (M(P) = 2).  Instance )( 32
1 MM t  is then a forbidden state transition.  From Assumption 1, 

transition th2 fired from the marking M6 leads to M3 too but it does not violate the TFGMEC specification. 

 

Figure 4.  Desired Behavior 

3. Supervisory Control Problem of TFGMEC 

3.1. Terminology and definitions of supervisory control 

Control specifications are given as a set of forbidden markings which correspond to undesirable states 
because they either compromise the system safety or they yield deadlock situations.  Let MF be the set of 
forbidden markings for which specifications do not hold. 

Note that the set of transitions T = Tc  Tu be partitioned into controllable transitions Tc and 
uncontrollable transitions Tu. 

Supervisory control problem consists in synthesizing a supervisor that ensures the legal behaviour of the 
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plant.  Supervisor must by maximal permissive.  With uncontrollable transitions, to respect the 
specifications, it is necessary to prevent the system from reaching a superset of the forbidden markings, 
containing all dangerous markings from which a forbidden one may be reached by firing a sequence of 
uncontrollable transitions. 

Definition 2: A marking is said to be dangerous if it leads to a forbidden marking by firing uncontrollable 
transitions.  Let MD be the set of dangerous markings.  Formally, 

MD={MR(N,M0)|M’MF(Tu)*,M[>M’}.  Obviously, MF  MD. 

Liveness, or nonblockingness, requires the reachability of some marked states.  In this paper, without loss 
of generality, we restrict our attention to the case where the initial marking state is the unique marked 
state.  The liveness requirement is then equivalent to reversibility.  Finally, the behavior of the controlled 
system under both safety specification and the liveness requirement can be defined as follows. 

Definition 3: A marking is said blocking if it uncontrollably leads from markings in the Strongly 
Connected Component (SCC) containing M0, to markings outside the SCC.  Let MB be the set of blocking 
markings.  Formally MB={MSCC| M’SCC, tTu, M[t>M’}. 

Definition 4: The set ML of legal or admissible markings is the maximal set of reachable markings such 
that (i) ML∩MD = , (ii) it is possible to reach the marked marking M0 from any legal marking without 
leaving the set ML, (iii) any transition t from a legal marking to a non legal marking is a controllable 
transition.  Let Rc be the reachability graph containing all legal markings. 

We use the Ramadge-Wonham approach for the controlled behavior computation. Computation of the 
Strongly Connected Component (SCC) of controlled system is given by the following algorithm: 

Algorithm 1: The controlled behavior computation 

Step 1. Generate the reachability graph RG(N, M0) of the plant Petri net model (N, M0) to be controlled. 

Step 2. Define the set of forbidden markings MF. 

Step 3. Identify the set MD of dangerous markings by exploring RG(N, M0). 

Step 4. Determine the controlled reachability graph Rc derived from RG(N, M0) by removing MD. 

Step 5. Verify that Rc is a SCC to enforce the liveness of the controlled system. 

Step 5.1. If Rc is a SCC then go to step 8. 

Step 5.2. If Rc is not a SCC then compute the SCC. 

Step 6. Replace RG(N, M0) by the SCC determined in 5.2 and replace MF by the set of markings outside SCC. 

Step 7. Go to step 3. 

Step 8. RC is the legal behavior. 

Algorithm 1 gives the maximally permissive controller, since only the dangerous and blocking markings 
are eliminated. Let ML be the set of all markings of Rc and  be the set of all state-transitions leading 
outside RC. Formally, the set of state-transitions the controller has to disable is 

={ )( MM t  |M[t>M’MML M  MLtTc}. Each element of  is denoted as event separation 

instance. 

To summarize, 

Definition 5: An optimal controller is the controller that ensures the reachability of all markings in ML and 
that forbids all state-transitions in . 

Control requirements are expressed as a set of forbidden states or a set of forbidden state-transitions of 
RG(N, M0).  Two classes of supervisory control problems exist, the forbidden states problem (FSP), and 
the forbidden state-transitions problem (FSTP) [7]. 

3.2. Control places design 

Given the PN plant model (N,M0) and the desired behavior R. In the following paragraphs, we present the 
design of control places using the theory of regions [4].  

Consider any place p of the controlled net with initial marking M0(p) and incidence vector C(p, .). Note 
that p can be either a place of the plant model or a control place. 
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For any transition t from any marking M in R, i.e., t is the label of an outgoing arc of the node M in R : 

M'(p) = M(p) + C(p,t),  M[t > M' R .       (1) 

where M' is the new marking or equivalently the destination node of arc t. 

Consider now any non-oriented cycle  of the desired behavior R. Applying the state equation to nodes in 
 and summing them up gives the following cycle equation: 

    Sγ0,tγtp,C
Tt





.        (2) 

where  tγ  denotes the algebraic sum of all occurrences of t in  with a weight 1 for each transition in any 

given direction of the cycle and a weight of –1 for a transition in the opposite direction and S  is the set 
of non-oriented cycles of the graph. γ


 will be called the counting vector of . 

Consider now each node M of the desired behavior R. According to the definition of both FSTP and FSP, 
there exists a non-oriented path M from the initial state M0 to M. Applying equation (1) along the path 

leads to:       M0 Γp,CpMpM   where MΓ  is the counting vector of the path M defined similarly 

as γ


. There may exist several paths from M0 to M. Under the cycle equations, the product   MΓp,C   is 

the same for all these paths. As a result, the path M can be arbitrarily chosen. The reachability of any 
marking M in R implies that: 

    M0,Γp,CpM M0  R.        (3) 

which will be called the reachability condition. 

Lemma 1: Any place of the plant model (N, M0) or a control place of the controlled net satisfies both relations 
(2) and (3). 

An impure control place pc is a place for which there exists at least one transition that is both input and output 
transition of pc. The self-loops are introduced to increase the control power of control places. With respect to 

any event separation instance ( M'M t ) in , only control places pc with self-loop connecting pc and t 
need to be considered and the goal is to forbid t from firing at M. As a result, for each event separation instance 

( M'M t ), we look for a control place pc defined by its initial marking M0(pc), its incidence vector C(pc, .) 
and the weight C-(pc, t) of the arc connecting pc to t. 

First, according to Lemma 1, cycle equation (2) and reachability condition (3) hold. Since the control places are 
impure, the reachability conditions (3) are no longer enough to guarantee the reachability of markings M in R. 
Additional conditions are needed to ensure firability of a transition t enabled at any markings M in R: 

        Rin  [,,,0   tMtpCpCpMpM cMccc .    (4) 

The event separation condition related to ( '* MM t ) becomes: 

      tpCpCpM cMcc ,, *0 .       (5) 

Relations (2), (3), (4) and (5) are necessary and sufficient conditions for the existence of impure control 
places as it is stated by the following theorem. 

Theorem 1: 

A desired behavior R, subgraph of the reachability graph of a bounded Petri net (N,M0), can be realized 
by adding impure control places to (N,M0) iff there exists a solution (M0(pc),C(pc,.,), C-(pc, t)) satisfying 

conditions (2), (3) (4) and (5) for any element ( M'M t ) of . 
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Figure 5. A Forbidden State-Transition Problem 

Let us consider the problem of Figure 5. The control specification is to not fire T2 after T1. The event 

separation instance to solve is ( 2
T2

3 MM  ) (see Figure 5.b.).The separation instance may be solved 

by a impure control place pc iff pc satisfies the following relations. 

M0(pc) 0 

M0(pc) + C(pc,T1) 0 

M0(pc) + C(pc,T2) 0 

M0(pc) + C(pc,T1) + C(pc,T2) 0 

M0(pc)  C-(pc,T2) 

M0(pc) + C(pc,T1) < C-(pc,T2) 

A control place defined by M0(pc)=1, C(pc,T1) = -1, C(pc,T2) = 0 and C-(pc,T2) = 1 is a solution of the 
above system (see Figure 6). 

Computation of an impure control place with respect to an event separation instance ( M'*M t ) can 
be performed in two steps. To understand it, note that combination of (4) and (5) leads to: 

   Rin   M[t0,ΓΓ,pC *MMc  .       (6) 

 

Figure 6.  The Controlled Net Corresponding to Problem of Figure 5 

Computation of the impure control place pc first determines its incidence vector C(pc, .) by taking into 
account the cycle equations (2) and relations (6). The second step determines the initial marking and the 
weight C-(pc,t) such that the place is a feasible solution. This can be achieved by setting:  

M0(pc)=Max{0,Max{- C(pc, . ) MΓ : for all M in R}} and C-( pc, t) = Min{M0(pc) + C(pc, . ) MΓ : for all M 

such that state-transition M[t > is in R}. 

Corollary 1: There exists an impure control place solving an event separation instance ( M'*M t ) if 
the linear system defined by relations (2) and (6) has a solution. 

3.3. Algorithm of the synthesis policy 

Adding a set of control places to the plant model can optimally solve the supervisory control problem (if a 
solution of control exists).  The aim of the supervision control is to disable the firing of a transition 
leading to an undesired marking.  The algorithm of the synthesis method is as follows: 

Algorithm 2: Synthesis methodology 

Let a controlled reachability graph Rc derived from RG(N, M0) and a set  of event separation 

instances )( MM t  with MRc be given. 

Step 1. Generate the reachability condition (3) for each marking M in Rc. 
Step 2. Generate the cycle equations (2) related to the cycles in RC. 
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Step 3. While    do: 

Step 3.1. For any element )( j
t

i MM   of  generate conditions (4) and (5) corresponding to each 

marking M in Rc. 
Step 3.2. Solve the set of relations (2), (3), (4) and (5). Let (M0(pc),C(pc, . ), C

-(pc, t)) be the solution if it 
exists.  Otherwise, exit, as adding control places to the plant Petri net model cannot enforce the maximum 
permissive controlled behavior. 
Step 3.3. Eliminate from  all the separation instances that can be solved by (M0(pc),C(pc, . ), C

-(pc, t)). 
Step 4. Remove redundant control places to obtain the controlled net by comparing the set of separation 
instances solved by each control places. 

Let us consider again the problem of Figure 2.  The separation instance )( 32
1 MM t  may be solved 

by an impure control place pc if  pc satisfies the following relations: 

Relation (2), the cycle equations: 

0),(),( 21  tpCtpC cccc  

0),(),( 21  thpCthpC cccc  

Inequality (3), the reachability conditions: 

;0)(0 cc pM  

;0),()( 10  tpCpM cccc  

;0),()( 10  thpCpM cccc  

;0),(),()( 110  tpCthpCpM cccccc  

;0),(),(),()( 1110  tpCtpCthpCpM cccccccc  

;0),(),(),(),()( 21110  thpCtpCtpCthpCpM cccccccccc  

Inequality (4), to ensure firability of a transition t1 enabled at the markings M0, M4, M5, and finally, the 
separation condition (5): 

);,()( 10 tpCpM cccc
  

);,(),()( 110 tpCthpCpM cccccc
  

);,(),(),()( 1110 tpCtpCthpCpM cccccccc
  

).,(),()( 110 tpCtpCpM cccccc
  

Once relations (2), (3), (4) and (5) are established, we then determine ),( cpC and the initial marking of 

place pc, which will make it possible to have the Petri net model of the controlled plant. 

A solution may be given by 2)(0 cc pM , 1),( 1 tpC cc , 2),( 1  tpC cc , 1),( 2 tpC cc , 

1),( 1 thpC cc  and 1),( 2 thpC cc  (see Figure 7). 
 

 

Figure 7. Controlled Net Corresponding to the Problem of Figure 2. 

When a token becomes available in place ph2, transition th2 is fired since place pc is always marked.  The 
addition of the control place pc does not perturb the global clock evolution. 

Assumption 1, a resource should not cease working until it has finished its task means that if M(p) = 2 and then 
we are in the interval of time [10 p.m., 7a.m.], supervisor can not force the firing of transition t2. Supervisor can 
only forbid the firing of transition t1 in the interval of time [10 p.m., 7a.m.]. To respect the TFGMEC M(p)[10 p.m., 7 
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a.m.]1, the residence time of a token in the place p must be considered. In other terms, if we know that a token 
resides in the place p at the maximum one hour, then the TFGMEC can be M(p)[9 p.m., 7 a.m.]1. 

Example 2: Consider a system of two jobs sharing two resources. Resources R1 and R2 are needed for 
performing jobs A and B. The PN plant model is given in Figure 8a. The set of controllable transitions is 
Tc={t1, t4}. The reachability graph RG(N, M0) is given in Figure 4b. 




Figure 8.  Production System 

 (a) Petri Net model (N, M0) 

(b) Reachability graph RG(N, M0) 

Plant Petri net model (N, M0) of Figure 8a is not live since no transition can be fired from the state x5. In 
this case, x5= (1,0,1,0,0,0) is a blocking state. ={(x1, t4), (x2, t1)} is the set of all state-transitions leading 
to x5. Controlled reachability graph is given in Figure 9. 


Figure 9.  Controlled Reachability Graph 

Let us use Algorithm 2 to synthesise the set of control places that will avoid the reachability of x5. Only 
one separation condition related to the two separation instances needs to be considered, namely, 

0),(),()( 410  tpCtpCpM ccc  

The controlled reachability graph contains two different cycles and hence two cycle equations 
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31

64
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whereas the reachability conditions can be expressed as follows: 
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The above linear system has a solution C(pc, . ) = (-1, 0, 1, -1, 0, 1) and M0(pc)=1. The corresponding 
control place pc is an input place of t1 and t4 and an output place of t3 and t6. The control place pc contains 
initially one token. The controlled Petri Net is presented in Figure 10. 



Figure 10.  The Controlled Model of the System of Figure 4 

Let us consider another kind of specifications. Suppose that only Job A must be used in the time interval 
[8 a.m., 12 p.m.], only Job B must be used in the time interval [12 p.m., 6 p.m.] and that both of them must be 
used outside these intervals. This kind of specification is called Time Floating General Mutual Exclusion 
Constraints (TFGMEC), which are considered next. 

Consider again the production system given in Figure 8. The new specifications can be written as follow:  

TFGMEC1: only Job A must be used in [8 a.m., 12 p.m.]; M(p3)+M(p4)[8 a.m., 12 p.m.] = 0. 

TFGMEC2: only Job B must be used in [12 p.m., 6 p.m.]; M(p1)+M(p2)[12 p.m., 6 p.m.] = 0. 

The timed Petri net global clock model relative to this example is given in Figure 11b. When the place 
Ph1 is marked it means that we are in the interval of time [8 a.m., 12 p.m.]. A token deposited in this place 
becomes available after a period d1 = 4. When the place Ph2 is marked it means that we are in the interval 
of time [12 p.m., 6 p.m.]. A token deposited in this place becomes available after a period d2 = 6. When the 
place Ph3 is marked it means that we are in the interval of time [6 p.m., 8 a.m.]. A token deposited in this 
place becomes available after a period d3 = 14. 
 

 

Figure 11.  Global Clock Modelling Related to the Example Figure 4 

(a) TFGMEC daily time cycle 

(b) Timed Petri net model of the global clock  

TFGMEC can be transformed as follow: 

M(p3)+M(p4)[08 a.m., 12 p.m.] = 0  M(p3)+M(p4)+M(Ph1) = 1. 

M(p1)+M(p2)[12 p.m., 6 p.m.] = 0  M(p1)+M(p2)+M(Ph2) = 1. 

Using the theory of regions, we obtain a supervisor represented by two control places pC2 and pC3 
(Figure 12). 
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Figure 12.  Controlled Model Taking into Account the TFGMEC 

4. Conclusion 

In this paper, we have proposed a design methodology for Petri net controllers for the forbidden state-
transition problem.  To solve control temporal specifications, a global clock is introduced in the plant 
Petri net model.  Forbidden state-transitions are defined by some Time Floating General Mutual 
Exclusion Constraints.  The proposed approach uses a Ramadge-Wonham approach to determine desired 
behavior and then uses the theory of regions to design a compiled Petri net controller that is a set of 
control places to add to the initial plant model. 
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