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Abstract. The aim of this paper is to study some binary operations in approximate reasoning. In the first part we summarize a 
former practical investigation of the applicability of the implication function based on the nilpotent minimum in that framework [1]. 
We also present some numerical examples to illustrate the results. In the second part we recall a constructive approach to the 
axiomatics of generalized modus ponens (GMP) published in [5]. As a consequence, a system of functional equations is obtained. 
Idempotent as well as non-idempotent conjunctions fulfilling this system are studied. The obtained results support the use of non-
commutative and non-associative conjunctions and the corresponding implications in approximate reasoning. 
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1. Introduction 

The compositional rule of inference plays a central role in fuzzy control and in approximate reasoning. It 
can be used to associate a fuzzy output with a fuzzy input through a relationship (in terms of a fuzzy 
relation) between them. In this context, mainly the minimum t-norm is used. In order to find further 
suitable operators, one has to know both the theoretical (mathematical) and the practical (computational) 
behaviour of the candidates. 

The main aim of the present paper is twofold. First, to overview some results related to the usefulness of 
the implication operator based on the nilpotent minimum (see [3] for the original introduction, and [11] 
for a practical overview) in the above framework. Since if--then rules play a central role in diverse fuzzy 
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systems (see e.g. [8, 12]), promising new candidates are important from both theoretical and practical 
points of view. 

Nowadays it is needless to emphasize the dominance of t-norms, t-conorms, strong negations and related 
implications. Their sound theoretical foundation as well as their wide variety have given them almost an 
exclusive role in different theoretical investigations and practical applications. However, people are 
inclined to use them also as a matter of routine. The following examples support this statement and 
advocate the study of enlarged classes of operations for fuzzy sets and reasoning. 

1) When one works with binary conjunctions and there is no need to extend them for three or more 
arguments, associativity is an unnecessarily restrictive condition. The same is valid for commutativity if 
the two arguments have different semantical backgrounds and it has no sense to interchange one with the 
other. 

2) In GMP, a number of intuitively desirable properties is not possessed using t-norms and implications 
defined by t-norms. 

3) Obviously, properties of conjunctions, disjunctions and negations have to be connected and to be in 
accordance with those of fuzzy implications. However, if one compares usual axioms for fuzzy 
implications with properties of R- and S-implications defined by t-norms, t-conorms and strong negations, 
then it can easily be observed that these two families have `much nicer' properties than it would be 
axiomatically expected. 

4) Triangular norm based R- and S-implications are, in general, different. For continuous t-norms, these 
can coincide if and only if the underlying t-norm is isomorphic to the Łukasiewicz t-norm. For left-
continuous t-norms, equality holds when we use e.g. the nilpotent minimum [3]. 

These observations, which are very often left out of consideration, have urged us to revise definitions and 
properties of operations in fuzzy logic. Thus, the second main aim of this paper is to give an overview of 
a new unifying approach for the investigation of these connectives. The original, more detailed 
presentation is [4]. 

2. Compositional Rule of Inference 

Let  X   and  Y   be two given sets,  A   a fuzzy subset of  X  , and  R   be a fuzzy relation on X Y  . 
We can associate with  A   a fuzzy subset  B   of  Y   by using  R   through the so-called compositional 
rule of inference, expressed by the following formula  

( ) sup ( ( ), ( , )),x XB y T A x R x y  

see [13]. We use the notation  TB A B   . 

One can look at this equation from a reverse point of view. Given a fuzzy subset  A   of  X  , a fuzzy 
subset  B   of  Y   and a t-norm  T  , can we find a fuzzy relation  R   on  X Y   such that  

(1) .TA R B  

This equation is called a fuzzy relational equation. The following result can be proved on the solution of 
equation (eq:cri) (see [7] and further references there). 

Theorem 1. Let  A  ,  B   be fuzzy subsets of  X   and  Y  , respectively, and let  T   be a left-continuous 
t-norm. The following are equivalent: 

(i) There exists a fuzzy relation  R   on  X Y   which is the solution of the relational equation (1). 
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(ii) The following fuzzy relation  TR   on  X Y   is a solution of (1):  

(2) ( , )( , ) ( ( ), ( )).T TR A B x y I A x B y  

Moreover, if (1) is solvable, then  ( , )TR A B   is the largest solution of (1).  

Logical interpretation of the compositional rule of inference generalizes the classical Modus Ponens (see 
later in this paper). 

In fuzzy control the value  ( , )( , )TR A B x y   can be interpreted as the truth value of the statement 

`If  x   is  A   then  y   is  B  ', 

which is called an if-then rule. Notice that there is only one input and one output in this case. 

In practical problems both the number of inputs and outputs is higher. Nevertheless, we can restrict 
ourselves to the case when  Y   is equal to the set of real numbers R. Indeed, in case of higher 
dimensional output space we can consider several one-dimensional output systems in parallel. 
Unfortunately, this cannot be done in case of higher dimensional input spaces. 

So, let  X   be an arbitrary input space, let  1 2, , , nA A A   and  1 2, , , nB B B   be normal fuzzy subsets of  
X   and  R  with Borel measurable membership functions, respectively. Let  T   be a Borel measurable t-

norm, and consider the rule base 

1 1

2 2

If  is then  is 

If  is then  is 

If  is then  is n n

x A y B

x A y B

x A y B



 

The first type of fuzzy controllers was defined in [mamdani]. The fuzzy relation  R   on  X R   is given 
by  

1 1( , ) max ( ( ), ( )), ( ( ), ( )) ,{ }n nR x y T A x B y T A x B y 
 

 and the input-output function  :MF X  R  of the Mamdani controller is given by  

(3)

( , )
( ) ,

( , )M

R x y y dy
F x

R x y dy




R

R  

provided that  ( , ) 0R x y dy R  . 

Note that the measurability conditions above are usually satisfied in practical situations. In addition, the 
`center of gravity' defuzzification method was used in (3). 

3. Approximate Reasoning Using Nilpotent Minimum and Related 
Operations 

Fuzzy inference systems generate inference results based on fuzzy if--then rules, expressing pieces of 
knowledge. Fuzzy implications are mostly used as a way of interpretation of the if--then rules with fuzzy 
antecedent and/or fuzzy consequent. 
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Consider a single input -- single output rule in the following form, as the  k  -th rule in the knowledge 
base: 

`If  x   is  kA   then  y   is  kB  '  

where  kA   and  kB   are fuzzy subsets of  X   and  Y  , respectively. 

Fuzzy if--then rules may be interpreted in two ways: as a conjunction of the antecedent and the 
consequent (Mamdani combination, see the previous section) or in the spirit of the classical logical 
implication, i.e., as a fuzzy implication. This second interpretation is applied in the present paper. 

Suppose we observe that ` x   is  kA  ', where  kA   is a fuzzy subset of  X  . Then, what can we infer from 

this observation? Something like ` y   is  kB  ' with a fuzzy subset  kB   of  Y  . 

Based on the Generalized Modus Ponens, the following equality describes  kB   (in terms of membership 
functions):  

(4)
( ) sup ( ( ), ( ( ), ( ))),k k k

x X
B y T A x I A x B y


 

 

where  T   is a t-norm and  I   is a fuzzy implication. 

When we have a finite number of rules, two methods of approximate reasoning are mostly used: 
composition based inference (first aggregate then infer (FATI)) and individual-rule based inference (first 
infer then aggregate (FITA)). 

Taking into account an arbitrary input fuzzy set and using the generalized modus ponens we obtain the 
output of fuzzy inference in a closed form. In individual-rule-based inference each rule in the fuzzy rule 
base determines an output fuzzy set and after that an aggregation via intersection or average operation is 
performed. 

1. FATI type: 

 (5) 1

( ) sup ( ), ( ( ), ( ))( )
n

k k
x X k

B y T A x I A x B y
 

  
 

2. FITA type: 

 (6) 1

( ) sup ( ), ( ( ), ( ))[ ( )]
n

k k
x Xk

B y T A x I A x B y


  
 

It was noted in [1] that  B B    in all cases. If the input fuzzy set  A   is a singleton (i.e., crisp) then we 

have  B B    for any fuzzy implication. 

A. Examples 

In [1] we considered the following rule base: 

If  is then  is .

If  is then  is .

If  is then  is .

x fuzzyzero y fuzzyzero

x fuzzyhalf y fuzzyhalf

x fuzzyone y fuzzyone

 

where  ( 0.5,0,0.5)fuzzyzero    ,  (0,0.5,1)fuzzyhalf   , and  (0.5,1,1.5)fuzzyone    are triangular 
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fuzzy numbers, just as the input  (0.125,0.25,0.75)A fuzzyquarter    . These fuzzy numbers are 
visualized in Figure 1. 

 

Figure 1: The knowledge base and the input 

The aggregation operator is the minimum, the implication  0I   is the one defined from the nilpotent 

minimum  0  . For more details see [3] and [11]. Therefore, we can write  0 ( ( ), ( )) 1k kI A x B y    if  
( ) ( )k kA x B y  , and otherwise  0 ( ( ), ( )) (1 ( )) ( )k k k kI A x B y A x B y    . This implication is illustrated in 

Figure 2. 

 

Figure 2: The implication function defined from the nilpotent minimum 

The membership function of the output can be seen in Figure 3 when using the reasoning scheme FATI, 
while output of FITA is illustrated in Figure 4. 
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Figure 3: The output using FATI 

 

 

Figure 4: The output using FITA 

For the particular case of singleton inputs (being important in constructing fuzzy controllers) the Fuzzy 
Logic Toolbox of Matlab was applied, with some extended special procedures. The inference system can 
be seen in Figure 5. 
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Figure 5: Illustration of the inference system 

Closing this section, we present Figure 6. This illustrates a numerical example based on the previous 

inference system. A static transfer function for the implication  0I   with the application of a modified 
Center of Gravity defuzzification method is shown there. Two aggregation methods have been applied for 
the rules: product (continuous line) and bounded sum (dotted line) with the FITA method. 

 

Figure 6: A static transfer function for 0I  

4. Binary Operations in Generalized Modus Ponens 

We already mentioned that the compositional rule of inference is also linked to the Generalized Modus 
Ponens (GMP) inference pattern with fuzzy predicates. In this framework, by using the notations 

introduced above, the general expression for  B   is given as follows: 
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(7) '( ) sup ( '( ), ( , ))x A BB y M A x I x y  

where  M   is a fuzzy conjunction (that is, an extension of the classical Boolean conjunction, i.e.,  
( , ) [0,1]M x y    for every  , [0,1]x y  , and  (0,0) (0,1) (1,0) 0M M M    ,  (1,1) 1M   ) and  A BI    

is a fuzzy binary relation (usually an implication) on  X Y  . 

Usually, GMP is expected to meet a number of intuitively desirable requirements. Most papers on GMP 
investigate this problem by choosing first particular classes of conjuntions (e.g. t-norms) and implications 
(e.g. S- or R-implications based on t-norms) then testing whether the different requirements are fulfilled. 

Opposed to these approaches, we choose a constructive way to investigate properties of GMP. First we 
fix only a few basic requirements to be fulfilled, in our opinion, by GMP. They lead to a system of 

functional equations for  M   and  A BI  . In order to find a solution we assume some reasonable 

properties of conjunction and implication operators. Then a particular solution for  M   and  A BI    is 
given and some further properties of GMP are verified as consequences, however they usually appear as 
requirements in the rich literature on GMP (see e.g. references in [9]). 

In the literature it is generally required that 

if  A A    then  B B     ( , 0A B   ); 

if  Supp Supp ?A A    then  1B      ( , 0A B   ); 

monotonicity:  ( )B y   is non-decreasing with respect to  ( )A x   and  ( )B y   and non-increasing with 

respect to  ( )A x  ; 

if  0A    then  0B   . 

In our paper [4] we wanted to find at least one pair ( ,M I  ) such that R1--R4 are satisfied by using (7). 

Now we summarize those axiomatic results briefly. 

Axioms for Operations in GMP 

First we assume that  A BI    is defined pointwise, that is, 

( , )A BI x y   depends only on  ( )A x   and  ( )B y   i.e.  ( , ) ( ( ), ( ))A BI x y J A x B y   

and so (7) turns into  

(8) ( ) sup ( ), ( ( ), ( ))( )xB y M A x J A x B y   

J   is non-increasing with respect to its first argument and non-decreasing with respect to its second 
argument (shortly  (?,?)J  ); 

 (0, ) 1 [0,1]J v v    ; 

 (1, ) [0,1]J v v v    . 

 M   is non-decreasing with respect to both arguments (shortly  (?,?)M  ); 

 (0, ) 0 [0,1[M v v    ; 
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A.3. ( , ) , [0,1]M u v v u v    ; 

Obviously, these axioms are fulfilled when  M T   is a t-norm and  J   is either an R-implication or an 
S-implication based on  T  . 

Naturally, the GMP should satisfy properties R1 - R4 also when  , , ,A A B B 
  are crisp sets. After simple 

calculations we finally get from the above equations and from R3 nd R4 the following system of 

equations for any  , [0,1]u v    

(9)

(0, ( , )) 0

(1, (0, )) 1

( , (1,0)) 0

(1, ( ,1)) 1

M J u v

M J v

M u J

M J u




  

Replacing  A  ,  A   and  B   by fuzzy singletons (fuzzy points) of height  u   and  v   respectively, we 

have from R1 for any  , ]0,1]u v   the following equation:  

(10) ( , ( , ))M u J u v v  

 Note that this last equation cannot be satisfied by using a t-norm  T   and R- or S-implication based on  
T  . Therefore, we have to find solutions of (10) outside the class of t-norms and corresponding R- or S- 
implications. 

By using our axioms A1 - A7, it is easy to see that we have  

(11)

(1, )

(1, )

( ,1) 1

M v v

J v v

J u



  

Under some continuity conditions, any solution  ( , )M J   of (9)-(10)-(11) possesses further nice 
properties, as we state in the following theorem. For proof see [4]. 

  Suppose that  ( , )M J   is any solution of (9)-(10)-(11) satisfying axioms A1 - A8 and  M   is left-

continuous in the first place while  J   is right-continuous in its first argument. Then the following 
properties are also satisfied by using (8):   

if  A A    then  B B   ; 

if  1A    and  inf ( ) 0x A x    then  1B   ; 

if  0A    and  0A    then  1B   . 

B. Idempotent Solutions 

In this section we are looking for solutions  ( , )M J   of the system (9)-(10)-(11) such that both  M   and  
J   are idempotent, i.e.,  

( , ) for all [0,1],

( , ) for all ]0,1].

M x x x x

J x x x x

 
   
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Note that idempotency of conjunctions is useful in dealing with redundancies in knowledge bases, see [2]. 

Moreover, idempotency of implications is not a very common property. The equality  ( , )J x x x   can 

hold only on  ]0,1]   since  (0,0) 1J   . 

Let us introduce, for typographical reasons, the following function:  

 1 1( , ) 1 (1 ( )) (1 ( )) ,m u v u v 
       

 

where     is an automorphism of the unit interval and  [0,1[   . In [4] we proved the following result. 

Theorem 2. For any automorphism     of the unit interval, functions  
M   and  

J   defined by  

 
1

11 ( )1

(1 ( ))

( , ) if 0

( , ) if ,

0 if 0

1 if 0

( , ) if 

1 if 0

v

u

m u v u v

M u v v u v

u

u v

J u v v u v

u



















 
 
 

      
  

 


 

with  0 1    are solutions of the system (9)-(10)-(11). Moreover, both  M   and  J   are idempotent.  

C. Nonidempotent Solutions 

In this section we are looking for appropriate new operations (both for conjunctions and implications) in 
the following form:  

( , )
,

T x y

x  

where  ]0,1]x   and  [0,1]y   and  T   is a t-norm. For motivation and more details see [4]. 

By important characterization results in [fodker95ham], the Hamacher family  1{ }T     (see [6] for details 
on this family) of t-norms defined by 

( , )
(1 )( )

xy
T x y

x y xy  


     

is such that the following functions 

(1 )( ) if 0

( , )

0 if 0,

v
u v uv u

M u v

u

 



    


 
   

are fuzzy conjunctions ( 1   ). In addition, R- and S-implications based on each  
M    ( 1   ) are the 

same and their common expression is given as follows:  
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(1 )
(1 )(1 ) if 0

( , ) .

1 if 0

v uv
v uv u

J u v

u

 
 



 
   

 
 
 

 

Each pair  1( , )M J      of fuzzy conjunctions and implications are solutions of our system (sys1)-(sys2)-
(sys3), satisfying also axioms A1 - A8. 

5. Conclusion 

In this paper we summarized two approaches to approximate reasoning. In the first one the applicability 
of the implication based on nilpotent minimum in fuzzy inference was demonstrated. The obtained results 
are promising. The static transfer functions does not differ too much from the expected linear 
characteristic. 

In the second part of the paper we investigated fuzzy conjunctions and implications from different points 
of view. By the results it became clear that one must be rather flexible in choosing connectives for 
particular reasons. Especially, non-commutative and non-associative conjunctions and the corresponding 
implications given above can fulfil the expected properties better than t-norms and related implications. 
Therefore, we would like to encourage readers to use more advanced operators not only in theoretical 
problems but also in practice. 
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