
Studies in Informatics and Control, Vol. 15, No. 4, December 2006 391

An Algorithmic Approach of the Queuing Systems with
Different Station Classes

Ion Florea

“Transilvania” University of Brasov

Department of Computer Science, Faculty of Mathematics and Informatics

Iuliu Maniu 50, Brasov, Romania

florea@yahoo.com

Alexandru Cârstea

“Transilvania” University of Brasov

Department of Computer Science, Faculty of Mathematics and Informatics

Iuliu Maniu 50, Brasov, Romania

Abstract: A system with parallel serving stations where every station has its own queue can be abstracted to a system that has
identical stations. In such a system a client can choose a serving station following a random mechanism. Often, such systems divide
the clients in classes and allocate serving station to a specific class of clients. Such models imply that every client chooses to be
served by a working station within its own class. Systems with multiple client classes have no corresponding analytical models that
study them. This paper presents a study method using a discrete simulation approach. It is proved in the paper that the proposed
algorithm has a polynomial complexity. The implementation of the algorithm is achieved by an object oriented approach.

Keywords: Queuing System, Waiting Queue for Every Station, Simulation Algorithm, Polynomial Complexity, Different Classes
of Stations

Ion Florea is an assistant of professor in the Computer Science Department at the “Transilvania” University of Brasov, Romania.
He received the Msc, respectively the Ph. D degree from the Bucharest University, Faculty of Mathematics and Informatics. His
current research interests include: Discrete Events Computer Simulation, Algorithm Theory, Operating Systems Theory. He is
authoring over 30 papers, published in journals from Romania or other countries and proceedings of international conference too.

Alexandru Cârstea born 23/11/1980, Brasov, Romania graduated Mathematics and Informatics Faculty, “Transilvania” University
of Brasov in 2003. He is master in computer science "Matematica si Informatica" Faculty Brasov in 2004 and Ph. D student starting
with 1/10/2005 in Distributed Computing field. He is authoring 4 papers. His current research interests include: Distributed
Programming/grid computing, Computer Simulation.

1. Introduction

The queuing models deal with systems study that has agglomerations. Such models must consider
generation mechanisms for the arrivals in the system. A client that enters the system has a corresponding
serving class and amount of serving time that he requests. Using the client’s details and the status of the
system, a serving station for the arrived client must be generated. In the traditional approach, where the
stations topology is parallel and there is only one queue to all stations, if the system has an idle station,
the arrived client is immediately served. If not, the client joins to the waiting queue. When a station
finishes a service and the queue is not empty, based on a serving discipline (FIFO, HOL etc.), the next
client is served.

As an alternative approach we consider a system that has a waiting queue for every station in the system.
That means that an arrived client chooses the station that he wants to be served by. If a multiple class is
considered, the arrived client can only choose from the stations available for its client class. If a station
finishes a service and the queue is empty we consider two scenarios: one scenario in which the station
becomes idle and one that lets the clients to migrate from one station to another. In the last case, a station
that has no client in its own queue starts serving a client from another stations’ queue, if such a client is
available. In order to determine the station from witch the client will migrate we use a random based
algorithm that will be described later on in the paper.

In the paper [2] we presented an algorithm for simulating this class of systems with a single queue and in
the paper [3] we studied the systems where every station has its own queue and a client chooses a certain
serving station using a random mechanism. In the following we consider that every arrived client belongs
to a class of clients and it will be served by a station from its corresponding class. Determining the class

 Studies in Informatics and Control, Vol. 15, No. 4, December 2006 392

of the client and the station within the class that the client is assigned to is implemented using random
based mechanisms. In this paper we consider two classes of clients: privileged and ordinary clients.

In every day life many systems can be abstracted using this model. As an example, in a super-market, the
way the counters are organized follows such a model. In the same way, the operating system of a
computer manages resources divided in same type components. Every such a resource has a queue that
contains the processes that are waiting to gain access to the resource.

2. Simulation Entities

In the following we consider two classes of clients and two corresponding serving station classes. We
consider that the number of serving station to be nm  , where m denotes the number of first class
stations(that will serve privileged clients) and n denotes the number of second class stations(that will
serve ordinary clients). Every station is uniquely identified by an integer),..,1(nmii 

The arriving mechanism. The Atime variable denotes the time of the next arriving event in the system.
Initially, Atime holds the value 0 and after every arrival in the system, its value is incremented by IntAriv,
the interval between two consecutive arrivals, that is random generated. At the same moment we generate
the time requested by the new client to be served.

Selecting the station that will serve the client. Denoting p the probability that a privileged client arrives
into the system and pq 1 the probability that an ordinary client arrives, we implement the arrival

using a Bernoulli random variable:









qp

B
10

:

If the generated value is 0, then the client will pick a serving station from the first class. Let ip be the

probability of choosing the station i. The selection of a station will use a discrete random variable X given
by










mpp

m
X

...

...1
:

1

Thus, choosing the station to serve the client is equivalent to generating the X variable. If we have a client
from the second class of clients, choosing a station will be done by generating the random variable Y,
given by








 

 nmm qq

nmm
Y

...

...1
:

1

where),...,1(nmmjq j  is the probability of choosing serving station j.

The ip and jq probabilities are given by







































 



1 if 1,

 1 if ,
1

1

)(

)(
1

1

m

 m
mjnc

inc
p m

j

i (1)

Studies in Informatics and Control, Vol. 15, No. 4, December 2006 393








































 





1n if 1,q

 1n if ,
1

1

)(

)(
1

j

1

nknc

jnc

q nm

mk

j (2)

Theorem 1. i) If)},,..,1{,)(()(klmkllncknc  then lk pp  , mipi ,...,1 ,10  and

1
1




m

i
ip .

ii) If)},,..,1{,)(()(klnmmkllncknc  then lk qq  , nmmiqi  ,...,1 ,10

and 1
1






nm

mi
iq .

Proof. i) Firstly we assume that 1m . If)()(lncknc  then we have the

inequality





m

j

m

j

inc

lnc

jnc

knc

11

)(

)(

)(

)(
, i.e.





m

j

m

j

inc

lnc

jnc

knc

11

)(

)(
1

)(

)(
1 , i.e. lk pp  . In the same mode

we prove that lk qq 

We have 



m

j

jncinc
1

)()(0 , that we can write 1
)(

)(
0

1






m

j

jnc

inc
, i.e. 1

)(

)(
10

1






m

j

jnc

inc
,

thus 1
1

1

1

1

)(

)(
10

1






























mm
jnc

inc
m

j













































m

j

m

i

m

i

m

i
m

j

m

i
i

jnc

inc

mmm
jnc

inc
p

1

111

1

1)(

)(

1

1

1

1

1

1

)(

)(
1

1
1

1

1
)(

)()1(

1

1 1

1













 
 



mm

m
inc

incm
m

m m

i
m

i

.

For 1m the proof is obvious. Also, in the same mode we can prove ii).

Remark 1.

 i) This theorem states that },..,1/{ mipi  and respectively },..,1/{ nmmiqi  forms a

complete probability system.

ii) The smaller the number of clients queued to a station is, the higher the probability of an arrived client
to choose that station is.

 Studies in Informatics and Control, Vol. 15, No. 4, December 2006 394

Every station is characterized by the following variables:

 Ctime(i) denotes, for the i station, the end of the serving event time. If the station is free and
there aren’t clients queued for the station, the Ctime(i) variable is )(iCtime ;

 the nc array; nc(i) holds the number of queued clients for the station i, at a given time;

the bi-dimensional vector Ts holds the serving time values needed for the corresponding clients queued at
the station i. Here the Ts(i,j) value represents the amount of time needed to serve the client j queued at the
station i.

We define the ip index by the formula:

}},..,1/)(min{)(/min{ niiCtimejCtimejip  (3)

i.e. the station index that finishes its service first.

The algorithm that we are going to present follows the “next event”(“minimum time”) rule. In every
moment it’s possible to have one of the two events:

 handling of an arrival (arrival event - Aevent); this event arises when)(ipCtimeAtime  ; a

selection value for the variable X is generated, denoting the working station the client is queued
at;

 handling of an end of service event(Cevent), if)(ipCtimeAtime  .

Remark 2. After such an event, the system efficiency factors are refreshed. The simulation ends when a
certain number of arrivals (Tnra), representing the total number of arrivals permitted is reached. If we
define as a simulation cycle handling a Aevent or a Cevent, we can consider that the simulation is done by
executing such cycles. If we consider that the number of arrival events is smaller that those of end of
service events, and the number of arrivals to be Tnra than we can say that the number of executed
simulation cycles is smaller that 2*Tnra. If we consider the Tnra value to be big enough, at the end of the
execution of the algorithm almost all the clients get to be served. This assumption is true in a FIFO
serving discipline system.

If)(ipCtimeAtime  an arrival of a client is handled:

- a value of the B variable is generated to determine the class of the client. Using this value, a
selection value for X or Y variable is generated, depending on the class of the client.

- if the selected station is free, it will start serving the client. Otherwise the client will join the waiting
queue.

- the efficiency factors are refreshed.

If)(ipCtimeAtime  , we have end of service event. In this situation, the efficiency factors are

refreshed and if the queue is not empty, the station starts serving the next client. If the queue is empty we
consider the following scenarios:

i) the station becomes idle.
ii) the station tries to retrieve and serve a client queued to another station, following a

mechanism that will be described onward.

Every handled event involves an update of the following values:

-),..,1/)((nmiiTwTw  , where Tw(i) represent the total time of wait for the clients

that were queued at the working station i;;
- n),..,m(Tlen(i)/iTlen  1), where Tlen(i) represents the total idleness amount of time

for the working station i .

In addition, after every end of service event, the following are updated:

-),..,1/)((nmiiTtsTts  , where Tts(i) represents the total amount of time spent by the

working station i to serve clients;
-),..,1/)((nmiiNrsTw  , where Nrs(i) represents the total number of clients served

by the working station i ;

Studies in Informatics and Control, Vol. 15, No. 4, December 2006 395

At the end of the simulation we determine the following global efficiency factors:

 Mtw(i) represents the average amount of time spent by the queued clients waiting to be served by the
working station i. This value is given by the formula:

)(

)(
)(

iNrs

iTw
iMTw  (4)

 Mtw1 represents the average amount of time spent by the queued clients waiting to be served by the
working stations in the class 1. This value is given by the formula:







 m

i

m

i

iNrs

iTw
Mtw

1

1

)(

)(
1 (5)

 Mtw2 represents the average amount of time spent by the queued clients waiting to be served by the
working stations in the class 2. This value is given by the formula:











nm

mi

nm

i

iNrs

iTw
Mtw

1

1

)(

)(
2 (6)

 Mts(i) represents the average amount of time spent by the working station i to serve clients. This value
is given by the formula:

)(

)(
)(

iNrs

iTts
iMTs  (7)

 Clen(i) represents the idleness coefficient for the working station i. This value is given by the formula:

Ltime

iTlen
iClen

)(
)( (8)

 Clen1 represents the idleness coefficient for the working stations in the class 1. This value is given by
the formula:

m

iClen
Clen

m

i

 1

)(
1 (9)

 Clen2 represents the idleness coefficient for the working stations in the class 2. This value is given by
the formula:

n

iClen
Clen

nm

mi



 1

)(
2 (10)

 If Ltime is the number of time units of the entire simulation and Mqueue(i) represents the average length
of the queue for the working station i, Mqueue(i) is given by :

Ltime

iTW
iMQueue

)(
)( (11)

 Mqueue1 represents the medium size of the queue for the 1 class and is given by:

 Studies in Informatics and Control, Vol. 15, No. 4, December 2006 396

m

iMQueue
MQueue

m

i

 1

)(
1 (12)

 Mqueue2 represents the medium size of the queue for the 2 class and is given by:

n

iMQueue
Mqeue

nm

mi



 1

)(
2 (13)

3. Random Selection of the Client to be Served by the Empty Queue
Station that Ends a Service

Determine the station that a client will migrate from. Let },..,{ 1 kii be the set of stations from a

certain class of stations that are busy and that have at least one client in the waiting queue at a given time.

Thus, },..,1{},..,{ 1 mii k  or },..,1{},..,{ 1 nmmii k  . For every station i,

},...,{},,...,{, },..,1{or },..,1{ 11 kk iijiiinmmimi  we define || jidij  , the

“distance” from station i to the station j. We calculate the sum 



ki

ij
iji dS

1

. Considering i the station that

ends a service, we define:


















1 if,1

},...,{, 1 if,
1

1

1

k

iijk
k

S

d

p k
i

ij

j

the probability that the station i will take a client from the station j.

Theorem 2. The set }},..,{/{ 1 kj iijp  forms a complete probability system. If ijil dd  , than we

have jl pp  (},..,{},,..,{, 11 kk iiiiijl ).

Proof. Having ,0 iij Sd  implies that 10 
i

ij

S

d
, that is 110 

i

ij

S

d
. If we divide the

formula by k-1 we obtain 10  jp .

We also have 



ki

ij
jp

1

1
1

1

1

1

1











 k

k

k

S

d
ki

ij

i

ij

.

In order to demonstrate the last state of the theorem we observe that ijil dd  which leads to

i

ij

i

il

S

d

S

d
 11 , equivalent to jl pp  .

Remark 3. The condition jl dd  denoted the fact that station l is situated at a bigger distance from i

station i than the station j. The theorem justifies that the selection of a client from a station situated at a
bigger distance is done with a smaller probability.

Studies in Informatics and Control, Vol. 15, No. 4, December 2006 397

We consider the following random variable 








kii

k

pp

ii
Y:

...

...

1

1
. The station that will provide the client

can be selected using a selection variable on Y.

Selecting the client to migrate. Let l be the generated selection value of the variable Y, i.e. the
identification number of the station that will provide the migrating client. The number of clients in queued
for the station l is 1)(lnc . In order to select the client that will migrate we use a selection variable of



















1)(

1
...

1)(

1
1)(...1

lnclnc

lnc
T:

i.e. all clients can migrate with the same probability.

4. Simulation Algorithm, Complexity Determination and OO Approach

The following procedure describes in pseudocode the main part of the simulation algorithm. The fine-
grain actions are grouped as well in procedures used within this main procedure.

Procedure QueSystTwoCatSt(m,n,Tnra);

Read(Parameters Generation of Stime, IntArriv,ClientCat);

Atime0;Ltime0;Nra0;

for i=1,m+n do nc(i)0; Tts(i)0 Nrs(i)0;Ctime(i) ;Tw(i)0;

GenArrival(Atime,Stime,NrSt,Nra);

While NraTnra do

 ip1;

 for i=2,m+n do

 if Ctime(i)>Ctime(ip) then ipi endif

 endfor;

if AtimeCtime(ip) then {Aevent}

 tipevAev;timpevAtime;

 PrelVectEfFact (tipev,timpev,Tw,timpev,Ltime,nc,Tlen) ;

 JoinStation(Stime,NrSt);

 LtimeAtime;

GenArrival(Atime,Stime,NrSt,Nra) ;

 else{ Cevent}

 tipevCev;timpev Ctime(ip);

PrelVectEfFact(tipev,timpev,Tw,timpev,Ltime,nc,Tlen)

if nc(ip)>1 then PrelFinServ(ip, Ctime, Ts, Tss, nc)

 else PrelIdlSt(ip,Ctime)

endif

endif

endwhile;

 EfFactComp() ;

Write(MTw, Mqueue,Mclen, Mts)

end.

Depending on the type of the next event. the procedure PrelVectEfFact will refresh the values used to
calculate the efficiency factors at the end of the execution.

 Studies in Informatics and Control, Vol. 15, No. 4, December 2006 398

Procedure PrelVectEfFact (tipev,timpev,Ltime,nc, Tw ,Tlen,Nrs,Tts)

 for i=1,m+n do

 Tw(i)Tw(i)+nc(i)*(timpev-Ltime)

endfor;

 for i=1,m+n do

 if Ctime (i)=  then Tlen(i)Tlen(i)+timpev-Ltime

 endif;

 endfor;

Ltimetimpev;

if tipev=Cev then

Nrs(ip) Nrs(ip)+1; Tts(ip)Tts(ip)+Tss(ip)

 Endif;

End.

Procedure GenArriv will generate the time needed for an arriving client to be served, the amount of time
between two consecutive arrivals, the station that will receive the client. It will also refresh the values of
the variable Atime and Nra . In order to generate IntAriv and Stime we generically described the
generating procedure that will generate values with the distribution requested by context. Discr represents
the procedure that generates the discrete random variable([])

Procedure GenArriv(p,nc,Stime,Atime,NrSt);

 Gen(Stime); Gen(IntAriv);Atime Atime+ IntAriv;NraNra+1;Discr(p,B);

 if B=0 then Discr(nc,X,NrSt)

 elseDiscr(nc,Y,NrSt)

endif

end;

The procedure JoinStation will send the client to be served by a certain station. If that station is free it will
immediately begin to serve de client, otherwise it will put the station in the waiting queue using the
procedure GenArriv.

Procedure JoinStation(Stime,NrSt);

if Ctime(NrSt)=  then{Free Station}

 Ctime(NrSt)Atime+Stime;Tss(NrSt)Stime

 else {The arrived client joins to queue of NrSt station }

nc(NrSt)nc(NrSt)+1;Ts(NrSt,nc(NrSt)Stime

 endif;

end;

The procedure FinServ is executed when a station finishes a service and has a non empty waiting queue.
The procedure takes the first client from the queue and starts to serve it.

Procedure FinServ(ip, Ctime, Ts, Tss, nc);

Ctime(ip)Ctime(ip)+Ts(ip,1); Tss(ip) Ts(ip,1);

 for i=1,nc(ip) do

 Ts(ip,i) Ts(ip,i+1)

 endfor;

nc(ip)nc(ip)-1

end ;

The procedure PrelIdlSt() deals with the situation when a serving station finishes to serve a client and it

Studies in Informatics and Control, Vol. 15, No. 4, December 2006 399

has no clients waiting in queue. This procedure deals with two approaches: the one that sets the station to
“idle” and the one that tries to get a client from another station.

Procedure PrelIdlSt(ip, Ctime);{first approach1}

{The station becomes iddle}

Ctime(ip)

End;

Procedure PrelIdlSt(ip, Ctime);{second approach}

If ip<=m then

 li1; lsm

 else

lim+1;lsm+n

endif;

k0;

for i=li to ls do

if nc(i)>1then

 kk+1; ind(k)i;d(i)  abs(ip-i)

endif

endfor;

S0;

for j=1 to k do SS+d(ind(j));

for j=1 to k do

X(1, ind(j))  ind(j); X(2,ind(j)) (1-d(ind(j))/S))/(k-1);

endfor;

Discr(X,NrSt);{Number station generation}

For j=2 to nc(NrSt) do

 Y(1,j) j;Y(2,j) 1/(nc(NrSt)-1)

endfor;

Discr(Y,NrCl);{Number Client generation}

{Station ip serves the client received from the selected station}

 Ctime(ip)Ctime(ip)+Ts(NrSt,NrCl);

Tss(ip)  Ts(NrSt,NrCl);

{The client is taken out of the queue}

 for i=NrCl,nc(NrSt)-1 do

 Ts(NrSt,i) Ts(NrSt,i+1)

endfor;

nc(NrSt)nc(NrSt)-1;

end ;

 Studies in Informatics and Control, Vol. 15, No. 4, December 2006 400

At the end of the simulation the procedure EfFactComp that implements the formula (4)-(10), determines
the system efficiency factors.

Complexity. As stated above (remark 2), the simulation algorithm will execute at most 2*Tnra cycles
that handle either an arrival in the system or an end of service. The numbers of arrivals is greater but
approximately equal to the number of end-of-service cycles.

Every simulation cycle has to determine de station with the smallest Ctime moment and this is done in
O(m+n). Since the number of station is small we can consider this as having a complexity of O(1).

If we have an Aevent we execute:

 - PrelVectEfFac - 2*O(m+n)

 - JoinStation – O(1)

 - GenArrival –with known polynomial complexity

If we have a Cevent we execute:

 - PrelVectEfFact - 2*O(m+n)

 - in the worst scenario we can consider to execute only the PrelIdlSt procedure. This procedure
has to determine the distance between the station that ends the service an the other stations, elect a station
to get a client from its queue and pull the client from its queue. This in done in O(3*(m+n)). Since m+n is
a small value, this value is again very small. To sum up, we have at the end a polynomial complexity of
O(2*Tnra)

Description of OOP solution. The use of objects in programming is a way of shorten the distance
between the real life and the way it has to be modeled for the computer world. Bearing in mind with this
approach we structured the algorithm to fit an OOP programming language. In order to develop this
simulation environment, we have chosen the JAVA programming language. As a natural way of structure
things, we created classes to map every entity in the system.

The algorithm simulates a SYSTEM. This System has one ore more SERVING STATIONS that serve
CLIENTS. In addition, we had to generate the interval between two arrivals, we had to choose the station
that a client will be served by and the time a client requires to be served. For this purpose we constructed
several classes that implement the behavior of the entities stated above and a class that handles the
generating process.

We used a similar system to simulate a system that has one or more working stations with owns queue in
[3]. An addition to that model, to simulate the presented algorithm we added functionality to generate the
Bernoulli selection variable and means to select and move clients from one serving station to another
within the same station class.

5. Validity of the Algorithm and Practical Considerations

In the following we consider 10,000 arrivals simulated.

i) Case 1. n=1,m=1,p=0,5. This model is the same with FCFS and one station model, with only one
queue. We will consider the model exp()/exp()/1:(,FIFO), that is analytically studied [5]. If we take
=2, =2, we obtain the results given in table 1.

Table 1. The results for case 1

 First station Second station Analytical approach
Average time of wait 0,488 0,507 0,5

Idleness factor 0,491 0,499 0,5
Average serving time 0,505 0,501 0,5
Average queue length 0,492 0,507 0,5

As we can see from the above table, our simulation tends to equal the values obtained using the analytical
approach. This validates our simulation model.

ii) Case 2. n=2,m=1 =5, =2,p=0.5 In this case we have an equal probability that the clients belong to
one of the two classes but for the privileged class we have two serving stations. This case treats the case
with non migrating clients. The results are given in the following table:

Studies in Informatics and Control, Vol. 15, No. 4, December 2006 401

Table 2. The results for case 2

 Privileged class Ordinary class
Average time of wait 0,17 0,45

Idleness factor 0,579 0,36
Average serving time 0,504 0,517
Average queue length 0,142 0,556

In this case we have smaller values for the Average Time of Wait and Average Queue Length for the
Privileged Class. Also, the value for the Idleness factor is greater for the Privileged class. As expected the
value of the Average Serving time for both classes is approximately equal.

iii) Case 3. n=2,m=1 =5, =2,p=0.66. In this case we have a greater probability for the system to
generate privileged clients. The probability p is proportional to the number of stations in each class. The
clients don’t migrate from their initial stations.

Table 3. The results for case 3

 Privileged class Ordinary class
Average time of wait 0,229 0,19

Idleness factor 0,505 0,534
Average serving time 0,493 0,481
Average queue length 0,23 0,184

In this case we have proportional values for both classes. The Average Serving Time will remain equal
for both classes.

iv) Case 4. n=2,m=1 =5, =2,p=0.5 In this case we have an equal probability that the clients belong to
one of the two classes but for the privileged class we have two serving stations. This case treats the case
with migrating clients. The results are given in the following table

Table 4. The results for case 4

 Privileged class Ordinary class
Average time of wait 0,08 0,243

Idleness factor 0,576 0,388
Average serving time 0,499 0,491
Average queue length 0,068 0,303

In this case we have much smaller values for the Average Time of Wait and Average Queue Length for
the Privileged Class. This can be explained by the ability of clients to migrate. Also, the values for the
Idleness factor are much greater for the Privileged class. As expected the value of the Average Serving
time for both classes is approximately equal.

v) Case 5. n=2,m=1 =5, =2,p=0.66. In this case we have a greater probability for the system
to generate privileged clients. The probability p is proportional to the number of stations in each
class. The clients can migrate from their initial stations.

Table 5. The results for case 5

 Privileged class Ordinary class
Average time of wait 0,124 0,165

Idleness factor 0,493 0,5
Average serving time 0,499 0,504
Average queue length 0,126 0,164

The Average Time of Wait and The Queue length tends to increase a little due to the greater amount of
clients that are served but, comparing to case 2 these values are much smaller. This shows the increased
efficiency of the model that permits migrating clients.

 Studies in Informatics and Control, Vol. 15, No. 4, December 2006 402

6. Conclusions

In this paper we have presented a simulation algorithm for queuing system in which every station has its
own queue and the clients and the stations are divided in two categories corresponding categories. This
model can be extended, by considering any number of categories. So, besides the considered Bernoulli
distribution, whose generated selection value indicates the chosen station category, any discrete random

variable of form  2
 ..

1... 0

10








 



k
pp

k

k

, in which)1,..,0( kipi represents the probability of choosing

of the i station category and, obviously the choosing category will be a generated value of this variable.

For this queuing system type there aren’t analytical solutions then the simulation study is the only
possible solution. Also, two possible ways have been taken in consideration in the finishing of the serving
station: the station becomes idle or it will serve a different client from other station’s queues, the station
and the client being selected based on a random mechanism. The simulation results show that the
efficiency factors of the system have better values in the second case.

REFERENCES

1. CORMEN, T.H., LEIRSON, C.E, RIVEST, R.L. Introductions to Algorithms. MIT Press,
Cambridge, 1992.

2. FLOREA, I., One Algorithmic Approach of First-Come-First-Served Queuing Systems.
Bucharest University Annals, Informatics, ANO XLIX, 2000, pp. 41-58.

3. FLOREA, I., CÂRSTEA A. A Simulation Algorithm for Queuing Systems with Parallel
Working Stations Having one’s Own Queue for Every Station, Bulletin of the Transilvania
University of Braşov, Vol. 12(47), (to appear), 2005.

4. DEVROYE, L., Non-Uniforme Random Variate Generation, New York:springer Verlag, 1986.

5. GROSS, D., HARRIS C., Foundamentals of Queuing Theory, John Wiley & Sons, NewYork,
1998.

6. KLEINROCK, L., Queuing Systems, Volume I: Theory, John Wiley & Sons, NewYork, 1975.

7. KLEINROCK, L., Queuing Systems, Volume II: Computer Applications. John Wiley & Sons,
1976.

8. TANNER, M., Practical Queuing Analysis. McGraw-Hill Book Company, 1995.

9. VĂDUVA, I., Computer Simulation Model, Technical Publishing House, Bucharest, 1977.

10. VĂDUVA, I., STOICA, M., ODĂGESCU, I. Economy Processes Simulation, Technical Publishing
House, Bucharest, 1983.

