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1. Introduction

When measuring the credit risk of an enterprise, 
enterprises can be typically classified into two 
categories: good creditors and bad creditors. Those 
who can pay their debts on time are classified as 
good creditors, while those who cannot or will 
not pay their debts are classified as bad creditors. 
Such enterprises are prone to default (Popescu et 
al., 2019). In general, the majority of enterprises 
will be able to make timely repayments, while 
a minority will default, which will lead to an 
imbalance due to the fact that the number of non-
defaulting enterprises in the database is much 
higher than the number of defaulting enterprises 
(Ciampi et al., 2020).  

The phenomenon of class imbalance will 
have an impact on the accurate measurement 
of enterprise credit risk. First, measuring the 
credit risk of an enterprise often requires a large 
amount of information, where errors and spurious 
information are inevitably present, resulting in a 
large amount of noise in the data source (Ouadine 
et al., 2020). In the case of class imbalance, the 
interference of noise will make it more difficult 
to find minority samples, and the classifier will 
have a hard time identifying minority classes. 
Second, many classifiers suffer from classification 
bias when classifying imbalanced data (Dastile 
et al., 2020). For example, class boundary 
information plays a key role in support vector 
machine (SVM) model. Whether the boundary of 
the sample is balanced or not is the essence of 
whether the data is balanced or not (Yee et al., 
2022). In general, the true boundary of a sample 
cannot be identified. When the boundaries are 

not balanced, minority class samples are prone to 
misclassification. Decision Tree (DT) model splits 
the original problem into several subproblems. On 
the one hand, the classifier needs to find sample 
data rules in the incomplete subspace (Lefa et al., 
2022). On the other hand, the data rules learned 
by the classifier across space are not easily mined 
and may be lost, forming data fragments. Such 
a data splitting based on the divide-and-conquer 
idea would lead to a very good performance of the 
classifier in learning.

To solve the class imbalance problem, two 
categories of techniques have been put forward: 
sampling approaches (García et al., 2012) and 
algorithm-based approaches (Wang et al., 2020). 
Sampling approaches generally aim at balancing 
the class distribution by either under-sampling 
the majority or over-sampling the minority 
class. The most commonly used under-sampling 
approach consists in randomly removing samples 
from the majority class until two classes are 
approximately equally represented (Kinoshita 
et al., 2020), which may result in a loss of some 
useful information. Similarly, over-sampling by 
randomly duplicating samples of the minority 
class tends to induce overfitting and decrease 
the classifier’s generalization because of its 
repeated extraction. Therefore, an intelligent over-
sampling method named Synthetic Minority Over-
sampling Technique with AdaBoost (SMOTE) 
(Chawla et al., 2002) is proposed. The SMOTE 
technique generates new minority samples in 
the nearest neighbors of every minority class 
sample rather than simply copy them. Algorithm-
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based approaches aim at improving a classifier’s 
performance based on its inherent characteristics 
(Yang et al., 2017). Among them, the ensemble 
learning approach is strongly recommended.

A series of classification models are applied 
for imbalanced data. Firstly, García, Marqués 
& Sánchez (2012) investigated the influence of 
both the imbalance ratio and the classifier on the 
performance of sampling approaches and came 
to the final conclusion that over-sampling of the 
minority class consistently outperforms under-
sampling of the majority class. Subsequently, 
a hybrid sampling technique (Gao et al., 2020) 
combining the two sampling techniques above was 
proposed. It was proved that this method always 
outperforms the individual sampling techniques 
as it involves the strengths of the individual 
techniques while lessening their drawbacks. 
What’s more, an integrated method SMOTEBoost 
was presented by Chawla et al. (2003), which 
combines the SMOTE algorithm and an ensemble 
method named boosting to improve prediction 
on the minority class. Inspired by this, Seiffert 
et al. (2010) made a further improvement 
again, and immediately put forward a hybrid 
sampling boosting algorithm called RUSBoost 
by combining boosting with over-sampling. In 
comparison with SMOTEBoost, RUSBoost has 
been proved to perform equally well or better than 
the former.

This sampling technique suffers from overfitting, 
and the Boosting algorithm fails to solve the 
sample class distribution problem, thus this paper 
proposes a ensemble balancing technique based 
on a hybrid sampling technique and the Boosting 
algorithm (HBSBoost). The proposed method 
can effectively improve the classification ability 
of the classifier. 

The contributions of this paper are as follows: 

1.	 A new balancing technique HBSBoost 
is proposed, which balances datasets by 
hybrid sampling techniques and improves 
the discriminative power of classifiers for 
minority samples by Boosting algorithm. 

2.	 The proposed technique is evaluated for 
seven real-world datasets. Experiment results 
show that in comparison with under-sampling 
technique, over-sampling technique, 
hybrid sampling technique, RUSBoost and 
SMOTEBoost techniques, the classification 

accuracy of machine learning models 
has been significantly improved by using 
HBSBoost technique.

The structure of this paper is as follows. Section 
2 introduces the techniques used in the proposed 
method, including under-sampling technique, 
over-sampling technique and Boosting algorithm. 
Section 3 sets forth the hybrid sampling technique 
and the HBSBoost technique proposed in this 
paper. Section 4 presents the experiments carried 
out and the analysis of the obtained results. 
Section 5 includes the conclusion of this paper.

2. Research Methodology

2.1 Under-sampling

The simplest under-sampling method is random 
under-sampling (Tahir et al., 2012) by randomly 
removing samples from the majority class until the 
remaining number of samples from the majority 
class is nearly equal to the number of samples 
from the minority class. It is obvious that there 
will be a loss of some important information 
accompanied with deleting samples from the 
training data. Even so, random under-sampling 
can still effectively balance the training data, and 
eventually help these classifiers better recognize 
the minority class, in spite of the fact that 
standard classification algorithms usually have 
a bias towards to the majority class. It has been 
proved to be one of the most effective sampling 
approaches. Tomek links and condensed nearest 
neighbor rule (Gowda & Krishna, 1979) are other 
under-sampling techniques.

2.2 Over-sampling

Over-sampling technique aims to increase the 
number of samples from the minority class to 
balance the training data. There are two kinds of 
classic over-sampling methods. One is random 
over-sampling (Johnson & Khoshgoftaar, 
2019) which consists in simply replicating 
the minority class samples until class balance. 
For this method, some samples in the original 
minority class may constantly reappear in the 
balanced training set, which will likely cause 
overfitting in case no new information is added. 
Therefore, another method named SMOTE 
(Chawla et al., 2002) was proposed. It generates 
new artificial interpolated samples within the 
k nearest neighbors of samples in the minority 
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class. SMOTE not only increases the number of 
minority class samples to balance the training 
data but also to effectively prevent overfitting. 

For a training sample S  with n  minority class 
samples, suppose the over-sampling rate is N , 
number of nearest neighbors is k . The following 
steps are involved to obtain the balanced dataset

balanceS  when using the SMOTE technique:

Algorithm 1 SMOTE

Input: Training sample S , over sampling rate N ,  
number of nearest neighbors k , number of minority 
class samples n
Output: SMOTE algorithm
1. Calculate the k -nearest neighbors of minority class 

samples ix .
2. Randomly select ax  samples from the k -nearest 

neighbors of minority class samples ix .
3. Synthetic samples 

iqf  between ix  and ax  use: 
( ) (0,1)iq i aq iqf x x x rand= + − ×                (1)

    where (0,1)rand  is a random number between 0 

and 1.
4. Repeat the above steps for N  times.
5. Obtain the new training samples balanceS .

2.3 Boosting

The basic idea of ensemble learning is to 
combine multiple weak classifiers into one 
strong classifier (Shahraki et al., 2020). Several 
scholars have demonstrated the significance of 
ensemble learning to improving the performance 
of classifiers from statistical, computational, and 
theoretical perspectives (Goyal & Vajpayee, 2017). 
The boosting algorithm is one of the commonly 
used ensemble learning algorithms. The basic idea 
is to enforce learning on samples that are prone 
to misclassification. The steps of Boosting are 
as follows: (1) assign the same weight to each 
training sample; (2) learn a training set T by using 
basic classifier, comparing the real label with the 
label predicted by the classifier, and improving the 
weight of the misclassified sample; (3) retraining 
by using the training set with the adjusted weight; 
(4) the process is repeated until the iteration is 
finished; (5) take the linear combination of all 
basic classifiers as the final strong classifier. 

The Boosting algorithm aims to combine 
multiple weak learners into one strong learner 
with arbitrarily high accuracy. The basic idea 
is that when building a classifier, it is hoped 
that the classifier will pay more attention to the 
samples with classification errors in the previous 

round, since some classifiers may have better 
classification performance for minority samples 
and some classifiers may have better performance 
for majority samples, therefore, a Boosting-based 
complementary classifier system combining 
multiple classifiers was proposed.. 

AdaBoost is the most representative algorithm in 
the Boosting family. The AdaBoost is introduced 
in Algorithm 2:

Algorithm 2 AdaBoost
Require: Training set 

1 1 2 2( , ), ( , ),..., ( , )N NT x y x y x y= , where 
n

ix ∈ = R , { 1,1}, 1,2,...,iy i N∈ = − =
Ensure: The final classifier ( )G x
1: Initialize the weight distribution of training samples:

1 11 1 1( ,..., , )i ND w w w= , 1
1 , 1, 2,...,iw i N
N

= =  

2: for 1,2,...,m M=  do
3:       (a) The training dataset with weight distribution 

mD  is used for learning to obtain a classifier:

( ) { 1, 1}nG x ∈ − +  
4:       (b) Calculate the classification error of ( )mG x  

on the training dataset:

1

( (

)

) )

( ( )

m m i i
N

mi m i i
i
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 5:       (c) Compute the weight of ( )mG x :
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6:        (d) Update weight distribution mD  of the 
training dataset:

          1 1,1 1, 1,( ,..., ,..., )m m m i m ND w w w+ + + +=
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3. Proposed Models

3.1 Hybrid Sampling

There are two types of methods to solve the 
data imbalance problem at the data level: under-
sampling and over-sampling. Using only under-
sampling results in a loss of information about 
the sample data, while using only over-sampling 
results in an over-fitting of the underlying 
classifier training. Hybrid sampling can 
effectively combine the strengths and weaknesses 
of the two sampling methods to achieve data 
class balance. In hybrid sampling, SMOTE over-
sampling and random under-sampling techniques 
are commonly used to adjust the sample 
distribution. The process of hybrid sampling is 
introduced in Algorithm 3:

Algorithm 3 Hybrid Sampling

Require: Majority class sample majorityS , minority class 
sample minorityS , number of majority class samples 

majorityN , number of minority class samples minorityN ,  
number of synthesized majority class samples α , 
number of synthesized minority class samples β .
Ensure: Balanced dataset balanceS
1: The SMOTE algorithm is used to increase the number 

of minority samples, obtain the new minority 
samples:
* ( , )minority minority minorityS S SMOTE Nβ= ∪    (2)

2: The random under-sampling is used to reduce the 
number of majority samples, obtain the new majority 
samples:

* \ ( , )majority majority majorityS S RUS Nα=      (3)

3: Obtain the balanced dataset:
* *

balance minority majorityS S S= ∪                        (4)

3.2 The HBSBoost technique

In the existing research, there is the method 
which combines over-sampling with ensemble 
algorithm Boosting (RUSBoost) and the method 
which combines under-sampling with ensemble 
algorithm Boosting (SMOTEBoost). In this 
section, the HBSBoost algorithm combining 
hybrid sampling and Boosting is presented. The 
proposed algorithm is based on the following 
aspects. First, hybrid-sampling technique has 
been shown to significantly outperform single 
over-sampling and under-sampling technique in 
solving class imbalance problems. Secondly, over-

sampling and under-sampling technique have been 
successfully embedded in ensemble algorithm 
Boosting. Finally, the ensemble algorithm based 
on data sampling is more effective than the use 
of sampling technique alone. Therefore, guided 
by previous works, this paper aims to present a 
combination of the hybrid-sampling and Boosting 
algorithms to achieve higher classification 
performance and improve the recognition rate for 
minority samples. The procedure of the HBSBoost 
algorithm is divided into four parts. In the first 
part the hybrid-sampling technique (algorithm 3) 
is employed to obtain a balanced sample set; in 
the second part a classifier is trained under the 
balanced dataset. In the third part, the sample 
weights and classifier weights are changed based 
on prediction results, and iteration is performed 
to obtain a strong classifier. Finally, the predicted 
labels for the test set are outputted. The flow chart 
and the pseudo-code of the proposed algorithm are 
shown in Figure 1 and Algorithm 4, respectively.

Figure 1. HBSBoost flow chart



	 71

ICI Bucharest © Copyright 2012-2022. All rights reserved

HBSBoost: A Hybrid Balancing Technique for Defaulting Enterprise Recognition

Algorithm 4 HBSBoost
Require: The majority training set 

1 1( , ),..., ( , )majority n nS x y x y= , the minority training 
set 1 1( , ),..., ( , )minority n n n m n mS x y x y+ + + += , {1, 1}iy ∈ − ; 
the basic classifier L ; number of iteration T.

Ensure: 
1

( ) ( ( ( )))
T

i it
t

T x sign Z a t
=

×= ∑  

1: Initialize the weight distribution 
( , 1) /H ones n m T n m= + + + , ( , )D zeros n m T= + .

   H  stores the weight of the original training set,
D  stores the weights of the balanced training set.

2: for 1,2,...,t T=  do
3:    (a) Balance the class distribution and get the 

new training set use algorithm 3.
4:     (b) Train a weak classifier tL  with the 

balanced training set balanceS .
5:     (c) Get the predicted class label including 

the new training data and the test data 
( )t t balanceZ L S= , ( )t tT L T=

6:     (e) Calculate the error of tL :
,( )

it yi

i t
Z

t Dε
≠

= ∑
7:      (f) Weight each selected sample in the new 

training set:

8:       for 11,..., ( )
2

i n m = × +  
  do

9:           ( , ) ( , )D i t H i t=  % i is the sample index
of a bootstrap sample through
under-sampling

10:     end for

11:     for 
1 ( ) 1,...,
2

i n m n m = × + + +  
 do

12:          
1( , ) ( ( ) , )
2

D i t H i n m t = + × −  13:     end for
14:   (g) Calculate the weight of each weak 

classifier iL : 
1 1 ( )ln
2 ( )t

ta
t
ε

ε
−

= ×  
15:   (h) Update the weight of these misclassified

samples in the new training set:
          ( , 1) ( , ) ( ( ) )it iH i t H i t exp a t Z y+ = × ××  

16:   for 11,..., ( )
2

i n m = × +  
 do

17:        ( , 1) ( , )H i t D i t+ =
18:   end for

19:   for 1 ( ) 1,...,
2

i n m n m = × + + +  
 do

20:        
1( ( ) , 1) ( , )
2

H i n m t D i t + × − + =  21:   end for
22:end for

4. Experiment and Results

4.1 Dataset Information

In this paper, seven real datasets are used. Table 1 
shows the information for all the datasets.

Table 1. Dataset information

Dataset Sample Size Imbalance Ratio Features
GEM 4960 4.82 50
STAR 1792 10.13 50
SMB 11103 3.12 50

German 1000 2.33 20
Australia 690 0.8 14

Polish 240 1.14 30
Japanese 653 0.82 15

The GEM dataset belongs to the Shenzhen Stock 
Exchange, and it includes 528 small and medium-
sized enterprises (SMEs), the STAR dataset 
belongs to the Shanghai Stock Exchange, and it 
includes 297 SMEs and the SMB dataset belongs 
to the Shenzhen Stock Exchange, and it contains 
722 SMEs. These three datasets were downloaded 
from the CSMAR database (Du et al., 2022). The 
features used in GEM, STAR, and SMB datasets 
are the 50 most effective CountSim MP features 
proposed in (Du et al., 2022). The other four 
datasets are from the University of California 
Irvine (UCI) Machine Learning Repository 
(Tanveer et al., 2019). These datasets contain 
different sample sizes, different features, and 
different imbalance ratios, which can represent 
different default problems. 

4.2 Data Pre-processing

Variables with more than 50% missing data were 
removed, and then the data was filled using mean 
values. In order to eliminate the adverse effects 
caused by sample data, the data was normalized 
and processed as a decimal between (0, 1). The 
normalization formula is shown in equation (5):

min
norm

max min

X XX
X X

−
=

−                                  (5)

4.3 Evaluation indices of  
model performance

Accuracy is the most commonly used measure for 
verifying the performance of machine learning 
classification. However, for imbalanced data 
classification, it is necessary to pay attention to the 
classification of minority classes. Therefore, Area 
Under Receiver Operating Characteristic Curve 
(AUC), F-measure and geometric-mean (G-mean) 
were chosen as the evaluation metrics in this 
paper. The confusion matrix (in Table 2) consists 
of True Positive (TP), False Negative (FN), False 
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Positive (FP), and True Negative (TN) values and 
is used for calculating the evaluation indices.

Table 2. Confusion matrix

Predicted Positive Predicted Negative
Actual 

Positive True Positive (TP) False Negative (FN)

Actual 
Negative False Positive (FP) True Negative (TN)

For defaulting enterprise recognition, TP is the 
number of enterprises which are correctly classified 
as defaulting, FN is the number of defaulting 
enterprises which are incorrectly classified as non-
defaulting, FP is the number of non-defaulting 
enterprises which are incorrectly classified as 
defaulting, and TN is the number of enterprises 
which are correctly classified as non-defaults. 
From the confusion matrix, the formula of the 
AUC (Tomczak & Zięba, 2015), F-measure (F) and 
G-mean (G) can be derived as they are expressed in 
equations (6), (9) and (10), respectively.

1 (1 )
2

TP FPAUC
TP FN FP TN

= + −
+ +            (6)

 

TPPrecision
TP FP

=
+                                 (7)

TPRecall
TP FN

=
+                                     (8)

1 Precision RecallF
Precision Recall
× ×

=
+                         (9)

 

TP TNG
TP FN TN FP

= ×
+ +                     (10)

4.4 Result Analysis

To verify the classification advantages of the 
HBSBoost technique, a detailed comparative 
analysis was carried out. Five balancing techniques 
were selected for comparison purposes, namely:

1.	 Random under-sampling (RUS): by randomly 
reducing majority class samples to achieve 
balanced data.

2.	 Synthetic Minority Over-sampling Technique 
(SMOTE): through some strategies for 
synthesizing minority samples to achieve 
balanced data.

3.	 Hybrid sampling (HBS): use both random 
under-sampling and SMOTE to achieve 
balanced data.

4.	 Synthetic Minority Over-sampling Technique 
with AdaBoost (SMOTEBoost): an ensemble 
learning algorithm that combines SMOTE 
and Boosting algorithm. 

5.	 Random under-sampling with AdaBoost 
(RUSBoost): an ensemble learning algorithm 
that combines random under-sampling and 
Boosting algorithm. 

The data balance ratio is set to 1:1. The 
performance of all the comparison techniques is 
tested on support vector machine (SVM), artificial 
neural network (ANN) and decision tree (DT) 
models. To more accurately compare the effect of 
the different machine learning models, during the 
experiments, a 10-fold-cross-validation method 
was used where the dataset was divided into ten 
parts, nine of which were used for training and 
one for testing. Each experiment was performed 
20 times and the average value was taken as the 
final result. All the experiments were implemented 
in Python 2.7.17 on Win 8.1+ with CPU i5-9300 
processor and 8G+RAM. The imbalanced-learn 
package of Python was used for implementing 
the imbalance methods. The sklearn package of 
Python was used for implementing the SVM, 
ANN and DT models.

Tables 3 to 11 show the values of AUC, F-measure 
and G-mean for each balancing technique for 
the three classifiers mentioned above for the 
seven datasets employed. The title of the second 

Table 3. AUC score comparison for SVM

Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost
GEM 0.708 0.722 0.741 0.748 0.746 0.743 0.752
STAR 0.715 0.721 0.721 0.726 0.732 0.764 0.787
SMB 0.713 0.72 0.725 0.736 0.758 0.779 0.795

German 0.705 0.727 0.729 0.733 0.732 0.729 0.745
Australia 0.655 0.675 0.736 0.738 0.762 0.773 0.824

Polish 0.801 0.815 0.816 0.816 0.821 0.822 0.836
Japanese 0.5 0.548 0.58 0.63 0.667 0.669 0.705
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Table 4. AUC score comparison for ANN

Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost
GEM 0.694 0.708 0.696 0.703 0.738 0.712 0.727
STAR 0.703 0.712 0.713 0.72 0.72 0.728 0.741
SMB 0.718 0.724 0.728 0.731 0.731 0.736 0.742
German 0.687 0.701 0.693 0.698 0.728 0.723 0.731
Australia 0.627 0.629 0.637 0.649 0.663 0.667 0.681
Polish 0.532 0.567 0.641 0.653 0.644 0.73 0.759
Japanese 0.687 0.712 0.744 0.747 0.712 0.827 0.86

Table 5. AUC score comparison for DT
Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

GEM 0.637 0.646 0.662 0.665 0.67 0.674 0.707
STAR 0.65 0.633 0.675 0.681 0.676 0.679 0.696
SMB 0.7 0.711 0.719 0.72 0.725 0.728 0.731

German 0.646 0.653 0.667 0.671 0.709 0.694 0.721
Australia 0.667 0.687 0.691 0.701 0.708 0.711 0.715

Polish 0.536 0.564 0.57 0.562 637 0.654 0.692
Japanese 0.56 0.597 0.597 0.599 0.637 0.642 0.656

Table 6. F-measure comparison for SVM
Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

GEM 0.619 0.637 0.638 0.651 0.649 0.658 0.665
STAR 0.583 0.602 0.613 0.657 0.688 0.781 0.737
SMB 0.703 0.707 0.721 0.746 0.817 0.821 0.853

German 0.37 0.486 0.527 0.547 0.546 0.628 0.642
Australia 0.427 0.438 0.476 0.478 0.537 0.525 0.648

Polish 0.62 0.763 0.789 0.805 0.806 0.837 0.841
Japanese 0.422 0.452 0.467 0.479 0.548 0.558 0.575

Table 7. F-measure comparison for ANN
Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

GEM 0.426 0.439 0.441 0.453 0.453 0.456 0.473
STAR 0.431 0.465 0.472 0.482 0.493 0.552 0.562
SMB 0.607 0.678 0.682 0.693 0.717 0.725 0.752

German 0.369 0.427 0.474 0.477 0.519 0.526 0.537
Australia 0.422 0.436 0.449 0.457 0.456 0.465 0.477

Polish 0.068 0.073 0.097 0.099 0.101 0.122 0.203
Japanese 0.099 0.148 0.152 0.163 0.167 0.182 0.188

Table 8. F-measure comparison for DT
Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

GEM 0.323 0.338 0.352 0.363 0.361 0.367 0.382
STAR 0.333 0.34 0.346 0.36 0.372 0.4 0.42
SMB 0.43 0.447 0.476 0.501 0.522 0.536 0.569

German 0.375 0.413 0.434 0.454 0.508 0.523 0.524
Australia 0.51 0.553 0.562 0.56 0.583 0.591 0.64

Polish 0.083 0.12 0.13 0.175 0.228 0.256 0.287
Japanese 0.27 0.374 0.451 0.467 0.482 0.476 0.493

Table 9. G-mean comparison for SVM
Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

GEM 0.686 0.698 0.713 0.719 0.73 0.734 0.739
STAR 0.843 0.995 0.957 0.961 0.963 0.962 0.976
SMB 0.92 0.948 0.951 0.975 0.976 0.983 0.991

German 0.701 0.73 0.732 0.747 0.762 0.787 0.826
Australia 0.68 0.684 0.72 0.796 0.795 0.836 0.857

Polish 0.603 0.621 0.63 0.632 0.654 0.703 0.701
Japanese 0.472 0.546 0.568 0.626 0.627 0.654 0.661
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Table 10. G-mean comparison for ANN

Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost
GEM 0.605 0.62 0.627 0.636 0.646 0.647 0.661
STAR 0.787 0.799 0.812 0.82 0.832 0.847 0.864
SMB 0.897 0.914 0.917 0.921 0.924 0.927 0.932

German 0.522 0.542 0.56 0.742 0.737 0.767 0.778
Australia 0.58 0.599 0.603 0.597 0.617 0.618 0.627

Polish 0.446 0.607 0.623 0.655 0.658 0.674 0.702
Japanese 0.544 0.652 0.737 0.744 0.754 0.765 0.777

Table 11. G-mean comparison for DT

Dataset None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost
GEM 0.758 0.771 0.909 0.912 0.925 0.931 0.947
STAR 0.618 0.628 0.634 0.653 0.66 0.663 0.675
SMB 0.813 0.839 0.849 0.85 0.868 0.881 0.884

German 0.48 0.527 0.534 0.55 0.596 0.613 0.623
Australia 0.63 0.639 0.648 0.648 0.722 0.721 0.754

Polish 0.57 0.608 0.696 0.725 0.764 0.82 0.823
Japanese 0.48 0.538 0.565 0.584 0.621 0.663 0.7

column, that is “None”, indicates that no sampling 
technique is applied.

To compare the results for the three evaluation 
indices, first Friedman’s rank is calculated (as it 
is shown in Tables 12 to 14) and then Friedman 

test (Adler et al., 2002) is applied. For each 
balancing technique, its rank in each dataset in 
calculated first, and then their average is obtained. 
Each technique is ranked from best to worst for 
each dataset. If there are multiple techniques with 
the same performance for the same dataset, the 

Table 12. Friedman rank values for SVM

Evaluation 
Indices None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

AUC 7 6.07 5.07 3.5 3 2.64 1
F-measure 7 6 5 3.71 3.29 2 1.14
G-mean 7 6 5 3.36 3 2 1.14
Average 7 6.02 5.02 2.86 3.1 2.21 1.09

Table 13. Friedman rank values for ANN

Evaluation 
Indices None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

AUC 7 5.36 5.14 3.86 3.21 2.28 1.14
F-measure 7 6 5 3.79 3.21 2 1
G-mean 7 5.86 4.86 4.14 3.14 2 1
Average 7 5.74 5 3.93 3.19 2.09 1.05

Table 14. Friedman rank values for DT

Evaluation 
Indices None RUS SMOTE HBS SMOTEBoost RUSBoost HBSBoost

AUC 6.85 6.21 5.21 3.71 3 2.29 1
F-measure 7 6 4.86 4 3 2.14 1
G-mean 7 6 4.93 4.07 2.86 2.14 1
Average 6.95 6.07 5 3.93 2.95 1.76 1
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ranking is divided equally. The Friedman test 
statistics is based on the average rank, which is 
expressed in equation (11):

2
2 2

1

12 ( 1)[ ]
( 1) 4

k

j
j

N k kr
k k =

+
= −

+ ∑
             

(11)

where N  and k  are the number of datasets and the 
number of balancing techniques respectively, and 

jr  is the average ranking of the j -th algorithm. 

At a 5% significance level, the null hypothesis 
0h  (There is no significant difference in the 

performance of the balancing techniques) is 
rejected and the performance of each algorithm 
can be considered to be significantly different.

Furthermore, the Nemenyi post-hoc test (Nemenyi, 
1963) is applied to report any significant difference 
for all the sampling techniques. The Nemenyi 
test states that the performances of two or more 
balancing techniques are significantly different if 
their average ranks differ by at least the critical 
difference (CD), expressed in equation (12):

( 1)
6

k kCD q
Nα
+

=
                                 (12)

where qα  is based on the studentized range 
statistic, N  is the number of datasets and k  is 
the number of balancing techniques. The test was 
implemented for all three evaluation indices and 
the test was carried out with a 5% significance 
level ( 0.05α = ). Tables 15 to 17 show the 
P-values for the Nemenyi test for different pairs 
of balancing techniques for each classifier.

Table 15. P-values of the Nemenyi test for SVM

Balancing Technique P-value
HBSBoost vs. RUS 0.00000018

HBSBoost vs. SMOTE 0.0000062
HBSBoost vs. HBS 0.00084

HBSBoost vs. SMOTEBoost 0.000041
HBSBoost vs. RUSBoost 0.000029

Table 16. P-values of the Nemenyi test for ANN

Balancing Technique P-value
HBSBoost vs. RUS 0.000073

HBSBoost vs. SMOTE 0.00000036
HBSBoost vs. HBS 0.000034

HBSBoost vs. SMOTEBoost 0.00009
HBSBoost vs. RUSBoost 0.0025

Table 17. P-values of the Nemenyi test for DT

Balancing Technique P-value
HBSBoost vs. RUS 0.00000035

HBSBoost vs. SMOTE 0.00054
HBSBoost vs. HBS 0.0000017

HBSBoost vs. SMOTEBoost 0.000042
HBSBoost vs. RUSBoost 0.0038

From these results, several aspects can be noticed.

All three metrics under the HBSBoost algorithm 
perform better than in the case when only the 
classiers are used, which indicates the predictive 
power of the HBSBoost technique. Among them, 
the combination of SVM and HBSBoost achieves 
the best training results, and the training results 
are significantly improved in comparison with 
those obtained under SVM alone. For the ANN 
and DT classifiers, the HBSBoost technique also 
shows a clear improvement.

For all the methods employed, no matter which 
imbalanced data learning method, the training 
performance of its classifier on imbalanced data sets 
is improved. Among them, all sampling techniques 
obtain better results than those obtained in the 
case of training based solely on classifiers, and 
the boosting ensemble algorithm (SMOTEBoost, 
RUSBoost, HBSBoost) outperforms the sampling 
technique alone (RUS, HBS, SMOTE). In 
comparison with all the sampling methods, except 
for ANN classifiers, hybrid sampling is better than 
SMOTE algorithm, which is better than random 
under-sampling because SVM and DT algorithms 
generate classification bias when classifying 
imbalanced data, which is mitigated after data 
balancing. As ensemble learning approaches are 
concerned, RUSBoost significantly outperforms 
SMOTEBoost in most of the datasets. For the 
SVM classifier, the proposed HBSBoost algorithm 
outperforms RUSBoost. According to all the data, 
both random under-sampling method and boosting 
method can improve the classification performance. 
In particular, the combined performance of both 
random under-sampling method and boosting 
algorithm for DT is much better than that of 
random under-sampling method alone. For all 
classifiers, SMOTE algorithm combined with 
ensemble algorithm Boosting achieves better 
results than SMOTE alone. In case of the hybrid 
sampling and boosting algorithms, it was found 
that the improvement obtained by hybrid sampling 
alone is higher than that obtained by boosting.
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5. Conclusion

This paper presents the application of the 
proposed data balancing technique, HBSBoost, 
to the problem of identifying defaulting 
enterprises. The conclusions are as follows: 
(1) Hybrid sampling technique can effectively 
balance the data; (2) in comparison with the 
existing techniques such as under-sampling, 
SMOTE, hybrid sampling, SMOTEBoost, and 
RUSBoost, HBSBoost is significantly effective in 
solving the classification problem for imbalanced 
datasets; (3) Support vector machine is superior 
to artificial neural network model with regard 
to classification performance for imbalanced 
datasets, and artificial neural network is superior 
to the decision tree model. 

As imbalanced classification techniques are being 
developed and widely applied, their development 
in the area of credit risk measurement for 
enterprises will become more and more extensive. 
This paper extends the application of data pre-
processing in the identification of defaulting 
enterprises and lays the foundation for improving 
the identification of defaulting enterprises. 
In addition to classical machine learning 
classification, there are many ensemble machine 
learning methods that can be validated with a 
set of data balancing algorithms. Moreover, the 
effectiveness of more sophisticated ensemble data 
balancing techniques would be the next research 
direction. With regard to the type of data balancing 
method, the hybrid sampling method which can 
automatically adjust the balance ratio would be 
the research direction in the next stage.
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