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1. Introduction

Earthquakes occur frequently on earth, causing 
huge casualties. The strongest and most damaging 
earthquake in Romania was in March 1977. 
The earthquake with a magnitude WM  7.4 at a 
hypocentral depth of 94 km occurred in the Vrancea 
region, situated 170 Km from Bucharest, the capital 
city. Only in Bucharest, the earthquake caused 
severe damage to 33,000 buildings while more than 
1,400 people lost their lives (Lang et al., 2012). 
On May 12, 2008, a 8.0-magnitude earthquake 
occurred in Wenchuan County, Sichuan Province, 
China. Statistics showed that the earthquake killed 
about 69,000 people and injured more than 370,000 
people (Peng et al., 2011).

Earthquakes represent a particular subclass of a 
more general one of natural disasters. Decision 
Support Systems (DSS) are helpful tools for 
the management of disasters (van de Walle & 
Turoff, 2008; Quansah, Engel & Rochon, 2010). 
Various models and multicriteria methods have 
been proposed for decision-making in disaster 
management (Zhou et al., 2018; Manyaga, 
Nilufer & Hajaoui, 2020). In particular, in case of 
earthquakes, timely post disaster rescue operations 
could not only reduce greater casualties, but also 
avoid greater losses to property. Post disaster 
rescue includes the repair of the damaged 
road network, the selection of the emergency 

facilities, the evacuation of the disaster victims, 
the transportation of the rescue materials and 
so on (Hu, Yang & Xu, 2014). Therefore, it is 
necessary to establish models to be included as 
computerized modules in appropriate DSS to 
support decision makers in managing critical 
events such as earthquakes (Ren, Xu & Gu, 
2016; Wu et al., 2020; Cimellaro, Arcidiacono & 
Reinhorn, 2021). This paper briefly reviews the 
specialized literature related to these aspects. The 
emergency shelter location problem belongs to 
the network location problem domain in which 
many scholars have carried out in-depth research 
on it. Because the location of emergency shelters 
is affected by various factors, the problems 
related to the location of emergency shelters are 
often represented by a multi-objective model. 
One factor that is usually taken into account is 
the evacuation distance/time, which determines 
whether the affected residents can be evacuated 
to the safe emergency refuge facilities quickly 
and timely. Therefore, minimizing the evacuation 
distance/time is usually one of the objectives of 
the emergency refuge facility location model 
(Hu, Yang & Xu, 2014; Wang, Xu & Filip, 
2022). While some researchers have considered 
only the minimization of the total evacuation 
distance (Yenice & Samanlioglu, 2020), other 
researchers considered the minimization of both 
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the total evacuation distance and the individual 
evacuation distance (Xu et al., 2018). Since strong 
earthquakes could cause the damage of the road 
and the disruption of the traffic, route restoration 
was considered to be one of the most important 
priorities in disaster relief (Caunhye, Aydin & 
Duzgun, 2020). Recovery time is an important 
aspect of the route restoration research. The shorter 
the recovery time, the faster the transportation of 
materials and the transfer of personnel. Therefore, 
some location models take the recovery time as a 
research object (Zhang, Wang & Nicholson, 2017). 
Based on the background that the road network is 
damaged to a certain extent after the earthquake, 
this paper studies how to restore some functions 
of the road network by repairing some roads to 
provide services for each demand point. The total 
time is taken as a main research objective. Here, 
it includes both the recovery time of the damaged 
road and the travel time of the path. In the present 
model, the minimization of the total network time 
is taken as one of the objectives.

In addition to the evacuation time and the recovery 
time, whether the demand is completely met is 
also one of the important factors affecting the 
location of emergency refuge facilities. From the 
perspective of the demand side, some scholars 
considered minimizing the uncovered demand 
(Trivedi & Singh, 2017). From the perspective of 
the supply side, some scholars considered whether 
the current emergency shelter is enough to provide 
services for all demand points (Tsai & Yeh, 
2016). In this article, a candidate set of facilities 
is provided, and emergency refuge facilities are 
selected with the aim to realize the full coverage of 
demand points. The construction of the emergency 
refuge facilities involves government investment. 
From the perspective of the rescue stage, Boostani 
et al. (2021) proposed that the costs should include 
both the cost of the preparation stage and the cost 
of the response stage. Since the budget is always 
limited, the minimization of the cost is often 
one of the objectives of the emergency location 
model. Thus, it can be seen that one often needs 
to weigh between cost and other factors. This 
paper considers not only the location of facilities, 
but also repairing the transportation network. 
Therefore, the total cost involved in this paper 
includes the cost of the selected repaired roads and 
the cost of the facility location. The minimization 
of the total cost is an objective of the model 
proposed in this paper.

Fairness is an important consideration in facility 
location network design. However, there is 

no general or unified definition of fairness. 
Some scholars defined the equity as “fairness, 
impartiality, or equality of services” (Huang, 
Smilowitz & Balcik, 2011; Savas, 1978). Balcik 
et al. (2010) argued that, in general, equity 
was related to fairness and justice, and to the 
distribution of resources and benefits. In order 
to maximize the equity, different methods have 
been used. In the early network location problem, 
the nearest transfer principle was often used to 
achieve fairness. One of the most used methods 
to achieve equity is the so-called minimax method 
(Sabouhi et al., 2019; Javadian, Modarres & 
Bozorgi, 2017). Contrary to the minimax method, 
some scholars have used the maximin method to 
obtain the maximum fairness (Tzeng, Cheng & 
Huang, 2007). This paper proposes a procedure 
to select a path between each demand point and 
the corresponding facility point with the objective 
of minimizing the maximum total time between 
all pairs of the demand points and the facility 
points serving them. This objective is set to ensure 
fairness in emergency rescue.

Network reliability is an important aspect of 
network research. However, so far, researchers 
have not reached a consensus on the definition of 
network reliability (Huang, 2020). The concept 
of network reliability was first proposed by Lee 
(1955) for communication networks, and the 
reliability index based on connectivity was used 
for the first time. Early research on network 
reliability focused on network connectivity, and 
primarily concerns with the enumeration of cuts 
or paths, in which the reliability problem without 
flow in a binary-state network was firstly discussed 
by Aggarwal et al. (1975). In fact, the network 
reliability based on connectivity mainly focuses 
on the structure of the graph itself. The maximum 
flow minimum cut theorem of Ford-Fulkerson 
(Ford & Fulkerson, 1956; Gale, 1957) reveals 
an important attribute of the weighted graph and 
provides a theoretical basis for further research 
on network reliability. Scholars have done a lot 
of research on the reliability of the network with 
flow (Lee, 1980; Lin & Chen, 2017). Lee (1980) 
extended the reliability problem to a network with 
flow, and he argued that a network was good when 
a certain amount of flow could be transmitted from 
the input node to the output node. Xue (1985) 
extended the reliability problem within a binary-
state network to a multistate network, which was 
also called the stochastic-flow network.

When facing disasters such as earthquakes, the 
reliability of road network is very important. A 
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reliable road network could greatly resist the 
damage of disasters. Some scholars have studied 
the impact of the disaster on links by random 
failures (Peeta, Salman & Viswanath, 2010; Yucel, 
Salman & Arsik, 2018). Yu (2020) argued that the 
interruption of the link was actually caused by the 
damage that the link sustains beyond its tolerance, 
and, on this basis, he defined the reachability 
guarantee between the two points. Based on the 
concept of damage tolerance of edge in Yu’s 
paper, Wang et al. (2022) defined the reliability 
level between two points in the network and 
the network reliability, and established a multi-
objective model to optimize the network reliability 
level. This paper continues to use the concept of 
the reliability level between two points in the 
network (Wang, Xu & Filip, 2022), and discusses 
how to maximize the sum of the reliability levels 
between all pairs of the demand points and the 
facilities serving them by selectively repairing 
some damaged roads. The modeling idea and 
method of this paper could play a certain auxiliary 
role in constructing the decision support system 
meant to work in emergency situation (Filip, 
Zamfirescu & Ciurea, 2017; Filip, 2020). 

The rest of the paper is organized as follows:  
Section 2 presents an equivalence theorem, 
and defines the network recovery time and the 
total network time. In Section 3, the problem 
is described and the formulation of the model 
is introduced. Then, in Section 4, the previous 
multi-objective model is applied to a case 
study. The results of the solution are analyzed 
and the effectiveness of the models is verified. 
Conclusions are given in Section 5.

2. Methodology

An equivalence theorem based on a lemma 
is presented in this section. By means of this 
theorem, the recovery time of the network between 
two points is defined from the perspective of the 
minimal edge cut set and the path, respectively, 
and the equivalence of the two definitions is 
demonstrated. Then, the network recovery time 
and the total network time are defined from the 
perspective of the path.

2.1 Equivalence Theorem

The problem is defined on the undirected weighted 
connected graph ( )ˆ ˆˆ ,G N A , where N̂  denotes the 
point set, and Â  represents the edge set. 

2.1.1 Lemma and the Proof of the 
Equivalence Theorem

Lemma: In the connected graph Ĝ , there is at 
least one path between the two points X̂  and Ŷ , 
if and only if at least one edge remains uncut for 
each minimal edge cut set between the two points 
(Wang, Xu & Filip, 2022).

Equivalence theorem: As shown in Figure 1, 
assume that X̂  and Ŷ  are two points in Ĝ , ˆ ˆ,

ˆ
X YC  

is the set of the minimal edge cut sets between 
X̂  and Ŷ , { }ˆ

ˆ ˆ,1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ , , , , , C
X Ya

X Y X Y X Y X Y X YC c c c c= ⋅⋅⋅ ⋅ ⋅ ⋅ , 
in which ˆ ˆ,

a
X Yc  is the -a th  minimal edge cut set 

between X̂  and Ŷ , 
ˆ

ˆ ˆ,
C

X Y  is the total number 
of the minimal edge cut set between X̂  and Ŷ ,  

{ }ˆ ˆ 1 2, , , , , ,
a

a a a a a
b qX Yc l l l l= ⋅⋅⋅ ⋅ ⋅ ⋅ , in which a

bl  is the -b th  
edge of the minimal edge cut set ˆ ˆ,

a
X Yc , aq  is the 

total number of edges in the minimal edge cut 
set ˆ ˆ,

a
X Yc , ( )a

r bt l  is the weight of the edge a
bl . 

Assume that ˆ ˆ,
ˆ
X YP  is the set of all paths between 

X̂  and Ŷ , { }ˆ
ˆ ˆ,1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,
ˆ , , , , , P

X Yu
X Y X Y X Y X Y X YP p p p p= ⋅⋅⋅ ⋅ ⋅ ⋅ ,  

in which ˆ ˆ,
u
X Yp  is the -u th  path between X̂  

and Ŷ , 
ˆ

ˆ ˆ,
P

X Y  is the total number of paths 
between X̂  and Ŷ , { }ˆ ˆ 1 2, , , , , ,

u

u u u u u
v kX Yp l l l l= ⋅⋅⋅ ⋅ ⋅ ⋅ ,  

in which u
vl  is the -v th  edge of the path ˆ ˆ,

u
X Yp ,  

uk  is the total number of edges on the path 
ˆ ˆ,

u
X Yp , ( )u

r vt l  is the weight of the edge u
vl . Then, 

( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , ,, , ,

ˆˆ
max min min max

a a aa u u
b vX Y X Y X YX Y X Y X Y

a u
r b r v

l c p Pc C l p
t l t l

∈ ∈∈ ∈
= .

Figure 1. A connected weighted graph with the two 
points X̂  and Ŷ  (Wang, Xu & Filip, 2022)

Proof 1: In the connected graph Ĝ , starting 
from the edge with the maximum weight, the 
edges in Ĝ  are cut off successively according 
to the non-increasing order of edge weight, 
until when an edge with weight ot  is cut off, 
the points X̂  and Ŷ  are then divided into two 
components and the process ends. Thus, it can 
be asserted that ( )

ˆ ˆˆ ˆ ˆ ˆ ,, ,
ˆ

max min
a aa
b X YX Y X Y

a
o r b

l cc C
t t l

∈∈
=  and 

( )
ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ
min max

a u u
vX Y X Y X Y

u
o r v

p P l p
t t l

∈ ∈
= .

Let ol  denote the special edge with weight ot  in 
the above operation. According to the operation 
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above, when the edge ol  is cut, the cut edge forms 
an edge cut set between X̂  and Ŷ . This edge cut 
set is not necessarily a minimal edge cut set of the 
graph Ĝ . If the edge cut set is not a minimal edge 
cut set, then the redundant edges are removed and 
a minimal edge cut set is formed. This minimal 
edge cut set must contain the edge ol . Once the 
edge ol  is removed from this edge cut set, all the 
other cut edges cannot form a minimal edge cut 
set. Obviously, ot  is the minimum weight of this 
minimal edge cut set. The edges of the graph are 
cut in non-increasing order of weight, and, since 
other minimal edge cut sets have not been formed, 
the minimum value of edge weight in any other 
minimal edge cut set does not exceed ot .  From 
this, ( )

ˆ ˆˆ ˆ ˆ ˆ ,, ,
ˆ

max min
a aa
b X YX Y X Y

a
o r b

l cc C
t t l

∈∈
=  is obtained.

On the other hand, the above operation process 
could be regarded as cutting the edges of the paths 
in the non-increasing order of weight. Before 
cutting off the edge ol , there is no minimal 
edge cut set between X̂  and Ŷ . According to 
the Lemma, there is at least one ˆ ˆ-X Y  path at 
this time. When the edge ol  is deleted, all ˆ ˆ-X Y  
paths are broken. Obviously, ot  is not only the 
maximum edge weight on the last broken path, 
but also not greater than the maximum edge 
weight of every other ˆ ˆ-X Y  path. Therefore 

( )
ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ
min max

a u u
vX Y X Y X Y

u
o r v

p P l p
t t l

∈ ∈
= .

From the above discussion, it can be concluded 
that ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , ,, , ,
ˆˆ

max min min max
a a aa u u
b vX Y X Y X YX Y X Y X Y

a u
r b r v

l c p Pc C l p
t l t l

∈ ∈∈ ∈
= .

Proof 2: Cut all edges of the graph Ĝ . Starting 
from the edge with the minimum weight, restore 
the edges in Ĝ  in non-decreasing order of weight. 
When restoring the edge with weight ot , then the 
points X̂  and Ŷ  appear in the same connected 
component and the process stops. Now, it can be 
asserted that ( )

ˆ ˆˆ ˆ ˆ ˆ ,, ,
ˆ

max min
a aa
b X YX Y X Y

a
o r bl cc C

t t l
∈∈

= .

Let ol  denote the special edge with weight ot  in 
the above operation. When ol  is not restored, there 
is no connection between X̂  and Ŷ . According 
to the lemma, there is at least one minimal edge 
cut set between X̂  and Ŷ , in which no edge is 
restored. When restoring the edge ol , X̂  and Ŷ  
appear in the same connected component. Then, 
at least one edge of each minimal edge cut set 
between X̂  and Ŷ  in the graph Ĝ  is restored, and 
the minimum edge weight of each minimal edge 
cut set between X̂  and Ŷ  does not exceed ot , 
where ot  is the minimum weight of the minimal 
edge cut set in which only ol  is restored.

On the other hand, according to the above 
operation, when the edge ol  is restored, the path 
between X̂  and Ŷ  is formed. ot  is the maximum 
edge weight of the recovered paths between X̂  
and Ŷ . There is no other path with maximum 
edge weight less than ot . If other edges will be 
restored to form a new path between X̂  and Ŷ ,  
then ot  will not be greater than the maximum 
edge weight on these new paths. Therefore, 

( )
ˆ ˆ ˆ ˆ ˆ ˆ, , ,

ˆ
min max

a u u
vX Y X Y X Y

u
o r v

p P l p
t t l

∈ ∈
= .

From the above discussion, it can be concluded 
that ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , ,, , ,
ˆˆ

max min min max
a a aa u u
b vX Y X Y X YX Y X Y X Y

a u
r b r v

l c p Pc C l p
t l t l

∈ ∈∈ ∈
= .

2.1.2 Application Scenarios of the 
Equivalence Theorem

The edge weight in the equivalence theorem can 
have different meanings in different situations. For 
example, when a network needs to be constructed 
to connect two points, and the edge weight 
represents the time required for the construction 
of this edge, then, ot  in the theorem represents 
the shortest construction time required for the 
connection of these two points under the condition 
that all edges start construction at the same time. 
For another example, it is assumed that two points 
of a regional road network cannot be connected 
due to disasters such as earthquake, and that the 
edge weight represents the recovery time of each 
edge of the damaged road network (when an 
edge is not damaged, the recovery time of this 
edge is 0). Then, ot  in the theorem represents the 
shortest recovery time required for the connection 
between these two points under the condition that 
the damaged edges start to repair at the same time. 
This paper discusses this situation accurately.

2.2. Network Recovery Time

Firstly, the minimal edge cut set is used to define 
the recovery times involved in the network. In the 
following definitions, the symbols specified in the 
equivalence theorem are used and it is assumed 
that all the damaged edges in the network begin 
to recover at the same time.

Definition 1. Let ( )a
r bt l  be the recovery time of 

the edge a
bl  of the minimal edge cut set ˆ ˆ,

a
X Yc ，then 

( )
ˆ ˆ,

min
a a
b X Y

a
r b

l c
t l

∈
 is called the recovery time of ˆ ˆ,

a
X Yc . 

Let ( )ˆ ˆ,
a

r X Yt c  be the recovery time of ˆ ˆ,
a
X Yc , then 

( ) ( )
ˆ ˆ,

ˆ ˆ, min
a a
b X Y

a a
r r bX Y l c

t c t l
∈

= .

When the time taken does not reach the minimum 
recovery time ( )ˆ ˆ,

a
r X Yt c  of the minimal edge cut set 
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ˆ ˆ,
a
X Yc , it can be said that the minimal edge cut set has 

not been recovered; otherwise, this minimal edge 
cut set is restored. Therefore, when all edges of a 
minimal edge cut set are damaged, the restoration 
of the minimal edge cut set here does not mean that 
all edges in this minimal edge cut set are restored, 
but that the edge with the minimum recovery time 
in this minimal edge cut set is restored.

Definition 2. Let ( )a
r bt l  be the recovery time of 

the edge a
bl  of the minimal edge cut set ˆ ˆ,

a
X Yc ，then 

( )
ˆ ˆˆ ˆ ˆ ˆ ,, ,

ˆ
max min

a aa
b X YX Y X Y

a
r b

l cc C
t l

∈∈
 is called the recovery time of 

the network between X̂  and Ŷ . Let ( )ˆ ˆ,
ˆ

r X Yt C  be 
the recovery time of the network between X̂  and 
Ŷ , then ( ) ( )ˆ ˆ,

ˆ ˆˆ ˆ ˆ ˆ ,, ,
ˆ

ˆ max min
r X Y a aa

b X YX Y X Y

a
r b

l cc C
t C t l

∈∈
= .

The points in Ĝ  are divided into two categories: 
one is the demand point, represented by i , and the 
other is the facility point, represented by j . Let 
the demand point set be Î ( ˆi I∈ ) and the facility 
point set be Ĵ ( ˆj J∈ ), here ˆ ˆ ˆI J N= . Next, it is 
demonstrated how to use the minimal edge cut set 
to calculate the recovery time between two points 
in the network. Let ,

ˆ
i jC  be the set of the minimal 

edge cut set between the demand point i  and 
the facility point j , ,

ˆ
i jC =  { }ˆ,1 2

, , , ,, , , , , Ci ja
i j i j i j i jc c c c⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ,  

in which ,
a
i jc  is the -a th  minimal edge cut set 

between i  and j , ˆ,
C

i j  is the total number 
of the minimal edge cut set between i  and j . 

{ }, 1 2, , , , ,
a

a a a a a
i j b qc l l l l= ⋅⋅⋅ ⋅ ⋅ ⋅ , in which a

bl  is the -b th  
edge of ,

a
i jc , aq  is the total number of edges of 

,
a
i jc . In ,

a
i jc , the recovery time of every edge is 

( )1
a

rt l , ( )2
a

rt l ,..., ( )a
r bt l ,..., ( )a

a
r qt l , respectively. 

The recovery times of all edges in ,
a
i jc  are ranked 

in a non-decreasing order, and it is assumed 
that ( ) ( ) ( ) ( )1 2 a

a a a a
r r r b r qt l t l t l t l≤ ≤ ⋅⋅⋅ ≤ ≤ ⋅⋅ ⋅ ≤ , in which 

the minimum recovery time is ( )1
a

rt l . For all 
minimum edge cut sets between i  and j , the 
recovery time of each minimal edge cut set is 
( )1

1rt l , ( )2
1rt l ,..., ( )1

a
rt l ,..., ( )ˆ,

1
Ci j

rt l , respectively. 
Let ( ),

ˆ
r i jt C  be the recovery time of the network 

between i  and j , according to Definition 2, then

 ( ) ( ) ( ) ( ) ( ){ }ˆ,1 2
, 1 1 1 1

ˆ max , , , , , Ci ja
r i j r r r rt C t l t l t l t l= ⋅⋅⋅ ⋅ ⋅ ⋅ .

Next, the recovery times in the network are 
defined from the perspective of the path:

Definition 3. Let ( )u
r vt l  be the recovery 

time of the edge u
vl  on the path ˆ ˆ,

u
X Yp , then 

( )
ˆ ˆ,

max
u u
v X Y

u
r v

l p
t l

∈
 is called the recovery time of ˆ ˆ,

u
X Yp . 

Let ( )ˆ ˆ,
u

r X Yt p  be the recovery time of ˆ ˆ,
u
X Yp , then 

( ) ( )
ˆ ˆ,

ˆ ˆ, max
u u
v X Y

u u
r r vX Y l p

t p t l
∈

= .

According to Definition 3, the recovery time of a 
path refers to the maximum recovery time of all 
damaged edges on this path. If any edge of a path 
cannot pass normally, then the path cannot pass 
normally. Therefore, the normal travel of a path 
requires all edges of the path to pass normally. 
If all damaged edges of a path are repaired at 
the same time, the maximum recovery time of 
all damaged edges on a path is considered the 
recovery time of this path.

Definition 4. Let ( )ˆ ˆ,
u

r X Yt p  be the recovery time 
of the path ˆ ˆ,

u
X Yp , then ( )

ˆ ˆ ˆ ˆ, ,
ˆ ˆ,ˆ

min
u
X Y X Y

u
r X Yp P

t p
∈

 is called 
the recovery time of the network between the two 
points X̂  and Ŷ . Let ( )ˆ ˆ,

ˆ
r X Yt P  be the recovery 

time of the network between X̂  and Ŷ , then 
( ) ( )

ˆ ˆ ˆ ˆ, ,
ˆ ˆ, ˆ ˆ,ˆ

ˆ min
u
X Y X Y

r X Y
u

r X Yp P
t P t p

∈
= .

Next, it is illustrated how to use the path to calculate 
the recovery time between two points. Let ,î jP  be 
the set of all paths between the demand point i  and 
the facility point j , { }ˆ,1 2

, , , , ,
ˆ , , , , , Pi ju
i j i j i j i j i jP p p p p= ⋅⋅⋅ ⋅ ⋅ ⋅ , 

in which ,
u
i jp  is the -u th  path between i  and j ,  

ˆ,
P

i j  is the total number of paths between i  
and j , { }, 1 2, , , , ,

u

u u u u u
i j v kp l l l l= ⋅⋅⋅ ⋅ ⋅ ⋅ , in which uk  

is the number of edges of ,
u
i jp . For ,

u
i jp , if the 

recovery time of every edge is ( )1
u

rt l , ( )2
u

rt l ,..., 
( )u

r vt l ,..., ( )u

u
r kt l , respectively. The recovery 

times of all edges on the path ,
u
i jp  are ranked in 

a non-decreasing order, and it is assumed that 
( ) ( ) ( ) ( )1 2 u

u u u u
r r r v r kt l t l t l t l≤ ≤ ⋅⋅⋅ ≤ ≤ ⋅⋅ ⋅ ≤ , in which the 

maximum recovery time is ( )u

u
r kt l . For all paths 

between i  and j , the recovery time of every 
path is ( )1

1
r kt l , ( )2

2
r kt l ,..., ( )u

u
r kt l ,..., ( )ˆ

, ˆ

, P

i j P

i j
r kt l , 

respectively. Let ( ),
ˆ

r i jt P  be the recovery time of 
the network between i  and j , then
( ) ( ) ( ) ( ) ( ){ }ˆ

1 2 , ˆ

,1 2
,

ˆ min , , , , , P

u i j P

i ju
r i j r k r k r k r kt P t l t l t l t l= ⋅⋅⋅ ⋅ ⋅ ⋅ .

According to the equivalence theorem, 
( ) ( ), ,

ˆ ˆ
r i j r i jt C t P= . Later, ( ),rt i j  is used to 

represent the recovery time between i  and j .

Definition 5. Let ( )ˆ
rt G  be the maximum 

recovery time between all pairs of points, i.e., 
( ) ( )ˆ ˆ,ˆ ˆˆ ˆ,

ˆ ˆmaxr r X YX A Y A
t G t P

∈ ∈
= , then ( )ˆ

rt G  is called the 
network recovery time.

When the time taken exceeds ( )ˆ
rt G , all pairs of 

points in Ĝ  are connected. When the time taken 
does not exceed ( )ˆ

rt G , at least one pair of points 
is not connected.

2.3 Total Network Time

Let ( )u
s vt l  be the travel time of the edge u

vl ,  
( )ˆ ˆ,

u
s X Yt p  be the travel time of the path ˆ ˆ,

u
X Yp ,  
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i.e., the sum of the travel times of all edges on 
the path ˆ ˆ,

u
X Yp , then ( ) ( )ˆ ˆ, 1

uku u
s s vX Y v

t p t l
=

= ∑ . Let 
( )ˆ ˆ,

ˆ
s X Yt P  be the minimum travel time among all 

the paths between X̂  and Ŷ  in the network, 
then ( ) ( )

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ, ,ˆ

ˆ min
u
X Y X Y

u
s sX Y X Yp P

t P t p
∈

= . Let ( )ˆ
st G  be the 

network travel time of Ĝ , i.e., the maximum value 
among all travel times of all pairs of points, then  

( ) ( )ˆ ˆ,ˆ ˆˆ ˆ,
ˆ ˆmaxs s X YX A Y A

t G t P
∈ ∈

=  (Vahdani et al., 2018).

Definition 6. The sum of the recovery time and 
the travel time of the path is called the total time 
of this path. Let ( )ˆ ˆ,

ˆ
X Yt P  be the recovery time 

of the path ˆ ˆ,
u
X Yp , ( )ˆ ˆ,

u
s X Yt p  be the travel time of 

ˆ ˆ,
u
X Yp , ( )ˆ ˆ,

u
X Yt p  be the total time of ˆ ˆ,

u
X Yp , then 

( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ, , ,
u u u

r sX Y X Y X Yt p t p t p= + .

Definition 7. The minimum total time of all paths 
between X̂  and Ŷ  is called the total time between 
X̂  and Ŷ . Let ( )ˆ ˆ,

ˆ
X Yt P  be the total time between 

X̂  and Ŷ , then ( ) ( )
ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ, ,ˆ
ˆ min

u
X Y X Y

u
X Y X Yp P

t P t p
∈

= .

Definition 8. ( )ˆ ˆ,ˆ ˆˆ ˆ,
ˆmax X YX A Y A

t P
∈ ∈

 is called the 
total network time and is denoted by t , then 

( )ˆ ˆ,ˆ ˆˆ ˆ,
ˆmax X YX A Y A

t t P
∈ ∈

= =  ( )
ˆ ˆ ˆ ˆ, ,

ˆ ˆ,ˆ ˆ ˆˆ ˆ,
max min

u
X Y X Y

u
X Yp PX A Y A

t p
∈∈ ∈

.

2.4 Reliability Levels in the Network

Wang et al. (2022) found that the reliability level 
between two points defined by the minimal edge 
cut set and by the path are equivalent in a weighted 
connected graph Ĝ . This paper uses the definition 
of the reliability level between two points by the 
path. Yu (2020) and Wang et al. (2022) called the 
maximum ability of an edge to withstand disasters 
as the reliability level of the edge. Let ( )u

vr l  be 
the reliability level of the edge u

vl . If the damage 
of the disaster exceeds ( )u

vr l , the edge u
vl  will be 

interrupted, otherwise, the edge could still pass 
normally. They argued that the reliability level 
of a path is the minimum reliability level of all 
edges on this path (Wang, Xu & Filip, 2022; Yu, 
2020). Let ( )ˆ ˆ,

u
X Yr p  be the reliability level of the 

path ˆ ˆ,
u
X Yp , then ( ) ( )

ˆ ˆ,
ˆ ˆ, min

u u
v X Y

u u
vX Y l p

r p r l
∈

= . If the damage 

of the disaster exceeds ( )ˆ ˆ,
u
X Yr p , the path ˆ ˆ,

u
X Yp  

will be interrupted, otherwise, the path ˆ ˆ,
u
X Yp  will 

not be interrupted. It could be seen that this value 
represents the maximum ability of the path ˆ ˆ,

u
X Yp  

to withstand disasters. Wang et al. (2022) called 
the maximum reliability level of all paths between 
two points in network Ĝ  as the reliability level 
between these two points. Let ( )ˆ ˆ,

ˆ ˆ
X YR P  be the 

reliability level between two points X̂  and Ŷ ,  
then ( ) ( )

ˆ ˆ ˆ ˆ, ,
ˆ ˆ ˆ ˆ, ,ˆ

ˆ ˆ max
u
X Y X Y

u
X Y X Yp P

R P r p
∈

= . If the damage does 

not exceed ( )ˆ ˆ,
ˆ ˆ

X YR P , then the two points X̂  and Ŷ  
are connected, otherwise, they are not connected.

3. Models

3.1 Problem Description

This paper studies how to choose the damaged 
roads to repair and shorten the network recovery 
time under a certain budget. It is assumed that all 
damaged edges selected for repair start construction 
at the same time, which could reduce the network 
recovery time. After the damaged edges selected 
for restoration are completely repaired, at least one 
path is connected between each demand point and 
the facility serving it, but only one path between 
the demand point and the facility point serving it is 
selected to provide the service.

3.2 The Formulation of the Objective 
Functions

With regard to the network recovery time and the 
network travel time, a special situation is taken into 
consideration: the network can be put into use only 
after all damaged edges are completely repaired, 
that is, after the repair of the whole network is 
completed, personnel begin to be evacuated and 
rescue materials begin to be transported. In this case, 
the sum of the network recovery time ( )ˆ

rt G  and the 
network travel time ( )ˆ

st G  refers to the minimum 
time required from the beginning of recovery to 
the arrival of personnel and disaster relief materials 
at the last destination, that is, the time required 
to complete a rescue operation. At this time, the 
sum of ( )ˆ

rt G  and ( )ˆ
st G  can be minimized as 

an objective of the model. This objective could be 
expressed as ( ) ( )ˆ ˆmin  ( )r st G t G+ . In fact, generally 
speaking, the paths between some or all demand 
points and facility points are formed before the 
whole construction is completed. Therefore, the 
rescue action for some demand points does not 
need to be carried out after the construction of the 
whole network is completed. In addition, in an 
emergency, not all damaged edges in the network 
need to be repaired, as only some damaged edges 
of the network should be restored to ensure that 
each demand point could be served. In this way, 
the damaged edges whose recovery times are equal 
to the network recovery time are not necessarily 
selected for recovery. Therefore, it is assumed that 
after the selected path between a demand point 
and the corresponding facility is formed, this path 
could be put into use. In this case, the sum of the 
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recovery time and the travel time of the path needs 
to be calculated, that is, the total time of this path. 
Let ( ), i

u
r i jt p  and ( ), i

u
s i jt p  be the recovery time and 

the travel time of the -u th  path , i

u
i jp  between the 

demand point i  and its corresponding facility ij ,  
respectively. Let ( ), i

u
i jt p  be the sum of ( ), i

u
r i jt p  

and ( ), i

u
s i jt p , then ( ) ( ), ,i i

u u
i j r i jt p t p=  ( ), i

u
s i jt p+ . Let 

( ),
ˆ

ii jt P  be the total time between the demand 
point i  and its corresponding facility ij , then 
( ) ( )

, ,
, ,ˆ

ˆ min
ui i
i j i ji i

u
i j i j

p P
t P t p

∈
= .

In the model, when the minimization of the total 
network time is not the top priority objective, the 
selection of the path between the demand point 
and its corresponding facility should be subject to 
other higher priority objectives. Thus, the selected 
path cannot be determined according to the above 
formula. This paper assumes that only one path is 
selected between each pair of demand point and 
the corresponding facility. Therefore, a binary 
variable u

ijY  is set to denote whether the -u th  path 
between the demand point i  and its corresponding 
facility ij  is selected. Therefore, the above 
formula is modified to ( ) ( )

, ,

, ,
ˆ

ˆ
i i

u
i j i ji i

u u
i j i j ij

p P

t P t p Y
∈

= ∑ . 
Then ( ),ˆ ˆ,

ˆmax
i

i
i j

i I j J
t t P

∈ ∈
= .

S ince  ( ) ( ),
ˆˆ

ir i j rt P t G≤ ,  ( ) ( ),
ˆˆ

is i j st P t G≤ ,  
then,  ( ) ( ) ( ) ( ), ,

ˆ ˆˆ ˆ
i ir i j s i j r st P t P t G t G+ ≤ + ,  i .e . , 

( ) ( ) ( ),
ˆ ˆˆ

ii j r st P t G t G≤ + . This means that the sum of 
the recovery time and the travel time between any 
demand point i  and its corresponding facility point 

ij  does not exceed the sum of the network recovery 
time and the network travel time. From this, 

( ) ( )ˆ ˆ
r st t G t G≤ +  is obtained. If the selected path 

between each demand point and the corresponding 
facility starts to pass after repair, the minimum 
time required for the whole network from repair 
to the arrival of the personnel and the disaster relief 
materials at the last destination will not exceed the 
sum of the network recovery time and the network 
travel time. In this way, on the whole, all demand 
points will be rescued in a timelier manner, which 
is of more practical significance. Therefore, this 
paper actually takes the minimization of the total 
network time t  instead of ( ) ( )ˆ ˆmin  ( )r st G t G+  as 
an objective of the model. In the proposed model, 
only partial damaged edges are considered to be 
restored. Therefore, the network here does not 
include the edges that are not repaired. Since 
there may be aftershocks after the disaster, the 
reliability level is an important factor affecting 
the success of the rescue operation. This paper 
takes the maximization of the sum of the reliability 
levels between all demand points and the facilities 

serving them as an objective of the model. This 
objective is as follows: ( ),

ˆ ˆ

ˆ ˆ ˆmax i j ij
i I j J

R R P Y
∈ ∈

= ∑∑ ,  

in which, ijY  is a binary variable of whether the 
facility j  provides services for the demand point i .  
Now, we will make appropriate changes to this 
objective function. Let ( ) ( ), ,

ˆ ˆ ˆ ˆ1i j i jF P R P= − , 
( ),

ˆ
î jF P  is called the failure level between i  and 

j , then

( ) ( )( )
( )

, ,
ˆ ˆ ˆ ˆ

,
ˆ ˆ ˆ ˆ

   

ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ

i j ij i j ij
i I j J i I j J

ij i j ij
i I j J i I j J

R R P Y F P Y

Y F P Y

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

== −

= −

∑∑ ∑∑

∑∑ ∑∑

where 
ˆ ˆ

ij
i I j J

Y
∈ ∈
∑∑  is the total number of the selected 

facilities, which is a constant value.

Let ( ),
ˆ ˆ

ˆ
î j ij

i I j J

f F P Y
∈ ∈

=∑∑ , so, ˆmax R  is equivalent 

to min f . In addition, in the post disaster 
emergency action, the use of the emergency 
budget funds needs to be taken into consideration. 
In this paper, the emergency budget funds are 
used in two situations: one is the repair of the 
damaged roads, and the other is the location of 
the facilities. Let e ( ˆe E∈ ) be the damaged edge, 
Ê  be the set of the damaged edges, and eY  be the 
binary variable of whether the damaged edge e  
is recovered, eb  be the repair cost of the damaged 
edge e , jb  be the location cost of the facility j , 
and jY  be the binary variable of whether facility 
j  is selected. The sum of the repair cost of 

the damaged edges and the location cost of the 
facilities is called the total cost and it is denoted 
by B̂ , then 

ˆ ˆ

ˆ
e e j j

e E j J

B b Y b Y
∈ ∈

= +∑ ∑ . Let 1
ˆ

ˆ
e e

e E

B b Y
∈

= ∑ , 

2
ˆ

ˆ
j j

j J

B b Y
∈

= ∑ , then 1 2
ˆ ˆ ˆB B B= + . The total cost B̂  is 

minimized as an objective of the model.

3.3 Models
Assumptions:
1.	 The facilities in the network are  
absolutely reliable;

2.	 The demand point set and the candidate 
facility point set in the network are known;

3.	 The upper limit of the reliability level of 
each edge in the network is 1;

4.	 The reliability level of the damaged edge 
selected for repair in the network reaches the 
level before damage;

5.	 Each demand point can be assigned only to 
one facility, and each facility can serve multiple 
demand points.
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Sets:

Î : The set of the demand points; 
Ĵ : The set of the candidate facilities; 
Ê : The broken edge set in network.

Parameters:

eb : The recovery cost of the damaged edge e , 
ˆe E∈ ;

jb : The location cost of the candidate facility j ,  
ˆj J∈ ;

t : The total time of the network Ĝ ;

f : The sum of the failure levels between all pairs 
of demand points and the corresponding facilities; 

B̂ : The total cost;

0B̂ : The total budget funds;

1B̂ : The restoration cost of the damaged edges;

2B̂ : The location cost of the selected facilities;

fM : The total number of the selected facilities;

ˆ,
P

i j : The total number of the paths between the 
two points i  and j .

( ),
u
i jr p : The reliability level of the path ,

u
i jp ;

( ),
ˆ

î jR P : The reliability level between the point 
i  and the point j ;

( ),
u
i jt p : The total time of the path ,

u
i jp ;

( ),î jt P : The total time between the point i  and 
the point j ;

Decision variables:

0 
1       

                                             jY
if the candidate facility j is selected
otherwise

=




,
 

ˆj J∈ .

1          
       

0                                                                    
ij

if the candidate facility j is allocated to provide
service for the demand point i
otherwise

Y =





, ˆi I∈ , ˆj J∈ .

1   -        
         

                                                            0

u
ij

if the u th path between the demand point
i and the candidate facility j is selected
otherwise

Y =





, ˆi I∈ , ˆj J∈ ,  

ˆ1, ,
P

u i j ∈   .
1          

                                                                     0 e

if the damaged edge e is selected to be recovered
otherwise

Y =




,
  

ˆe E∈ .

Model 1:
min t                                                            (1)
min f                                                           (2)

ˆmin B                                                           (3)

Subject to

ˆ
j f

j J

Y M
∈

=∑
                                                  

(4)

ij jY Y≤ , ˆi I∀ ∈ , ˆj J∀ ∈                                 (5)

ˆ
1ij

j J

Y
∈

=∑ ,
 

ˆi I∀ ∈
                                          

(6)

ˆ,

1
Pi j u

ij iju
Y Y

=
= ∑ , 

ˆi I∀ ∈ , 
ˆj J∀ ∈ , ˆ1, ,

P
u i j ∀ ∈    

(7)

0
ˆ̂B B≤                                                         (8)

{ }, , 0,1u
j ij ijY Y Y ∈ , 

ˆi I∀ ∈ , 
ˆj J∀ ∈ , ˆ1, ,

P
u i j ∀ ∈   (9)

Equation (4) represents the constraint on the total 
number of the selected facilities. The constraint 
(5) indicates that the service could be provided for 
a demand point only after the facility is selected. 
(6) indicates that the total number of the facilities 
providing services for the demand point i  is 1. (7) 
indicates that each demand point selects only one 
path to receive services. (8) indicates that the total 
cost spent cannot exceed the total budget funds. jY , 

ijY  and u
ijY  in the constraint (9) are all 0-1 variables.

In model 1, model 1.1 and model 1.2, formula 
(1), (2) and (3) are called objective (1), (2) and 
(3), respectively. Two hierarchical optimization 
methods are used to take into account the above 
three objectives. The first hierarchical method is as 
follows: the minimization of f  is considered the 
highest priority, the minimization of t  is considered 
the secondary priority and the minimization of B̂  
is considered the lowest priority. At this time, the 
model is called model 1.1.  The second hierarchical 
method is as follows: the minimization of t  is 
considered the highest priority, the minimization 
of f  is considered the secondary priority and 
the minimization of B̂  is considered the lowest 
priority. At this time, the model is called model 
1.2. When it is necessary to balance the objectives 
(1) and (2), model 1 is appropriately modified, by 
integrating these objectives in only one objective. 
Since the size and dimension of the objectives (1) 
and (2) are different, they are standardized first. The 
standardization process is as follows (Grodzevich 
& Romanko, 2006):

Under a total budget constraint, objectives (2) and 
(3) are used in model 1.1 to obtain the maximum 
value maxf  and the minimum value minf  of f , and 
objectives (1) and (3) are used in model 1.2 to obtain 
the maximum value maxt  and the minimum value mint  
of t . The normalized values of t  and f  are:

( ) ( )min max min/t t t t t= − −                              (10)
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( ) ( )min max min/f f f f f= − −                         (11)

Let ω  be the weight of f , then the objectives 
(2) and (1) could be integrated as an objective

( )min 1f tω ω+ − . 

Let ( )1g f tω ω= + − , then the above goal could 
be expressed as: min g . Combining the above 
objective min g  and the objective (3), model 2 
is obtained.

Model 2:
min g                                                         (12)

ˆmin B                                                         (13)

The constraints of this model are the same as those 
of model 1. When solving it, objective (12) is 
considered to have a higher priority, while objective 
(13) is considered to have a lower priority.

4. Case Study

4.1 Data

In this part, a case study is used to test the models. 
The Sioux Falls Network (Yu, 2020; Poorzahedy 
& Rouhani, 2007), a well-known transportation 
network, is used to test the proposed models, 
as shown in Figure 2. 

Figure 2. The road network

The orange points in Figure 2 represent the 
demand points, while the other points represent 
the candidate facility points. Table 1 shows the 
reliability level and the travel time of each edge, 
and whether the edge is damaged. The travel time 
of each edge has been marked next to each edge. 
Table 2 shows the recovery time and the recovery 
cost of every damaged edge, and Table 3 shows 
the location cost of each facility.

Table 1. The reliability level and the travel time of each edge, and whether the edge is damaged

Edge RE TTE WED Edge RE TTE WED Edge RE TTE WED Edge RE TTE WED
AH 0.55 2.4 No EO 0.89 4.5 Yes GX 0.71 2.3 Yes OP 0.90 3.0 No
AJ 0.75 2.3 Yes ES 0.77 3.1 No HI 0.63 7.0 No OR 0.84 4.0 No
AD 0.65 4.0 No ET 0.79 2.8 No IL 0.75 3.0 Yes PQ 0.73 2.7 No
BK 0.78 2.0 No EV 0.84 2.1 No JK 0.76 2.9 No PR 0.82 2.8 No
BM 0.82 2.4 No FQ 0.66 8.5 No JN 0.81 3.5 No RT 0.79 2.5 Yes
BO 0.88 2.6 No FT 0.73 4.6 No KL 0.70 2.6 Yes SU 0.81 2.3 No
CM 0.85 3.0 Yes FV 0.66 3.8 Yes LM 0.78 2.4 Yes UV 0.73 3.2 No
CQ 0.73 2.0 Yes FX 0.77 2.0 No MP 0.89 2.5 No VX 0.58 3.1 Yes
DN 0.87 2.5 No GU 0.80 2.6 Yes NO 0.89 2.8 Yes / / / /
DW 0.62 9.0 No GW 0.62 2.4 No NS 0.78 4.5 Yes / / / /

Legend: RE (The reliability of edge); TTE (the travel time of edge); WED (whether the edge is damaged).

Table 2. The recovery time and the recovery cost of every damaged edge

Edge The recovery time The recovery cost Edge The recovery time The recovery cost
AJ 3.0 30 IL 2.5 20
CM 4.0 35 KL 3.5 31
CQ 2.5 28 LM 2.0 21
EO 1.6 15 NO 1.1 10
FV 4.0 36 NS 3.0 20
GU 2.0 18 RT 2.5 18
GX 3.0 26 VX 4.0 38
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4.2 Solutions and Analysis

4.2.1 Solutions and Analysis of Model 1.1 
and Model 1.2

The time radius is assumed to be 20 (only if the 
total time between a facility and a demand point 
is lower than 20, this facility could be used as 
a candidate facility for this demand point). The 
model is solved when 

0
ˆ 200,250,300,350,400,450,500,550,600,650,700B = , 

respectively. Tables 4 and 5 display the solutions 
of model 1.1, Tables 6 and 7 illustrate the solutions 

of model 1.2, and Tables from 8 to 12 show the 
solutions of model 2. In Table 10, when the 
values of ω  are 0 and 1, the solutions of the first 
objective (12) of the model 2 are all 0, thus they 
are not listed in the table.

From Table 4, it can be seen that, when 0B̂  
increases continuously, f  decreases from 3.29 to 
2.33, showing an obvious regularity. In general, 
t  shows a non-increasing trend with the increase 
of 0B̂ . However, from 0

ˆ 200B =  to 0
ˆ 250B = , t  

increases from 18.3 to 19.5, which will be explained 
as follows. Table 5 shows part of the solutions 
obtained by solving model 1.1 when 0

ˆ 200B =  and 

Table 3. The location cost of each facility

Facility The location cost Facility The location cost
H 290 S 165
J 180 T 80
L 130 V 94
O 160 W 285
Q 205 X 115

Table 4. The solutions of model 1.1

0B̂ f t B̂ 1B̂ 2B̂ SF

200 3.29 18.3 195 115 80 T

250 2.73 19.5 243 149 94 V

300 2.52 15.2 299 139 160 O

350 2.42 15.2 329 169 160 O

400 2.42 15.2 329 169 160 O

450 2.38 15.2 444 169 275 OX

500 2.37 12.9 474 149 325 OS

550 2.37 12.9 474 149 325 OS

600 2.33 12.9 589 149 440 OSX

650 2.33 12.9 589 149 440 OSX

700 2.33 12.5 698 128 570 LOSX

Legend: SF (the selected faciliy).
Table 5. Part of the solutions of model 1.1 when 0

ˆ 200B =  and 0
ˆ 250B =

0
ˆ 200B = 0

ˆ 250B =

Paths FLP TTP Paths FLP TTP

AD-DN-NO-OR-RT 0.35 18.3 AJ-JN-NO-OE-EV 0.25 18.2

BO-OP-PR-RT 0.21 13.4 BO-OE-EV 0.16 10.8

CQ-QP-PO-OR-RT 0.27 16.7 CM-MP-PO-OE-EV 0.16 19.1

DN-NO-OP-PR-RT 0.21 16.1 DN-NO-OE-EV 0.16 13.5

ET 0.21 2.8 EV 0.16 2.1

FT 0.27 4.6 FT-TE-EV 0.27 9.5

GU-US-SE-ET 0.23 12.8 GU-US-SE-EV 0.23 12.1

IL-LM-MP-PR-RT 0.25 15.7 IL-LM-MB-BO-OE-EV 0.25 19.5

KB-BO-OP-PR-RT 0.22 15.4 KB-BO-OE-EV 0.22 12.8

MP-PO-OR-RT 0.21 14.5 MP-PO-OE-EV 0.16 13.7

NO-OB-BM-MP-PR-RT 0.21 18.1 NO-OE-EV 0.16 11.0

PO-OR-RT 0.21 12.0 PO-OE-EV 0.16 11.2

RT 0.21 5.0 RO-OE-EV 0.16 12.2

US-SE-ET 0.23 8.2 US-SE-EV 0.23 7.5
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0
ˆ 250B = , including the selected path, the failure 

level and the total time of each selected path 
between the demand point and the facility serving 
it, and the selected facilities. From Table 5 it can 
be seen that under these two budgets, the selected 
path of each demand point has changed due to the 
change of the selected facilities. Among them, the 
selected path of the demand point I  changes from 
IL-LM-MP-PR-RT to IL-LM-MB-BO-OE-EV. 
Accordingly, t  changes from 15.7 to 19.5. In this 
process, f  is reduced from 3.29 to 2.73, which 
leads to a great improvement of R̂ . Therefore, in 
the process of increasing 0B̂  from 200 to 250, R̂  
is improved by sacrificing t . Therefore, it could be 
found that the minimization of f , as the highest 
priority, plays a decisive role in model 1.1.

In addition, in general, with the increase of 0B̂ , 
the selected facilities change and the number of 
selected facilities increases. The change of the 
selected facilities and the increase in the number 

of selected facilities ensure the realization of 
higher priority objectives.

From Table 6, it can be seen that, with the increase 
of 0B̂ , t  shows a non-increasing trend in general. 
When 0

ˆ 200B = , t  is 18.3; when 0
ˆ 700B = , t  is 9.4, 

the increase of 0B̂  realizes the great optimization 
of t . The change trend of f  is consistent with that 
of t  within a certain range of 0B̂ . For example, 
when 0B̂  increases from 200 to 300, t  decreases 
from 18.3 to 14.4, and f  decreases from 3.29 to 
2.57. However, it can also be seen from Table 6 
that, in individual cases, the decrease of t  leads to 
the increase of f . For example, when 0B̂  increases 
from 350 to 400, t  decreases from 12.9 to 12.5, f  
increases from 2.64 to 3.28. This situation will be 
analyzed next. Table 7 lists part of the solutions 
of model 1.2 when 0

ˆ 350B =  and 0
ˆ 400B = . 

From Table 7, it can be observed that under the 
requirement of minimizing t , when 0B̂  increases 
from 350 to 400, the selected facilities change from 

Table 6. The solutions of model 1.2

0B̂ t f B̂ 1B̂ 2B̂ SF

200 18.3 3.29 195 115 80 T

250 18.1 3.13 232 152 80 T

300 14.4 2.57 299 139 160 O

350 12.9 2.64 344 104 240 OT

400 12.5 3.28 393 133 260 JT

450 12.5 3.16 438 178 260 JT

500 10.0 3.23 498 94 404 JLV

550 9.7 3.13 528 124 404 JLV

600 9.7 3.13 528 124 404 JLV

650 9.4 3.11 626 142 484 JLTV

700 9.4 3.05 697 142 555 JLST

Legend: SF (selected facility).
Table 7. Part of the solutions of model 1.2 when 0

ˆ 350B =  and 0
ˆ 400B =

0
ˆ 350B = 0

ˆ 400B =

Paths TTP FLP Paths TTP FLP

AD-DN-NO 10.4 0.35 AD-DN-NJ 10.0 0.35

BO 2.6 0.12 BO-ON-NJ 10.0 0.19

CM-MP-PO 12.5 0.15 CQ-QP-PR-RT 12.5 0.27

DN-NO 6.4 0.13 DN-NJ 6.0 0.19

ET 2.8 0.21 ET 2.8 0.21

FT 4.6 0.27 FT 4.6 0.27

GU-US-SE-ET 12.8 0.23 GX-XF-FT 11.9 0.29

IL-LM-MB-BO 12.9 0.25 IL-LK-KJ 12.0 0.30

KB-BO 4.6 0.22 KB-BO-ON-NJ 11.9 0.22

MP-PO 5.5 0.11 MB-BO-ON-NJ 12.4 0.19

NO 3.9 0.11 NJ 3.5 0.19

PO 3.0 0.1 PO-ON-NJ 10.4 0.19

RO 4.0 0.16 RO-ON-NJ 11.4 0.19

US-SE-ET 8.2 0.23 US-SE-ET 8.2 0.23

Legend: TTP (the total time of the path); FLP (the failure level of the path).
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O and T to J and T, most of the paths selected by the 
demand points change, and the value of t  decreases 
from 12.9, which is the total time of the path 
selected by the demand point I  when 0

ˆ 350B = , 
to 12.5, which is the total time of the path selected 
by the demand point C  when 0

ˆ 400B = . However, 
when 0

ˆ 400B = , the failure level of the path selected 
by each demand point is greater than or equal to that 
of the path selected by each demand point when 

0
ˆ 350B = . Therefore, the value of f  when 0

ˆ 400B =  
is greater than that when 0

ˆ 350B = . This shows that 
when the minimization of t  is the highest priority 
objective, the minimization of t  will lead to the 
increase of f  some times. From Table 6, it can also 
be seen that, when 0B̂  increases from 400 to 450, t  
remains unchanged, but f  decreases. It is because 
that the increased capital is not enough to optimize 
t , but it could be used to realize the optimization 
of f . 

4.2.2 Solutions and Analysis of Model 2

The value of f  obtained by solving model 2 is 
turned into the value of R̂ , as shown in Table 8. 
Table 9 lists the value of t  obtained by solving 

model 2. From Tables 8 and 9, it can be seen that 
under the same 0B̂ , the values of R̂  and t  tend 
to increase with the increase of ω , that is, the 
greater the weight of R̂ , the more conducive to 
the optimization of R̂  and the less conducive to 
the optimization of t . When 0ω = , the weight 
of R̂  is the smallest and the weight of t  is the 
highest, and t  obtains the optimal value and R̂  
obtains the worst value. At this time, the optimized 
value of t  is equal to the value of t  under the same 

0B̂  in Table 6, while the value of f  is not equal 
to the value of f  under the same 0B̂  in Table 6. 
In fact, when 0ω = , model 2 actually takes the 
minimization of t  as the highest priority and the 
minimization of B̂  as the second priority, while the 
minimization of f  is not a factor which affects the 
solution. In model 1.2, the minimization of t  is the 
highest priority, f  is the secondary priority, and the 
minimization of B̂  is the lowest priority. Therefore, 
under the same 0B̂ , the value of t  in model 2 when 

0ω =  is equal to the value of t  in model 1.2. Since 
f  in model 2 is not optimized when 0ω = , its 

objective function value is lower than that in model 
1.2. When 1ω = , a similar analysis can be made. 

Table 8. The solutions of R̂  in model 2

ω 0
B̂

200 250 300 350 400 450 500 550 600 650 700

0.0 10.61 10.57 10.85 10.76 10.52 10.56 10.73 10.67 10.76 10.67 10.73

0.1 10.71 10.87 11.43 11.36 10.72 10.84 10.77 10.87 10.87 10.89 11.40

0.2 10.71 10.87 11.43 11.36 11.56 10.84 10.77 10.87 10.87 10.89 11.40

0.3 10.71 10.87 11.43 11.36 11.56 11.57 11.30 10.87 10.87 10.89 11.40

0.4 10.71 10.87 11.43 11.36 11.56 11.57 11.30 11.41 11.46 10.89 11.40

0.5 10.71 10.87 11.43 11.36 11.56 11.57 11.30 11.41 11.46 11.46 11.40

0.6 10.71 10.87 11.47 11.36 11.56 11.57 11.30 11.41 11.46 11.46 11.40

0.7 10.71 10.87 11.47 11.36 11.56 11.57 11.30 11.41 11.46 11.46 11.40

0.8 10.71 11.27 11.47 11.57 11.56 11.57 11.63 11.41 11.46 11.60 11.50

0.9 10.71 11.27 11.47 11.57 11.56 11.57 11.63 11.63 11.67 11.67 11.67

1.0 10.71 11.27 11.48 11.58 11.58 11.62 11.63 11.63 11.67 11.67 11.67

Table 9. The solutions of t  in model 2 

ω 0
B̂

200 250 300 350 400 450 500 550 600 650 700

0.0 18.3 18.1 14.4 12.9 12.5 12.5 10.0 9.7 9.7 9.4 9.4

0.1 18.3 18.1 14.4 12.9 12.5 12.5 10.0 9.7 9.7 9.4 9.5

0.2 18.3 18.1 14.4 12.9 12.9 12.5 10.0 9.7 9.7 9.4 9.5

0.3 18.3 18.1 14.4 12.9 12.9 12.9 10.4 9.7 9.7 9.4 9.5

0.4 18.3 18.1 14.4 12.9 12.9 12.9 10.4 10.5 10.5 9.4 9.5

0.5 18.3 18.1 14.4 12.9 12.9 12.9 10.4 10.5 10.5 10.5 9.5

0.6 18.3 18.1 14.5 12.9 12.9 12.9 10.4 10.5 10.5 10.5 9.5

0.7 18.3 18.1 14.5 12.9 12.9 12.9 10.4 10.5 10.5 10.5 9.5

0.8 18.3 19.5 14.5 14.5 12.9 12.9 12.9 10.5 10.5 12 10.4

0.9 18.3 19.5 14.5 14.5 12.9 12.9 12.9 12.9 12.9 12.9 12.5

1.0 19.9 19.5 17.5 18.1 18.1 17.2 19.2 13.4 19.2 17.2 13.7
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In addition, from Table 8, it can be observed that, 
when 0B̂  is the same, as the value of ω  changes 
from 0 to 0.1, R̂  generally increases significantly. 
When 0ω = , under each 0B̂ , f  obtains the worst 
value and t  obtains the best value. When 0.1ω = , 
although the weight of f  is very small, it becomes 
a factor which affects the first objective value of 
model 2. Therefore, the value of f  is optimized, 
which shows a significant decrease compared with 
the value of f  when 0ω = , that is, R̂  increases 
significantly, while t  remains unchanged or does 
not change significantly. In Table 9, when ω  
changes from 0.9 to 1, the change of t  could be 
analyzed similarly.

From Table 10 it can be observed that when 
0

ˆ 200B = , the first objective value of the model 
2 is 0. Since there are many edges needing to be 
restored, the restoration occupies a large number 
of budgets. Therefore, when 0B̂  is not sufficient, 
the budgets for selecting facilities are limited, and 
only the facilities with lower location cost can 
be selected. In this case, the location costs of the 
facilities T  and V  are lower, which are 80 and 94, 
respectively. In fact, when 0

ˆ 200B = , the facility 
T  is selected. So, the total number of the path 
between all demand points and T  is limited, which 

makes the values of f  and t  unchanged (3.29 and 
18.3, respectively) besides when 0ω =  and 1ω = . 
In (10) and (11), min 18.3t = , min 3.29f = , therefore, 
after standardization, the values of f  and t  are 
both 0. In addition, from Table 10, it can be seen 
that, when 0

ˆ 250B ≥ , the first objective value of 
model 2 first increases and then decreases under 
each value of 0B̂ . 0

ˆ 300B =  is taken as an example 
to illustrate this process. When 0

ˆ 300B = , max 20t = , 
min 14.4t = , max 5.15f = , min 2.52f = , the standardized 

functions of t  and f  are: 

min

max min

14.4
5.6

t t tt
t t
− −

= =
− ,

  
min

max min

2.52
2.63

f f ff
f f

− −
= =

−

When 0.1,0.2,0.3,0.4,0.5ω = , 14.4t = , 0t = ,  
2.57f = , 0.019f = . As ω  increases from 0.1 

to 0.5, the value of the first objective function of 
model 2 increases 0.1 0.1 0.019 0.0019f = × =  for 
every 0.1 increase of ω . When 0.6ω = , there is 
a path change, i.e., the selected path of the demand 
point G  changes from GU-UV-VE-EO to GU-US-
SE-EO, leading to reducing the value of the first 
objective function of model 2. The failure level 

Table 10. The solutions of the first objective function of model 2

ω 0
B̂

200 250 300 350 400 450 500 550 600 650 700

0.1 0 0.0215 0.0019 0.0079 0.0257 0.0214 0.0225 0.0195 0.0203 0.0198 0.0153

0.2 0 0.0430 0.0038 0.0158 0.0439 0.0429 0.0450 0.0390 0.0406 0.0396 0.0213

0.3 0 0.0645 0.0057 0.0237 0.0391 0.0415 0.0539 0.0585 0.0609 0.0594 0.0272

0.4 0 0.0860 0.0076 0.0317 0.0344 0.0375 0.0586 0.0692 0.0679 0.0792 0.0331

0.5 0 0.1075 0.0095 0.0396 0.0297 0.0335 0.0632 0.0670 0.0655 0.0785 0.0390

0.6 0 0.1290 0.0094 0.0475 0.0249 0.0296 0.0678 0.0649 0.0630 0.0735 0.0449

0.7 0 0.1505 0.0080 0.0554 0.0202 0.0256 0.0725 0.0628 0.0606 0.0684 0.0508

0.8 0 0.1474 0.0066 0.0479 0.0155 0.0217 0.0580 0.0607 0.0582 0.0633 0.0534

0.9 0 0.0737 0.0052 0.0258 0.0107 0.0177 0.0290 0.0311 0.0311 0.0330 0.0292

Table 11. The solutions of the total cost of model 2

ω 0
B̂

200 250 300 350 400 450 500 550 600 650 700

0 195 225 272 337 383 383 498 528 528 626 626

0.1 195 232 299 344 393 438 498 528 528 626 698

0.2 195 232 299 344 389 438 498 528 528 626 698

0.3 195 232 299 344 389 409 475 528 528 626 698

0.4 195 232 299 344 389 409 475 546 574 626 698

0.5 195 232 299 344 389 409 475 546 574 574 698

0.6 195 232 299 344 389 409 475 546 574 574 698

0.7 195 232 299 344 389 409 475 546 574 574 698

0.8 195 243 299 329 389 409 474 546 574 583 698

0.9 195 243 299 329 389 409 474 474 589 589 698

1.0 195 243 299 329 329 444 474 474 589 589 589
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between the demand point G  and the selected 
facility O  is reduced from 0.27 to 0.23, the value 
of f  is reduced to 2.53, and the value of t  changes 
from 14.4 to 14.5. Compared with 0.5ω = , when 

0.6ω = , the increment of the first objective function 
value of model 2 is 0.0001− . This is a negative 
increment, so the value of the first objective function 
of model 2 begins to decrease. When 0.7ω = , the 
value of f  is 2.53 and the value of t  is 14.5. 
Compared with 0.6ω = , there is no change. Thus, 
compared with 0.6ω = , the increment of the first 
objective function value of model 2 is 0.0014− .  
Therefore, when 0.7ω = , the value of the first 
objective function of model 2 is 0.0080. When the 
values of ω  are 0.8 and 0.9, the value of f  and 
the value of t  do not change, therefore, for every 
0.1 increase of ω , the value of the first objective 
function of model 2 decreases by 0.0014.

4.2.3 Discussions

Since model 2 sets different weights for f  and t , 
the two objective functions are well balanced. For 
example, when 0

ˆ 450B = , 2.38f =  and 15.2t = ,  
as seen in Table 4; when 0

ˆ 450B = , 12.5t =  and 
3.16f = , as seen in Table 6. As illustrated in 

Tables 8 and 9, when 0
ˆ 450B =  and 0.3ω = , the 

value of f  in model 2 is 14-11.57 = 2.43 and 
the value of t  is 12.9. Compared with model 1.1, 
model 2 obtains a worse value of f , but a better 
value of t ; compared with model 1.2, model 2 
obtains a worse value of t , but a better value of f .  
As another example, when 0

ˆ 550B = , it can be 
seen that 2.37f = , 12.9t =  from Table 4 and that 

9.7t = , 3.13f =  from Table 6. As seen in Tables 
8 and 9, when 0

ˆ 550B =  and 0.6ω = , the value of 
f  in model 2 is 14-11.41 = 2.59 and the value 

of t  is 10.5. Compared with model 1.1, model 2 
obtains a worse value of f  and a better value of t .  
Compared with model 1.2, model 2 obtains a 
worse value of t  and a better value of f .

From the above analysis, when special attention is 
paid to the reliability level, the solution of model 
1.1 can be chosen. When paying special attention 
to the total network time, the solution of model 
1.2 can be selected. When an appropriate trade-off 
between the reliability level and the total network 
time needs to be made, the solution of model 2 can 
be chosen. In addition, in model 2, under the same 
value of ω ( 0,1ω ≠ ), with the increase of the total 
budget, although the change of the sum of the 
reliability levels fluctuates, the decreasing trend 
of the total network time is obvious. Therefore, 
in order to obtain a smaller total network time, a 
higher value of the total budget should be chosen.

5. Conclusion

Using the graph theory, this paper gives an 
equivalence theorem, that is, in a weighted graph, 
the maximum value of the minimum edge weights 
of all minimal edge cut sets between two points is 
equal to the minimum value of the maximum edge 
weights of all paths between these two points, 
and lists the application scenarios of the theorem. 
Based on this theorem, the network recovery time 
and the total network time are defined from the 
perspective of the path. Models are established to 
optimize the total network time and the reliability 
level. Model 1 takes a) the minimization of the sum 
of the failure levels between all demand points and 
the corresponding facilities, b) the minimization 
of the total network time and c) the minimization 
of the total cost as the objectives, respectively. 
The model is solved by setting different priorities 
for these three objectives. Model 1.1 takes the 
minimization of the sum of the failure levels 
between all demand points and the facilities 
serving them as the highest-priority objective. 
When the total budget increases, the sum of the 
failure levels can be gradually optimized in model 

Table 12. The solutions of the selected facilities of model 2

ω 0
B̂

200 250 300 350 400 450 500 550 600 650 700
0 T T O OT JT JT JLV JLV JLV JLTV JLTV

0.1 T T O OT JT JT JLV JLV JLV JLTV JLOV
0.2 T T O OT OT JT JLV JLV JLV JLTV JLOV
0.3 T T O OT OT OT LOV JLV JLV JLTV JLOV
0.4 T T O OT OT OT LOV LOS LOS JLTV JLOV
0.5 T T O OT OT OT LOV LOS LOS LOS JLOV
0.6 T T O OT OT OT LOV LOS LOS LOS JLOV
0.7 T T O OT OT OT LOV LOS LOS LOS JLOV
0.8 T V O O OT OT OS LOS LOS LOS LOSX
0.9 T V O O OT OT OS OS OSX OSX LOSX
1.0 T V O O O OX OS OS OSX OSX OSX
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1.1. Model 1.2 takes the minimization of the total 
network time as the highest-priority objective. 
When the total budget increases, the total network 
time is continuously optimized in model 1.2.

The hierarchical method for solving model 1 is 
not conducive to the optimization of the lower-
level objective function, i.e., the lower priority 
objectives. Therefore, the sum of the failure levels 
and the total network time are standardized, and a 
new objective function is formed by weighting. The 
minimization of this new objective function is the 
first objective, that is, the highest priority objective, 
and the minimization of the total cost is the second 
priority, thus model 2 is established. Although 
model 2 is also hierarchical, it is more conducive 
to the balance between the sum of the failure levels 
and the total network time. By solving model 2, it 
could be found that, with the increase in the weight 
of the sum of the failure levels, its function value 
shows a non-increasing change, and gradually 
obtains a better value, while the function value 

of the network total time shows a non-decreasing 
change. Therefore, when the total budget is fixed, 
if a better value of the sum of the failure levels is 
chosen, then ω  can take a higher value; if a better 
value of the total network time is chosen, then ω  
can take a lower value. Compared with model 1, 
model 2 realizes the trade-off between the sum of 
the failure levels and the total network time, leaving 
more choices for practical applications.

In the future, the method proposed in this paper 
would be applied to larger scale networks and the 
application of the modeling method in large-scale 
practical networks would be discussed. The factors 
influencing the location decision-making of the 
emergency facilities considered in this model are 
limited. Factors, such as the important degree 
of different demand points and the population 
capacities of different facilities, are not discussed 
in this study. Therefore, more influencing factors 
could be included in the decision-making model 
for future research.
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