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1. Introduction

The general goal of artificial intelligence is 
to duplicate the aptitude of human brain to 
perceive, evaluate, acquire, and make a decision, 
particularly for complex problems. A significant 
quantity of research in the field of Machine 
Learning (ML) is concerned with developing 
methods that systematize classification tasks 
(Sesmero et al., 2015) in several real-world 
applications, in such fields as civil engineering 
(Wang et al., 2020), medicine (Bhardwaj & 
Tiwari, 2015), high energy physics (Mjahed, 
2005), investment (Del Vecchio et al., 2019), and 
marketing (Kaefer et al., 2005). 

The use of metaheuristic algorithms to improve 
ML method allows reaching faster convergence 
with minimum iterations, which consequently 
enhances the efficiency of an algorithm. Recently, 
and with the purpose of improving ML algorithms 
like the artificial neural network (ANN), numerous 
bio-inspired metaheuristic algorithms have been 
established and effectively applied.

Artificial Bee Colony (ABC) (Karaboga et al., 
2007) and whale optimization algorithm (Aljarah 
et al., 2018), and Particle Swarm Optimization 
(PSO), grasshopper optimization algorithm (GOA) 
and grey wolf optimization (GWO) (Braik et al., 
2021) are applied to search optimal connection 

weights in ANNs. Back-propagation algorithm 
is replaced by PSO to train neural networks 
(Shah, 2018). GA is employed for optimizing 
ANN architectures (Sexton et al., 1998; Rahman 
& Setu, 2015). GA and grammatical evolution 
(GE) are evolved to simultaneously improve the 
topology and the connection weights of ANNs 
(Ahmadizar et al., 2015).  Black Hole algorithm 
(BH) is proposed as a new training algorithm 
for ANNs (Pashaei & Pashaei, 2021). In (Khan 
& Sahai, 2012) a comparative analysis between 
gradient descent algorithms and GA, PSO, and 
Bat algorithm is performed.

For a medical diagnosis, a hybrid approach 
mixing GA and BPNN is suggested (Karegowda 
et al, 2011). GA and ANNs are combined to 
optimize the Higgs Boson search (Mjahed, 
2006). By replacing standard back-propagation 
with PSO, thermal properties have been 
estimated using an ANN (Lazzús, 2013). Four 
hybrid ANNs for predicting the heating load of 
buildings’ energy productivity based on ABC, 
PSO, imperialist competitive algorithm (ICA) 
and GA are suggested in (Le et al, 2019). In 
(Enache & Sgârciu, 2015), an improved Bat 
Algorithm combined to Support Vector Machines 
for intrusion detection is proposed. Chen et al. 
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(2015) proposed a ANN hybrid approach using 
PSO and Cuckoo Search (CS), whose results 
outclassed either PSO or CS alone. A hybrid 
method using PSO and Gravitational Search 
Algorithm (GSA) for training ANNs is proposed 
and the comparison results showed its superior 
performance to that of the basic PSO and GSA 
alone in terms of convergence speed and local 
minima avoidance (Mirjalili et al, 2012). 

In brief, in the various works cited above, bio-
inspired metaheuristic algorithms are recognized 
as useful in training ANNs, and the hybridized 
ANNs were able to develop solutions which 
improved the expected classification objectives. 
Furthermore, these hybrid ANNs were designed 
using no more than two or three metaheuristic 
algorithms at a time. The classification domain 
is so broad that some issues (data or methods) 
are not enough addressed. Indeed, some 
metaheuristics such as CA, BH or HS are not 
sufficiently processed.

Thus, the main contribution of this paper lies in:

a.	 the use of several hybridizations at the 
same time, 

b.	 taking into account datasets where ANNs, or 
their hybridizations, are rarely used.

Accordingly, the proposed work focuses on 
seven metaheuristic optimization algorithms 
and four datasets. Among the metaheuristic 
methods, Particle Swarm Optimization (PSO), 
Genetic Algorithm (GA), Differential Evolution 
(DE), Cultural Algorithm (CA), Harmony Search 
(HS), Black Hole optimization (BH) and Ant 
Lion Optimization (ALO), are explored in order 
to produce more optimal solutions for ANN, 
moderate premature convergence and circumvent 
local minima. 

These hybrid ANNs classifiers are applied 
to four datasets relevant to classification and 
prediction taken from public Machine Learning 
Repository such as Mammographic mass dataset 
(Elter et al., 2007), Seed dataset (Charytanowicz 
et al., 2010), Bearing fault data (Ouadine et al., 
2018), and the Higgs Boson experiment (ATLAS 
Collaboration, 2014).

Performance-based fitness function using         
F-measure and computed from the confusion 
matrices is explored. In addition, the dependence 

of the results on certain metaheuristic-ANN 
parameters (such as the size of the ANN, the 
iterations number as well as the metaheuristic 
population size) is considered.

The remainder of this paper is organized as 
follows. Section 2 describes the ANN principle 
and the seven chosen metaheuristic optimization 
algorithms and presents the four considered 
datasets. In Section 3 the comparative results for 
Back-propagation Neural Network (BPNN) and 
the seven hybrid ANNs (PSO-ANN, GA-ANN 
DE-ANN, CA-ANN, HS-ANN, BH-ANN and 
ALO-ANN) are given.  Section 4 sets forth the 
conclusion of this paper.

2. Methodology and Data

As it was specified in the Introduction, the 
proposed work consists in optimizing a neural 
network by the use of metaheuristic methods. 
This section provides an overview of the methods 
adopted as well as the data which was the subject 
of various applications.

2.1 Back-propagation Neural  
Network (BPNN)

The architecture of a multilayered neural network 
is organized into levels of neurons: one input 
layer, one output layer and one or several hidden 
layers. Each neuron in a level is connected to all 
the neurons of the previous layer and produces 
a response by computing a weighted sum of the 
outputs of the neurons to which it is connected. 
This sum is then processed through a nonlinear 
sigmoid function.

According to a supervised learning algorithm 
using the “gradient descent method”, the network 
seeks to minimize, for each pattern p, a quadratic 
error E (equation 1) existing between the current 
value o1

(p) and the desired value d1
(p) of the output 

neuron (Bishop, 1995).

∑ −=
p

2p
1

p
1 doE )( )()(

                                  (1)

2.2 Particle Swarm Optimization (PSO)

PSO (Kennedy et al., 2001), is a metaheuristic 
algorithm based on the swarm intelligence 
concept. A PSO process is initialized with a 
random population of solutions. The prospective 
solutions (particles) move via the problem space 
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by following the current optimal solutions (Rini 
et al., 2011). 

Every particle has a fitness value to evaluate 
by the objective function, and a velocity which 
directs its flying. With each iteration, the particle 
swarm optimizer updates its velocity and position 
using the two best attributes: the best solution it 
has reached (pbest ) and the global best value (gbest), 
as given in (Kennedy et al., 2001). 

2.3 Genetic Algorithm (GA)

GA, developed by John Holland, is a heuristic 
search based on Charles Darwin theory of natural 
evolution and selection ″the one that is best 
endowed, survives″ (Holland, 1975; Goldberg, 
1989). It is useful for solving several kinds of 
problems with high complexity, and is presented 
as a graph of three main operators: selection, 
crossover and mutation. The GA algorithm is 
detailed in (Goldberg, 1989).

2.4 Differential Evolution  
Algorithm (DE)

DE is a population-based metaheuristic search 
algorithm (Price et al., 2005). In differential 
evolution, solutions are known as genomes or 
chromosomes. Each chromosome starts with a 
mutation followed by recombination. A new child 
is created using target vector which is employed 
to generate a donor vector that is then used during 
the recombination to obtain the trial vector. DE 
operates as illustrated in (Price et al., 2005).  

2.5 Cultural Algorithm (CA) 

CA (Reynolds, 1994) is inspired by a 
representation of multiple belief spaces consisting 
of individual and group mappa. Each individual 
can be distinguished in terms of traits or behaviors 
and a generalized depiction (called mappa) of 
their experience. Traits can be modified and 
exchanged between individuals by means of a 
variety of socially motivated operators. Similarly, 
individual mappa can be combined and improved 
to form “group mappa”. The updated belief 
space is mediated based on existing means of 
communication. The detailed Cultural Algorithm 
is described in (Reynolds, 1994).

2.6 Harmony Search Algorithm (HS)

HS Algorithm (Gao et al., 2015) is a metaheuristic 
search algorithm which tries to imitate the 
inventiveness process of musicians to elaborate a 
pleasing harmony. This algorithm uses harmony 
memory with a process similar to that of selecting 
the best suited individuals in other metaheuristic 
techniques. In addition, a harmony memory 
accepting parameter (reaccept) is assigned. If 
reaccept is too weak (close to 0), only a few 
better harmonies are selected leading to too slow 
convergence. If reaccept is high (close to 1), some 
harmonies will be weakly explored, thus leading 
to potentially erroneous solutions. The HS steps 
are defined in (Gao et al., 2015).

2.7 Black Hole Algorithm (BH)

BH algorithm (Hatamlou, 2013) is motivated by 
the phenomenon of the black hole and attempts 
to imitate its properties of attracting other stars 
in space. The algorithm starts with a population 
of initial solutions. At any time, the best solution 
is considered as a black hole and all other 
solutions must move towards it, as explained in 
(Hatamlou, 2013). 

2.8 Ant Lion Optimization (ALO)

ALO algorithm (Mirjalili, 2015) is based on ant 
lions hunting mechanism. It consists in  random 
walk exploration and random agent selection based 
on five main hunting steps: random walk of agents, 
construction traps, entrapment of ants in the trap, 
catching prey and reconstruction traps. The ALO 
optimizer roulette wheel and random ants’ walks 
can disregard local optima. The detailed ALO steps 
are described in (Mirjalili, 2015).

2.9 Data

As it was mentioned in the Introduction, the 
proposed approach is explored for four types of 
data: Mammographic Mass Dataset (Elter, 2007), 
Seed Dataset (Charytanowicz et al., 2010), Bearing 
Fault Dataset (Ouadine et al., 2018) and the Higgs 
Boson experiment (ATLAS Collaboration, 2014). 

The choice of these datasets is dictated by several 
considerations, such as the concern for diversity 
and relevance, the number of classes, attributes 
and examples. The characteristics of these datasets 
are given in Table 1.
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2.10 Implementation of the  
proposed approach

At the beginning, the considered data is classified 
using BPNN, followed by classifications using 
hybridized neural networks as it is described 
in Algorithm 1 and based on tuning parameters 
shown in Table 2. 

Table 2. The tuning parameters for the  
employed algorithms

Algorithm Parameter Tuning
All Algorithms Number of features = 5-10 

Number of runs = 50
Maximum number of iterations = 1000
Population size = 20-100
Fitness function, f = 1-F  (8)

PSO Inertia weight = 0.72
Inertia weight damping ratio = 0.99
Personal learning coefficient = 1.49
Global learning coefficient = 1.49

GA Crossover probability = 0.8
Mutation rate = 0.02
Mutation probability = 0.3
Selection pressure = 8

DE Crossover probability = 0.85
Differential Mutation factor = 0.75

CA Acceptance rate = 0.35
Constant parameter = 0.2 

HS Harmony memory rate = 0.95
Pitch-adjusting rate  = 0.3
Fret width or bandwidth = 0.2

BH Translation parameter = 0.25
Translation probability = 0.75

ALO Number of search agents = 1000

To get an unbiased valuation of the performan-
ces of the algorithms, all datasets are distributed 
into a training sample (70-80%) and test sample 
(30-20%), as it can be seen in Table 1. 

For all the neural networks considered, BPNN and 
metaheuristic-based ANN, the input layer contains 
Nvar neurons, and the output layer only one neuron. 
The desired response of this output neuron is 
coded according to the number of classes. In the 
case of 2-class data (as Mammographic mass and 
Higgs Boson data), d1 is set to -1 for class C1 and 
+1 for C2. If the data contains 3 classes (Seed 
data), d1 is chosen to be equal to -1, 0, +1 for 
classes C1, C2 and C3, respectively. For data with 
4 classes (as Bearing fault data), d1 = -2, -1, 1 and 
2 for classes C1, C2, C3 and C4, respectively.

For every data element p0, decision rules are 
proposed, for 2-class, 3-class and 4-class 
problems, respectively, according to the neural 
output o1 as indicated in the systems (2)-(4).
if o p then p C
else p C

1 0 0 1

0 2

0( )� �
�

�
�
�                             
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It should be noticed that efficiencies βi, purities γi 
and errors εi corresponding to the classifications 
are computed from the confusion matrix A(Aij), (Aij 
being the value of examples of genuine class Ci 
classified as class Cj). For each class Ci composed 
of Ni individuals, the following is obtained.
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Table 1. Characteristics of the chosen datasets 

Dataset Classes and instances Attributes (Nvar) Training Data Test Data

Mammographic Mass Data 
(Elter, 2007)

2 classes: 516 benign, 
445 malignant

5 including 3 BIRADS 
Attributes 

387 benign, 
334 malignant

129 benign, 
111 malignant

Seed Data  
(Charytanowicz et al., 2010)

3 classes: 70 Kama, 70 
Rosa, 70 Canadian

7 Seed shape attributes
56 Kama, 
56 Rosa, 
56 Canadian

14 Kama, 14 Rosa, 
14 Canadian

Bearing Fault Data  
(Ouadine et al., 2018)

4 classes (4000 signals): 
1000 Healthy,  
3×1000 Faulty 

8 features: frequencies and 
amplitudes of the first 4 peaks 
of the Welch spectrum

700 Healthy, 
3×700 Faulty 

300 Healthy, 
3×300 Faulty

Higgs Boson Data  
(ATLAS Collaboration, 2014)

2 classes (200000 events):
Higgs Boson: 68340, 
Background: 131660

10 selected from the initial 30 
features (Mjahed et al., 2020)

Higgs Boson: 54672, 
Background: 105328

Higgs Boson: 13668, 
Background: 26332
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Thus, the global values of these parameters 
become as it is specified in equation (6).

�
�

�
�

� �� � � ��
�

�
�

N
N

N
N

i ii

ii

i ii

ii

, , 1

           
(6)

Similarly, a global F-measure (F), and F-measure 
(Fi) for each class Ci, are defined in equation (7).

∑
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It is also important to emphasize that for all the 
hybridized ANNs, and in order to maximize 
efficiencies β, purities γ and F-measure F, the 
same fitness function f was used (equation 8).

F1f −=                                                     (8)

Algorithm 1. BPNN and Metaheuristic-ANN 
Implementation
1: Training and validation data reading,
2: Extraction of dimensions (Nvar, Ni number of individuals 
of each class...)  
3: Preparing the architecture of ANN with 1, 2 or 3 hidden 
layers (Nvar:n1:1) or (Nvar:n1:n2:1) or (Nvar:n1: n2: n3:1), (n1, 
n2, n3 ranging from 5 to 35 neurons)
4: For the BPNN approach, optimize weights and 
thresholds according to subsection 2.1.
5: Return the results of each BPNN with its structure, error 
and efficiency 
6: Find the best BPNN
7: For the hybrid metaheuristic ANN-based approach 
(PSO-ANN, GA-ANN, CA-ANN, ALO-ANN, HS-ANN, 
BH-ANN or DE-ANN), optimize weights and thresholds 
according to the respective metaheuristic algorithm.
8: Return the results of each metaheuristic-ANN with its 
structure, error and efficiency
9: Find the best metaheuristic-ANN

In the case of the BPNN classification, NW 
weights and NT thresholds, for all multilayer 
architectures, are developed thanks to the 
calculations provided in section 2.1. In the case 
of ANN hybridized by PSO, GA, DE, CA, BH, 
HS and ALO, the NW weights and NT thresholds 
are the ingredients (particles, ant lions or genes) 
to be handled until the end of the iterations. 
All structures with 1, 2 and 3 hidden layers, 
containing between 5 and 35 neurons each, 
are explored, with 100 to 1000 iterations and 
populations ranging from 20 to 100 individuals.

The computation code for these different 
analyses was compiled under the Matlab 
environment, R2017b, on an Intel Core i7 
3.0 GHz processor, with 16 GB of RAM. 
Some existing functions in Mathworks library 
(blocksets) were used to implement the 

optimization tasks. For practical adaptations, 
other Matlab codes have been developed.

3. Results and Discussion

In this section the results for the implementation 
of the proposed approach are presented. 

The complexity of the task performed by a 
neural network is related to the number of its 
weights and thresholds to be optimized. For 
the case of a 3-hidden layer ANN architecture 
(Nvar:n1: n2: n3: 1), knowing that the input layer 
contains Nvar neurons, with  n1, n2 and n3 hidden 
neurons (in the hidden layers) and the output 
layer of a single neuron, the NW weights and NT 
thresholds are as specified in equation (9). 

1nnnN
nnnnnnNN

321T

332211W

+++=
+++= var

                     
(9)

This means that for the architecture (5: 10: 25: 
20: 1), for example, the values of 820 weights 
and 56 biases have to be optimized. 

The first observation to be made concerns the 
number of ANNs to be explored. Figure 1 
illustrates the histogram of ANN architectures as 
a function of the number of hidden neurons used.

Figure 1. Histogram of ANN architectures as a 
function of the number of hidden neurons

The second point worth noting is the reliance 
of the classification efficiency on the number of 
neurons (whatever their distribution in the neural 
network). This observation is valid regardless of 
the optimization approach used. 
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This property is illustrated in Figure 2, where 
classification efficiencies are plotted with respect to 
the number of neurons in the network for PSO-ANN 
and for Mammographic mass and Higgs Boson data. 

Figure 2. PSO-ANN Efficiency vs the Number of 
Neurons n for Mammographic Mass and Higgs 

Boson Datasets

The same result is illustrated in Figure 3, where 
the histogram of PSO-ANN efficiencies is shown, 
again for the Mammographic Mass and Higgs 
Boson datasets.

Figure 3. Histogram of PSO-ANN Efficiencies for 
Mammographic Mass and Higgs Boson Datasets 

Tables 3 and 4 illustrate the Efficiencies and 
Purities measures obtained with the eight 
employed algorithms and for all datasets, for 
both training and testing respectively. Best and 
Mean respectively designate the best value and 
the average value of the Efficiencies and Purities 
measure for the 50 runs and a maximum number 
of iterations set to 200. Standard Deviation 
(Std) represents the standard deviation of the  
reached values.

From another point of view, the third topic worth 
citing in this analysis concerns the dependence 
of the different ANNs optimization results on 
the number of iterations chosen during the 
learning stage. As it is illustrated in Figure 4, 
produced on the ANN architecture (5:34:30:1), a 
comparison between the different approaches can 
be made, despite the fact that the results depend 
on the purely stochastic character of the different 
considered metaheuristics.  It can be seen that the 
PSO-ANN algorithm converges faster towards 
the expected minimum than the other ANNs. It 
should be noticed that for any hybridization, the 
efficiency can be improved by 2-3 points if the 
number of iterations is increased to 1000. 

Figure 4. Fitness Function vs Number of Iterations 
for different ANNs with architecture (5:34:30:1) 

(Mammographic Mass Data)

Another point of interest regards the dependence 
of the results on the population’s size. In Figure 5,  
produced on the same ANN architecture 
(5:34:30:1), the best efficiencies obtained for 
different values of population’s size are illustrated. 
The obtained results again show the dominance 
of PSO-ANN approach. Moreover, an average 
population of 50 individuals seems to provide 
better results. 
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Table 3. Training Efficiencies β (%) and Purities γ (%) for all Datasets and all Algorithms 

Algorithm 
Mammographic Mass Higgs Boson Seed Data Bearing Fault
β (%) γ (%) β (%) γ  (%) β (%) γ  (%) β (%) γ  (%)

BPNN
Best 86.55 87.75 88.89 89.38 96.02 96.32 99.13 99.18
Mean 85.34 85.67 86.67 86.89 94.82 94.76 97.34 98.32
Std 01.01 01.31 01.21 01.63 00.99 00.94 01.43 01.32

PSO-ANN
Best 90.54 92.34 94.23 96.33 99.93 99.98 100.00 99.99
Mean 87.31 87.66 93.15 95.35 98.33 99.73 98.72 98.96
Std 01.21 01.27 01.43 01.46 00.97 00.96 01.33 01.23

GA-ANN
Best 88.41 88.77 91.72 91.79 98.52 98.73 99.95 99.95
Mean 86.95 86.83 89.11 89.93 97.13 96.16 98.04 98.78
Std 00.91 00.91 01.23 01.93 00.96 00.95 01.63 01.75

DE-ANN
Best 86.98 87.67 89.13 89.93 96.66 97.63 99.94 99.77
Mean 85.60 86.73 87.73 88.76 94.92 95.93 98.01 98.36
Std 01.34 01.34 01.76 01.36 00.98 00.89 01.51 01.43

CA-ANN
Best 89.08 89.56 92.77 92.89 98.82 98.72 99.97 99.98
Mean 87.14 87.84 90.41 91.71 97.98 97.96 97.78 97.73
Std 01.08 01.08 00.97 00.93 00.96 00.89 01.21 01.45

HS-ANN
Best 88.06 88.96 90.02 91.12 97.39 98.69 99.93 99.98
Mean 86.79 86.83 89.71 89.81 96.22 97.32 97.64 97.93
Std 00.98 00.98 01.23 01.63 00.97 00.94 01.04 01.33

BH-ANN
Best 88.17 88.97 89.83 89.96 97.52 98.13 99.95 99.96
Mean 86.12 88.13 89.73 89.73 96.42 97.32 97.74 98.73
Std 01.43 01.68 00.99 01.39 01.63 01.43 01.19 01.66

ALO-ANN
Best 88.31 88.31 92.55 92.89 97.58 97.88 99.96 99.98
Mean 86.86 87.83 89.76 89.53 95.72 96.33 98.63 98.36
Std 01.43 01.46 01.27 01.67 01.23 01.11 01.23 01.07

Table 4. Test Efficiencies β (%) and Purities γ (%) for all Datasets and all Algorithms 

Algorithm 
Mammographic
Mass Higgs Boson Seed Data Bearing Fault

β (%) γ (%) β (%) γ (%) β (%) γ (%) β (%) γ (%)
BPNN Best 86.12 87.56 88.75 89.12 95.98 96.23 99.01 99.04

Mean 85.31 85.38 86.43 86.67 94.45 94.45 97.12 98.22
Std 01.03 01.23 01.43 01.41 00.94 00.97 01.34 01.43

PSO-ANN Best 90.23 92.12 94.12 96.12 99.45 99.38 99.79 99.68
Mean 87.12 87.45 93.35 95.32 98.23 99.23 98.67 98.21
Std 01.44 01.22 01.33 01.22 00.79 00.98 01.23 01.11

GA-ANN Best 88.17 88.47 91.55 91.56 98.41 98.55 99.55 99.57
Mean 86.34 86.56 89.05 89.67 97.15 96.22 98.01 98.50
Std 00.96 00.90 01.21 01.64 00.93 00.98 01.22 01.23

DE-ANN Best 86.74 87.56 89.02 89.65 96.24 97.12 99.34 99.57
Mean 85.42 86.36 87.34 88.43 94.79 95.56 98.01 98.02
Std 01.21 01.44 01.36 01.26 00.95 00.86 01.21 01.01

CA-ANN Best 89.01 89.55 92.23 92.55 98.62 98.44 99.66 99.44
Mean 87.01 87.67 90.21 91.43 97.77 97.67 97.44 97.22
Std 01.04 01.06 00.95 00.95 00.97 00.88 01.13 01.14

HS-ANN Best 88.01 88.55 89.78 91.05 97.22 98.56 99.45 99.59
Mean 86.45 86.67 89.34 89.44 96.21 97.23 97.44 97.34
Std 00.97 00.96 01.53 01.23 00.99 00.98 01.02 01.23

BH-ANN Best 87.99 88.69 89.56 89.76 97.42 98.02 99.67 99.56
Mean 86.82 88.22 89.34 89.61 96.32 97.22 97.44 98.45
Std 01.34 01.45 00.96 01.13 01.21 01.13 01.01 01.23

ALO-ANN Best 88.21 88.23 92.24 92.58 97.18 97.67 99.56 99.45
Mean 86.67 87.67 89.43 89.55 95.22 96.22 98.43 98.11
Std 01.33 01.44 01.21 01.34 01.11 01.03 01.23 01.01
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Figure 5. Efficiency vs Population’s size for different 
ANNs with architecture (5:34:30:1) (Mammographic 

Mass Data)

From the results depicted by Figures 1 to 3, it can 
be understood that optimal ANN architectures 
are rare. However, increasing the number of 
iterations or the populations’ size also improves 
the performance of certain architectures (Figures 
4 and 5). From the obtained results (Tables 3 and 4  
and Figures 2 to 5), it is worth highlighting a 
significant preference for the PSO-ANN approach, 
followed by hybridizations CA-ANN, GA-ANN, 
ALO-ANN, HS-ANN, BH-ANN and DE-ANN. 

The run times for all the considered approaches, 
performed offline during Bearing Fault data 
training step, for (8:25:22:1) ANN architecture, 
with 1000 iterations, are grouped in Table 5. 
Considering Table 5 and previous results, the 
PSO-ANN approach features the best efficiency 
and computational cost. 

Table 5. Run times in seconds for all ANNs approaches 
using Bearing Fault dataset with architecture (8:25:22:1) 

(Training step with 1000 iterations)

Method BPNN GA-ANN BH-ANN
CPU Time (s) 133.14 278.76 262.79
Method HS-ANN DE-ANN PSO-ANN
CPU Time (s) 545.28 546.89 591.18
Method ALO-ANN CA-ANN
CPU Time (s) 1696.85 665.84

It should be noted that Bearing fault data and 
Higgs Boson data, have been extensively 
analysed, also implying the selection of the best 
attributes, as in (Ouadine et al., 2018) for Bearing 
fault data, and in (Mjahed et al., 2020; Tang, 2021; 
Azhari et al., 2020) for Higgs Boson data. For 
Bearing fault diagnosis and with the use of PSO-
ANN approach, one obtained generally better 
results than those featured by other works, as in 

(Chomphan & Kingrattanaset, 2014; Ouadine 
et al., 2018). Regarding the results of the Higgs 
Boson dataset, PSO-ANN outperforms the results 
published in (Mjahed et al., 2020; Tang, 2021; 
Azhari et al., 2020). On the other hand, the other 
datasets (Seed data and Mammograhic mass data) 
did not undergo any preprocessing, or any research 
on other possibly more discriminating attributes. 
Moreover, the number of attributes is low, which 
does not allow a real search for the best among 
them. Despite these observations, the results 
obtained compare favorably with those featured 
in similar works for Seed data segmentation 
(Ayse, 2020), and for Mammographic mass 
data (Nirmala & Suresh, 2020). Looking more 
closely at the obtained test results, high values 
for F-measure were reached. With PSO-ANN, this 
parameter is 0.9116, 0.9931, 0.9511 and 0.9973 
for Mammographic Mass, Seed, Higgs Boson 
and Bearing fault datasets, respectively. Note that 
these latter values can be obtained using the results 
of Table 4 and the formula defined in equation 7.

The small differences between test and train results 
(Tables 3 and 4) prove that the proposed hybrid 
ANN has learned the characteristics existing in 
the employed datasets. Using a F-measure based 
fitness function has achieved the desired results. 
In a parallel study, the use of error also lead to 
similar results. This is because minimizing error 
is equivalent to maximizing efficiency or purity or 
F-measure. The results obtained, based on the four 
types of data tend towards the same conclusions. 
This is particularly the case for the observations 
presented above and illustrated by Figures 3 to 5.

4. Conclusion

With the goal of using multiple hybridizations at 
the same time, and taking into account datasets 
where ANNs, or their hybridizations, are not often 
used, the conclusions for this paper are as follows.

The quality of learning depends on the parameters 
adopted for metaheuristic algorithms, which 
was a good reason to run the computational 
code several times (50 runs). Moreover, the 
number of iterations is here of great importance, 
without forgetting the precision-computation 
time dilemma. The results are also initialization-
dependent; consequently several runs are 
necessary to achieve the expected performance.

All of the bio-inspired methods have given 
promising results. The combinations of ANNs 
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with bio-inspired metaheuristic methods (PSO, 
CA, GA and ALO) confirm the superiority of 
their results compared to those of BPNN. PSO-
ANN appears to be more efficient than other 
hybridized ANNs for the datasets chosen and the 
runs performed. In comparison with the classical 
BPNN, the Hybrid Neural Networks PSO-ANN, 
CA-ANN and GA-ANN gave good results with 
up to 5% more efficiency.

For the PSO-ANN approach in particular, better 
results than those featured by published works 
were generally obtained for the 4 datasets chosen. 

As possible future work, metaheuristic algorithms 
could be hybridized between them, so as to combine 
their advantages. Additionally, other types of neural 
network models could be explored and hybridized 
with other metaheuristic algorithms.
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