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Abstract: The Youla parameterization (also the Q – parametrization) is a modern control design method suitable for both stable and 
unstable plants. In the design phase systems with electrical drives can be well approximated through low order linear models called 
benchmarks. For such system it can be advantageous to use control design based on modulus optimum criterion (Modulus Optimum 
MO-m and Symmetrical Optimum SO-m) or methods derived from this one, such as ESO-m and 2E-SO-m. In addition to the 
original, classical SO-m, the 2E-SO-m has the advantage of providing a better phase margin and improved robustness. The paper 
presents briefly the development and tuning solutions of PI and PID controllers based on ESO-m and 2E-SO-m meant for electrical 
drive systems. Based on these a Youla parameterization interpretation of the methods is given. 
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1. Introduction 

The Youla parameterization, also called as Q-parameterization, is a design method applied for both stable 
and unstable plants [1]. It differs from classical design methods that impose controller types and structures, 
the Youla parameterization requires polynomials relative to the system’s properties. The disadvantage of the 
method consists in fact that in case of high order, non-minimum phase or unstable plants the controller 
results as a nonconventional one, which is often denied by practicians. In the paper there is presented a 
Youla-parameterization interpretation of a certain controller design method for stable benchmark type 
models, and can be applied for control of electrical drives. 
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The paper is organized as follows. Paragraph 2 presents two extensions of the SO-m, section 3 deals with a 
Youla-parameterization approach of the previously introduced methods. Chapter 4 presents possibilities for 
application of the method and conclusions. 

2. Extensions of the Symmetrical Optimum Method for Plants with 
and without Integral Component 

Based on optimality conditions imposed for the amplitude-frequency characteristics [2], in papers [3] and 
[4] Kessler introduced two design methods, the modulus optimum method (MO-m) and the symmetrical 
optimum method (SO-m). The main advantages of the methods are: 

- The use of conventional PI and PID controllers; 

- Simple tuning relations for controller parameters, that are very useful in practice; 

- Favourable placement of poles (MO-m) or relatively favourable (SO-m), implying  very good or 
pretty good dynamical behaviour. This can be anticipated in the design phase (these can be partially 
corrected by adequate reference filters). 

Consequently, these methods are welcome, being interpreted and extended under different particular 
formulations (see for example [4],[5],[6]). 

One of disadvantages of the SO-m consists in a relatively small phase margin of the system (φr ≈ 360 ), 
which leads to an increased sensibility towards parameter changes and low robustness. In other situations 
even the use of pole-zero cancelation technique can worsen the system’s behaviour regarding load 
disturbances. These disadvantages can be avoided by using the so called “Extended Symmetrical Optimum 
method” (ESO-m ) [7] and “Extension based on ESO-m”, (2E-SO-m). The first method [7] is dedicated to 
plants with integral components, while the second one [8] to plants without integral components. 

The MO-m and SO-m refer mainly to benchmark type models – synthesised in table 2.1. These models 
correspond to transfer functions (t.f.) which can be used e.g. for electrical driving  systems, speed- and 
positoning-control. 

Table 2.1 

Plant transfer (t.f.) functions, P(s) 

Speed-control Positioning control 

 

Rel. 
no. 

(a) (b) 

(2.1) 

)1(  sT

kP  
)1(  sTs

kP  

(2.2) 

)1)(1( 1  sTsT

kP  
)1)(1( 1  sTsTs

kP  

(2.3) 

)1)(1)(1( 21  sTsTsT

kP  
)1)(1)(1( 21  sTsTsTs

kP  

Remarks: 1. TΣ characterises the small time constant or the equivalent of small time constants; if the plant 
contains a relatively small dead-time component, this can be included into TΣ: 

DsTesPsP 


 )()(    D

k

TTTTT   
1

21 ,    (2.4) 

2. The parameter kP, constant or variable gain, characterizes well enough many control applications with 
electrical drives (as controlled plants). 



 

Studies in Informatics and Control, Vol. 15, No. 3, September 2006 281

In case of using PI, PID controllers and pole-zero cancellation in controller design, one of the methods 
indicated in table 2.2 is used. 

The closed loop t.f. regarding the reference signal )(sHr , results: 

 MO-m:   
2

210

0)(
sasaa

b
sH r 
      with         00 ab     (2.5) 

 SO-m(ESO,2E-SO):  
3

3
2

210

10)(
sasasaa

sbb
sHr 


 ,

1111

00

aborab

ab




   (2.6) 

In order to fulfill the design requirements based on modulus optimality conditions, between the coefficients 
of the transfer functions the following relations are imposed  

MO-m: 
2
1202 aaa     (a)   ;  SO-m: 2

1202 aaa     ,  2
2312 aaa   (b)   (2.7) 

Table 2.2 

Controller type, t.f. C(s) and design relations 

regarded to the plant t.f. P(s) 

 

The 
method 

PI  (or I) PID PID2 

 (a) (b) (c ) 

MO-m (2.1-a): I 

(2.2-a): PI 

(2.3-a): PID Fourth order t.f. 

SO-m (2.1-b): PI (2.2-b): PID (2.3-b): PID2 

ESO-m (2.1-b): PI (2.2-b): PI (2.3-b): PID2 

2E-SO-m (2.2-a): PI (2.3-a): PID Fourth order t.f. 

t.f. C(s) 

(2.8) 
)1( r

r sT
s

k
  )1)(1( ,

rr
r sTsT

s

k
  

f

d
rr

r

sT

sT
sTsT

s

k





1

1
)1)(1( ,  

MO-m 




Tk

k
p

c 2

1  

1TTc   




Tk

k
p

c 2

1  

21 '; TTTT cc   

 

Further pole-zero cancelation 

is used 

SO-m 
ESO-m 

2E-SO-m 

See table 2.3 

 

Table 2.2 contains the idealized forms for the controllers. In some of the cases these forms are physically 
unrealizable, in this case small time constants are additionally introduced in the denominator. 

Starting from the optimality condition (2.7), in [7] and [8] between the t.f. coefficients (2.5), (2.6) the 
following conditions have been imposed: 

2
120 aaa      ,   2

231 aaa      (2.9) 

where β is a design parameter at the choice of the system designer. For the particular case of  β =4 one 
gets the SO-m tuning relations. 
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Table 2.3 synthesizes the main information regarding the two extensions of the SO-m, based on papers 
[7] and [8]. By applying the ESO-m or 2E-SO-m, more favourable closed system pole-zero placement, 
controlled through the β parameter is obtained. As a consequence, favourable polynomial forms for T(s) and 
S(s) are obtained (T(s) is the complementary sensitivity function, S(s) is the sensitivity function), used in the 
design phase. For β = 4, 9, 16 simple tuning relations are obtained. By increasing the value of β two 
important effects for the system are gained: 

- increase of the system phase margin, 

- favourable modification of the value of })(max{ 00 sS jSM  , of system robustness, which is an 

advantage in case of systems with variable parameters. 

Table 2.3 

Descriptor Rel. 
  method 

Relations 

E-SO 
 






sTsT

sT

1

)1(
222/3
   

(a) 
 

(2.10) 
 

(b) 

 
L0(s)= 

C(s)P(s) 2E-SO 

)1)(1(
)1(

1

12

'2/3









sTsTs
m

m
T

sT m



  

E-SO 

1

1
222/3332/3 







sTsTsT

sT


  

(a) 
 

(2.11) 
 

(b) 

 
Hr(s) 

(T0(s)) 
2E-SO 

1

)1(
'22'2/333'2/3 







sTsTsT

sT m



  
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z


1
1

   ,  



T

p
2/11

1


 

 
2

2/12222/12/1

3,2 2

4)()(



 


T

TTT
p


  

 
 
 

(a) 
 

(2.12) 
 
 

(b) 

 
 
 
 

Poles  
and zero  

 
2E-SO mT

z





1
1

   ,  



T

p
2/11

1


 

 
2'

2/12'2'22/1'2/1

3,2
2

4)()(


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

T

TTT
p


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ESO 

 
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
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
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(a) 

 
(2.13) 

 
(b) 

 
 

S0(s) 
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1
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)1(

'22'2/333'2/3
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








sTsTsT

sTsTs
m

m
T




 

ESO 
22/3

1




Tk

k
p

c 
2

'

,

TT

TT

c

c



   
 

(a) 
 

(2.14) 
 

(b) 

 
 

Design  
relations 2E-SO 









Tkm

m

Tkm

m
k

pp
c 2/3

3

'2/3

2 1)1(1)1(


  ,  

2
' TT

TT

c

mc



   

ESO )()( ccr TarctgTarctg     (a) 
 

(2.15) 
 

(b) 

 
 

Suppl. 
relations 

2E-SO 
2

22/1
'

)1(

)2(1

m

mm
TT m 


 

   ,  )1(' mTT    

)()()(2/ 1 cccmr TarctgTarctgTarctg     

Here 
1T

T
m  . The β parameterization was introduced in paper [7], and the parameterization β  and m in 

paper [8]. 
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3. Youla - parameterization Design based on Results of ESO and 2E-
SO Methods 

In [9] it is presented that if )(sG  has a bounded rational form, with real coefficients, )( jG , there 

exists a coprime factorization over the set of all bounded rational forms having real coefficients: 

)(

)(
)(

sM

sN
sG     with   )(sG     (3.1-a) 

1)()()()(  sYsMsXsN    (Bezout’s identity)    (3.1-b) 

where: )(),(),(),( sYsMsXsN  , and  φ – set of all bounded rational forms having real coefficients. 

The all stabilizing controllers of the t.f. (3.1-a) can be specified as: 

)()()(

)()()(
)(

sQsNsY

sQsMsX
sC




    where   )(sQ     (3.2) 

)(sQ - a parameteric rational form. If P(s) is stable, the coprime factorization (3.1-a) can be 

particularized as: 

1)(,0)(,1)(,)()(  sYsXsMsPsN    .    (3.3) 

Consequently, controller (3.2) is calculated with: 

)()(1

)(
)(

sQsP

sQ
sC


    or   )]()(1)[()( sQsPsCsQ  .    (3.4) 

This can be represented as shown in figure 3.1. Further, the following relations are established: 

)()()()()()()()()()( 21 sdsPsSsdsSsrsCsPsSsy     (3.5) 

where:   
)()(1

1

)(1

1
)(

sPsCsL
sS





      is the sensitivity function,              (3.6-a) 

r u y

_

d1

P(s)Q(s)

P(s)

d2

e

C(s)

 

Figure 3.1: Youla-parameterization based control system diagram 

 

)(
)()(1

)()(
)( sH

sPsC

sPsC
sT r


 , the complementary sensitivity function,   (3.6-b) 

with the following connection: 

1)()(  sTsS ,    )(1)( sSsT     )()()( sPsCsL     the open loop transfer function, (3.7) 
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The design using Youla parameterization consists in establishing Q(s) so that well stated requirements are 
fulfilled for S(s) or T(s). From relation (3.4) results that C(s) depend only on Q(s) and P(s). 

Remark: The design specifications can be also established for behaviour regarding the load disturbance d2 , 
using t.f. Hd2 : 

)()(1

)(
)(2 sPsC

sP
sH d 
    (3.6-c) 

The more restrictive these conditions are the more complicated the controller structure is. 

Based on this, it results the Youla parameterization design principle. 

If Q(s) is a stable t.f., then the Youla parameterization establishes the controller family C(s) that 
stabilises the P(s) plant. 

As consequence, in controller design the following steps are made: 

Step (1): For the given stable plant P(s), calculus of C(s), having Q(s) as parameter. 
Calculus of S(s) and T(s). 

Step (2): Establishing of a Q(s) through which the imposed performances for S(s) or T(s) 
are ensured. Parametric forms for Q(s) are advantageous. 

Step (3): Establishing the controller C(s) that fulfills the imposed requirements. 

Step (4): Verification of desired performances, sensitivity analysis of the system. 

The use of Youla-parameterization in case of ESO-m and 2E-SO-m is justified by the possibility of imposing 
favourable forms of the expressions of S(s) and T(s) that confers the system performances. 

3.1. Youla Parameterization Design based on Results of MO-m 

This case is presented as a first example of Youla parameterization design, exemplified only for t.f. (2.2-a), 
the other cases being solved similarly. 

Step (1): For the given P(s), calculus of C(s), S(s) or T(s) having Q(s) as parameter results in form: 

  
   )(11

11
)()(

1

1

sQksTsT

sTsT
sQsC

p





      (3.8) 

  
  1

1

11

)(11
)(

sTsT

sQksTsT
sS p








    and   
  111

)(
)(

sTsT

sQk
sT p






    (3.9) 

Step (2): Imposing a favourable T(s) in the specific form for MO-m: 

22221

1
)(

sTsT
sT

 
   and     

22
1

221

111
)(

sTsT

sTsT

k
sQ

p 






    (3.10) 

Step (3): Establish the controller C(s). Replacing (3.10) into (3.8) results: 

)1(
2

1
)( 1sT

sTk
sC

p




   with parameters:    



Tk

k
p

c 2

1  , 
1TTc    .   (3.11) 

Remarks: 1. The design requirement can be imposed in other forms as well. For example, if only steady-
state error is required to be zero then: 
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  
   0

11

)(11
0)(

01

1

0












s

p

s sTsT

sQksTsT
sS     and results: 

pk
Q

1
)0(    .   

Substituting this into (3.8), a PID-controller is obtained, with complete pole-zero cancellation:  

  
)1(

11

)(

1

)()(1

)(
)(

1

1

1

1 






 








TT
TT

p s

sTsT

sTTksQsP

sQ
sC  with parameters: 

     
)(

1

1 


TTk
k

p
c

 ,  
1TTc    ,  TTc

'    and  



 TT
TT

fT
1

1  . 

A detailed analysis of the system performances reveales that even if the system becomes faster, its global 
properties are not necessarily better. 

2. The controller structure becomes more complicated if the design requirement reffers to a very 
restrictive t.f. Hd2(s). 

3.2. Youla Parameterization Design based on Results of ESO-m  

The plant t.f. is (2.1) … (2.3) (b); the design is exemplified only for t.f. (2.1) (b), the second and third 
case being solved similarly. 

Step (1): For the given P(s) the calculus of C(s), S(s) and T(s) having Q(s) as parameter ensures: 

 
  )(1

1
)()(

sQksTs

sTs
sQsC

p





    (3.12) 

 
 







sTs

sQksTs
sS p

1

)(1
)(    and   

 


sTs

sQk
sT p

1

)(
)(     (3.13) 

Step (2): The system performances are imposed through T(s), which is specific for ESO-m: 

332/3222/31

1
)(

sTsTsT

T
sT











     and    

 
332/3222/31

1)1(1
)(

sTsTsT

sTsT

k
sQ

p 









 .   (3.14) 

Step (3):  Establish the controller C(s); replacing into (3.10) in (3.8) results: 

)1(
1

)1(
)1(

)1(1
)(

22/3222/3
sT

sTk
sT

sTsT

sTs

k
sC

pp







 



 





  ,   (3.15) 

where the controller parameters are: 

22/3

1




Tk

k
p

c 
    TTc  .   (3.16) 
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3.3. Youla Parameterization Design based on Results of 2E-SO-m 

The plant t.f. is (2.1) … (2.3) (a); the design steps mentioned at point 3.1 are made. The design is 
exemplified only for t.f. (2.1) (a), the second and third case being solved similarly. It must be remarked  
that the parameterization introduced by relation (2.9) must be imposed already at the stage when T(s) is 
fixed. 

Step (1): For the given P(s) the calculus of C(s), S(s) and T(s) having Q(s) as parameter ensures: 

  
   )(11

11
)()(

1

1

sQksTsT

sTsT
sQsC

p





    (3.17) 

 
 







sTsT
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sS p

1)1(

)(1)1(
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1
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 


sTsT

sQk
sT p

1)1(

)(
)(

1

   . (3.18) 

Step (2): The expression (3.18) is used: 

  sTsTsT
k

sQ
p

1)1)((
1

)( 1
   .    (3.19) 

Taking into account the need for a controller C(s) as simple as possible, the system performances must be 
imposed through a T(s) (or S(s) or Hd2(s) ) with specific form. For example, in this case, the form of a 
proportional-derivative-with 3rd order lag (PDL3) model. It is the case of 2E-SO-m, where the use of a PI (or 
PID or PID2) controller is imposed. Correspondingly: 
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Step (3):  Establish a controller C(s) (a PI form for simplicity) which fulfills imposed requirements through a 
desired form of T(s); this form must satisfy conditions (2.9). Replacing into (3.19) relation (3.20), results: 
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Replacing (3.22) into (3.17), C(s) results as: 
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If conditions (2.9) are imposed on (3.21), it results: 
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Further on, noting with 1/TTm  , after successive replacements one gets 
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Further replacements lead to the controller parameters: 
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and the expressions of T(s) and S(s) according to 2E-SO-m are obtained: 
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For the second and third case only a previously performed pole-zero cancellation yields to the same result. 

So, for on Youla parameterization based design, the following choice can be made: 
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 as a function of the values of {β, TΣ , m }; 

- The poles of the characteristic equation 
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can be chosen as function of {β, TΣ , m}. 

In this context the poles’ placement given by (3.28) leads to a Q(s) of form (3.27), and finally in step (3), the 
controller’s t.f. can be expressed: 
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3.4. Final Remarks 

The main task in case of controller design based on the Youla-parameterization consists in fixing some 
rational conditions through t.f. T(s), S(s) or Hd2(s). This choice influences the form of Q(s) and of 
controller t.f. C(s). If these forms are unproperly chosen – too simple or too restrictive – the controller 
that stabilizes the class of plants P(s) becomes too complicated, often unsuitable for handling the control 
task. A quasi-continuously (QC) operating implementation of the control solution can be easily 
performed. In this case as well the presence of integral component can lead to a need for the Anti-Windup 
Reset (AWR) measure. 

4. Conclusions 

In the paper an interpretation of the Youla-parameterization design is presented, for controller design for two 
special cases of electrical driving systems characterized by benchmark type stable models P(s). 
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As a difference from classical design methods which impose certain controller types and structures, in the 
Youla-parameterization based design there are certain polynomials relatively to the t.f. imposed which 
caracterize the properties of the system. 

The paper presents in detail the way of transposing the positive results gained from classical design methods 
based on modulus conditions (MO-m, SO-m) or conditions derived from these (ESO-m si 2E-SO-m) into a 
Youla-parameterization formulation. If the imposed conditions are adequately chosen, the controller is easy 
to implement. If the conditions are inadequate then the controller structure results as more difficult to 
comprehend, such solutions are less accepted in the practice by engineers. 

In case of non-minimum phase systems or unstable systems, the inconvenience of the method consists in the 
fact that the resulting controller is complicated. For these plants the design can only be solved by the general 
formulation of the coprime factorization. 
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