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Abstract: A novel branch of Computational Cybernetics was formerly developed for the adaptive control of approximately and 
partially modeled Classical Mechanical, Electro-mechanical and Hydro-mechanical systems. It essentially was based on the 
Modified Renormalization Transformation for the convergence of which the positive definite nature of the inertia matrix was 
needed. In this paper the extension of this method is formulated for negative definite, Single Input, Single Output (SISO) systems 
that may also occur in Classical Mechanics when a multiple Degree Of Freedom (DOF) system has only one driven axis and this 
drive is used to control a different axis utilizing the nonlinear dynamic coupling between the axes. As an example the inverted 
pendulum-cart system is considered in which the drive of the cart’s translational DOF is used for controlling the rotational axis of 
the pendulum. The extension results in a whole family of parametric transformations in which two parameters, a “multiplicative” 
and a “shift” parameter are present. It is shown that the fact of the convergence is robust against the variation of these parameters 
and their actual value mainly concerns only the speed of convergence. Simulation results illustrate these statements. 
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1. Introduction 

A new approach for the adaptive control of imprecisely known SISO dynamic systems under unmodeled 
dynamic interaction with their environment was initiated in [1]. Instead of tuning the supposed analytical 
model parameters a fast algorithm that finds a certain linear transformation to map the observed system-
behavior to the expected one calculated on the basis of a very primitive initial model is applied. The so 
obtained „amended model” is step by step updated to trace changes by repeating this corrective mapping 
in each control cycle. The method essence of the method was a modified version of the Renormalization 
Transformation that generally is used for transforming the fixed points of nonlinear mappings. Since no 
any effort is exerted to identify the possible reasons of the difference between the expected and the 
observed response, it is also referred to as the idea of "Partial System Identification" that is very similar to 
the main point of the approach applied in various contexts [e.g. 2, 3]. This anticipates the possibility for 
real-time applications. Later the method was extended to Multiple Input, Multiple Output (MIMO) 
systems by constructing appropriate linear transformations with quadratic matrices. Several algebraic 
possibilities were investigated and successfully applied. For instance, the “Minimum Operation 
Symplectic Transformations” [4], „Generalized Lorentz Group” [5], and a special family of the 
„Symplectic Transformations” [6] can be mentioned. The conditions of convergence of this approach 
were investigated in a wider context in [7] on the basis of Perturbation Calculus. The key element of this 
proof was the positive definite nature of the inertia matrix of the Classical Mechanical Systems. This 
requirement meant a considerable restriction in the applicability of this method. 
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Figure 1: Proper convergence of the originally Modified Renormalization Transformation 

In the present paper we wish to increase the applicability of our method for negative definite SISO 
systems by introducing a whole family of parametric transformations in which two parameters, a 
“multiplicative” and a “shift” parameter are present I transformation that can be recognized as further 
generalization of the Modified Renormalization Transformation. Such systems also occur in Classical 
Mechanics when a multiple Degree Of Freedom (DOF) system has only one driven axis and this drive is 
used to control a different axis utilizing the nonlinear dynamic coupling between the axes. As an example 
the inverted pendulum-cart system is considered in which the drive of the cart’s translational DOF is used 
for controlling the rotational axis of the pendulum. It is shown that the fact of the convergence is robust 
against the variation of these parameters and their actual value mainly concerns only the speed of 
convergence. Simulation results illustrate these statements. 

2. The Proposed Transformation 

The forthcoming considerations pertain to physical systems for which the controller tries to obtain a 
desired response xd by applying an imprecise and incomplete model to calculate the estimated necessary 
excitation e=(xd) that according to the actual dynamics of the system results in the realized response 
xr=((xd))f(xd). It is supposed that the desired response is known, the realized response is measurable, 
and though the exact form of f(xd) is not known at least its increasing or decreasing nature can be deduced 
from the physics of the system to be controlled. In the ideal situation the realized response is equal to the 
desired one that corresponds to finding the fixed point of f as f(xd)=xd. 

As is well known the Renormalization Transformation can transform a function f(x) by a scalar parameter 
 as f(x)-1f(x) that transforms the fixed point f(x)=x since if z=f(z)-1f(z) then f(z)=z=x. It was 
plausible to try to use this transformation for the adaptive control that can also be formulated as a fixed 
point  problem. However, due to the fact  that  in the control  just xd  is needed as the output, the modified 
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Figure 2: Improper convergence of the originally Modified Renormalization Transformation 

 

algorithm defined as 

  dd

nnn xxsssfs  121 ...  (1) 

was introduced in [1]. As it qualitatively is illustrated in Figs. 1 and 2 for monotone increasing system 
this series can properly (sn1) and improperly (snk<1) convergent i.e. if the solution of the f(sxd)=xd 
equation is properly or improperly situated. (Divergent solutions can also be constructed). 

For monotone decreasing SISO systems it is a plausible idea to extend the above given transformation by 
a parameter  that can either be positive or negative, and that for the special case of =0 corresponds to 
the original transformation [Fig. 3]. 
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Figure 3: Proper convergence of the originally Modified Renormalization Transformation 
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To give a satisfactory condition for the convergence of the proposed method consider a flat differentiable 
function g(x), for which the following estimations can be done according to which if the derivative of g is 
small enough in a region it  

realizes a contractive mapping. 
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For a contractive mapping the xn=g(xn-1) series is a Cauchy series since 
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In a complete metric space that converges to a well defined value u that must be the fixed point u=g(u) 
since 
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The series defined in (2) corresponds to seeking the solution of the following fixed point problem in 
which g(x) has to be contractive: 
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In the above expression parameter  corresponds to the “multiplicative” factor. In order to obtain more 
“treatable” behavior when the fixed point is zero, it is expedient to introduce a “shift” parameter D in the 
formula determining the multiplication factor. If f(x)0 then f(x)+DD and the division in (6) will not 
become critical: 
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As Fig. 3 intuitively shows it, in many cases this iteration can be convergent. 

As an illustration in the sequel the cart+inverted pendulum system is considered in which the pendulum’s 
shaft is not actuated but the linear translation of the cart has a drive. This drive can be used for controlling 
the motion of the pendulum due to the nonlinear coupling of the axes in the Euler-Lagrange Equations of 
motion of this system. 

3. The Mathematical Model of the Cart – Inverted Pendulum System 
and Simulation Results 

The Euler-Lagrange Equations of motion of the system is 
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in which some “realistic” data were used, i.e. M=1.096 kg and m=0.109 kg denote the mass of the cart and 
the pendulum, L= 0.25 m and  [rad] is the length and the rotational angle of the pendulum with respect 
to the upper vertical direction (clockwisely), x [m] denotes the horizontal translation of the cart+pendulum 
system in the right direction, b=0.1 N/(m/s) and f=0.00218 kg×m2/s are viscous friction coefficients, 
I=0.0034 kg×m2 denotes the momentum of the arm of the pendulum, and Q1 [N] denotes the force 
horizontally accelerating the whole system. The local torque on pendulum’s shaft is identical to zero 
because it is not actuated. The actual state of the system defines a constraint between the 2nd time-
derivatives of x and   according to the lower part of (8). From this constraint the 2nd derivative of x can 
be expressed as a function of the 2nd derivative of  . Via substituting it into the upper part of (8) the 
appropriate Q1.necessary for achieving this angular acceleration can be calculated. The result is as 
follows: 
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It is evident that about  =0 d2 /dt2 is decreasing function of Q1. In the forthcoming simulations the 
following primitive model was used:  

1505.01  Q  (10) 

that is a very rough estimation of such a “negative definite” system. For the transformation =-0.8 and 
D=200 were applied. (It is worth noting that the forthcoming task differs from the stabilization of the  
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pendulum in its unstable upper position. This special task can be executed with simultaneously stabilizing 
the horizontal position of the cart via various fuzzy controllers. In the here considered examples x cannot 
be controlled at all.) The desired second time-derivative of the angle of the pendulum was given on purely 
kinematical basis. The cycle time of the control was 1 ms, but the adaptive loop was activated only in 
each 10th ms and used the averaged angular velocities for 10 ms to update the adaptive factor. 

According to Fig. 4 the adaptive control considerably improved the tracking of the phase trajectories. 

Similar results are obtained for fast desired motion according to Fig. 5. 

To demonstrate the “robustness” of the method the counterpart of Fig. 5 vas calculated for =-0.2 and 
D=150. The results in Fig. 6 in comparison with Fig. 5 reveal that the method is really robust not only 
against the variation of the speed of the desired pendulum motion, but also against the modification of the 
adaptive parameters. It can be seen, too, that the quality of trajectory and phase trajectory tracking was 
concerned by these parameters but the method remained convergent. 

It is worth noting, too, that according to the expectations the series of the adaptive parameter sn in each 
case converged to 1. 

 

 

 
Figure 4:  

Phase trajectories (1st row) [rad/s vs. rad], trajectory tracking (2nd row), and trajectory tracking 

error (3rd row) vs. time [rad vs. s] for the non-adaptive (left column) and the adaptive (right 

column) control of the system for slow motion. 
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4. Conclusions 
In this paper the extension of a Modified Renormalization Transformation based method was introduced 
and investigated via simulations. While the original modification was designed for positive definite 
systems, the extension aims at the control of negative definite, Single Input, Single Output (SISO) 
systems. Such systems occur in Classical Mechanics when a multiple Degree Of Freedom (DOF) system 

 

 
Figure 5:  

Phase trajectories [rad/s vs. rad] (upper left), trajectory tracking (upper right), trajectory 

tracking error [rad vs. s] (lower left), and the adaptive parameter vs. time [dimensionless vs. 

s](lower right) for the non-adaptive (left column) and the adaptive (right column) control of the 

system for fast motion. 

 

 

Figure 6:  

Phase trajectories [rad/s vs. rad] (upper left), trajectory tracking (upper right), trajectory 

tracking error [rad vs. s] (lower left), and the adaptive parameter vs. time [dimensionless vs. 

s](lower right) for the non-adaptive (left column) and the adaptive (right column) control of the 

system for fast motion and modified control parameters. 
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has only one driven axis and this drive is used to control a different axis utilizing the nonlinear dynamic 
coupling between the axes. As an example the inverted pendulum-cart system was considered in which 
the drive of the cart’s translational DOF was used for controlling the rotational axis of the pendulum. 

The example investigated well demonstrates that the method can be properly convergent for realistic 
physical systems. Of course improper convergence can also occur but with the variation of the very 
primitive model parameters and the adaptive parameters proper convergence can also be achieved. 

The extension results in a whole family of parametric transformations in which two parameters, a 
“multiplicative” and a “shift” parameter are present. It as shown via simulations that the fact of the 
convergence is robust against the variation of these parameters and their actual value mainly concerns 
only the speed of convergence. 

Further investigations should aim at the control of negative definite MIMO systems. 

REFERENCES 

1. J. K. TAR, M. RONTÓ, Adaptive Control Based on the Application of Simplified Uniform 
Structures and Learning Procedures, Zbornik Radova, Vol. 24 No. 2, 2000, pp. 174-194, (ISSN: 
0351-1804). 

2. MADARÁSZ, L., Methodology of Situational Control and its Applications in Robotics, 
RAAD '96, 5th International Workshop on Robotics, in Alpe - Adria - Danube Region. Budapest, 
Hungary, June 10 - 13, 1996, pp. 113-117. 

3. MADARÁSZ, L., Situational Control of Electric Power Systems. Bulletins for Applied 
Mathematics, Technical University of Budapest, April 1984, pp. 65-76. 

4. J. K. TAR, I. J. RUDAS, TOURÉ BALLADJI, Minimum Operation Algebraic Adaptive 
Control for Robot Based on a Novel Branch of Soft Computing, in the Proc. of EUREL '2000, 
Vol. 2, Session 3, (European Advancded Robotics Systems - Masterclass and Conference - Robotics 
2000), 12-14 April 2000, The University of Salford, Manchester, UK. 

5. J. K. TAR, J. F. BITÓ, I. J. RUDAS, K. JEZERNIK, SEPPO J. TORVINEN, A Lorentz-Group 
Based Adaptive Control for Electro-Mechanical Systems, Proc. of the 2001 IEEE/RSJ 
International Conference on Intelligent Robots and Systems, October 29-November 3 2001, Maui, 
Hawaii, USA., pp. 2045-2050, ISBN 0-7803-6614-X, IEEE Catalog No.: 01CH37180C. 

6. JÓZSEF K. TAR, IMRE J. RUDAS, J. F. BITÓ, KRZYSZTOF KOZLOWSKI: Special 
Symplectic Transformations Used in Nonlinear System’s Control, International Journal of 
Mechanics and Control, Vol. 04 No 02 – 2003, ISSN 1590-8844, pp. 3-8. 

7. JÓZSEF K. TAR, IMRE J. RUDAS, JÁNOS F. BITÓ, AND KRZYSZTOF R. KOZŁOWSKI: A 
Modified Renormalization Algorithm Based Adaptive Control Guaranteeing Complete Stability 
for a Wide Class of Physical Systems, Intelligent Systems at the Service of Mankind, (Editors: 
Wilfried Elmenreich, J. Tenreiro Machado, Imre J. Rudas), UBOOKS, Germany, 2004, Volume 1, pp. 
3-13, ISBN 3-935-789-25-3. 


