Performance of Conjugate Gradient Algorithms on some MINPACK-2 Unconstrained Optimization Applications

Neculai Andrei

National Institute for Research and Development in Informatics,

Center for Advanced Modeling and Optimization

8-10, Averescu Avenue, Bucharest 1, Romania

E-mail: nandrei@ici.ro

Abstract: The paper presents a survey of nonlinear conjugate gradient algorithms and the computational performances of some conjugate gradient algorithms for solving some unconstrained optimization applications from MINPACK-2 collection.

Keywords: Nonlinear conjugate gradient methods, Unconstrained optimization, Nonlinear programming. Applications of nonlinear programming.

AMS subject classifications. 90C06, 90C26, 65Y20

Neculai Andrei graduated in Mathematics, "A.I. Cuza" University – Iassy, and in Electrical Engineering from "Politehnica" University – Bucharest. He took his Ph.D degree for his contributions to Digraph Approach of Large-Scale Sparse Linear Dynamic Systems in 1984. He has been a senior scientific researcher at National Institute for R&D in Informatics - ICI, since 1973. He is author of 13 books and text books, as well as over 50 published papers and 300 Technical Reports in area of mathematical modeling optimization. He is the key architect of *ALLO language and compiler* for modeling in mathematical programming, as well as of some professional packages for linear programming and large-scale unconstrained optimization. His main current scientific interests centre on modeling for mathematical programming and on large-scale non-linear optimization, conjugate gradient, interior point methods, penalty and barrier approaches. Dr. Andrei is a founding member of the *Operations Research Society* of Romania; founding member of the *Center for Advanced Modeling and Optimization*; member of the Editorial Board of *Computational Optimization and Applications – Springer Verlag* (since 1992); member of *Computational Optimization and Applications – Optimization Forum*; member of the Editorial Board of *Journal of Systems Science and Complexity – Science Press – China and Journal –* ICI Press (since 1999). Dr. Andrei is an Alexander-von- Humboldt fellow, member ERCIM and of Academy of Romanian Scientists (since 2001).

1. Introduction

Conjugate gradient methods represent an important class of unconstrained optimization algorithms characterized by low memory requirements and strong local and global convergence properties. Their implementation is very easy and accessible in codes able to solve large-scale problems with millions of variables. These methods have been the subject of intense research and analysis for more than 50 years. For the very beginning they started as algorithms for solving symmetric, positive-definite linear systems of equations by works of Cornelius Lanczos and Magnus Hestenes and others (notably Forsythe, Motzkin, Rosser, Stein) at the Institute for Numerical Analysis, and with independent research of Eduard Stiefel at Technische Hochschule Zürich. The first paper was published by Hestenes and Stiefel in 1952, where an algorithm for solving symmetric, positive-definite linear systems was presented. The algorithm was soon extended to general nonlinear unconstrained optimization. Today, conjugate gradient algorithms represent a very important class of algorithms for solving large scale unconstrained optimization problems with good global convergence properties.

In this paper we survey the nonlinear conjugate gradient algorithms, emphasizing their definition and global convergence properties and present the computational performances of a number of conjugate gradient algorithms on some MINPACK-2 applications [Averick, Carter, and Moré, 1991], [Averick, Carter, Moré and Xue, 1992] All conjugate gradient algorithms can be classified in four general classes. The first class contains the algorithms based on conjugacy condition. Here the classical conjugate gradient algorithms like Hestenes and Stiefel [1952], Fletcher and Reeves [1964], Polak and Ribière [1969], Polyak [1969], Liu and Storey [1991], Dai and Yuan [1999, 2001] or Yabe and Takano [2004] are included. The second class of conjugate gradient algorithms is based on a combination of the methods from the first class, leading to the hybrid conjugate gradient algorithms. The scaled conjugate gradient algorithms form the third class of algorithms. Finally, the preconditioned conjugate gradient algorithms form the fourth class.

The structure of the paper is as follows. Section 2 contains a survey of nonlinear conjugate gradient algorithms. The other sections contain the numerical performances of 14 nonlinear conjugate gradient algorithms on 6 applications from MINPACK-2 collection.

2. A survey of nonlinear conjugate gradient algorithms

An excellent survey of nonlinear conjugate gradient methods, with special attention to global convergence properties, has been given by Hager and Zhang [2005]. In this section we focus on different versions of nonlinear conjugate gradient methods and their convergence properties.

Consider the problem to minimize a function of n variables:

$$\min f(x), \tag{1}$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous differentiable function with $g(x) = \nabla f(x)$ its gradient. Conjugate gradient algorithms solving (1) are iterative methods of the form:

$$x_{k+1} = x_k + t_k d_k, \tag{2}$$

where $t_k >0$ is a step length and d_k is a search direction. The search direction at the very first iteration is the steepest descent direction: $d_0 = -g_0 \equiv \nabla f(x_0)$. The directions along the iterations are computed according to:

$$d_{k+1} = -g_{k+1} + \beta_k d_k, \tag{3}$$

where β_k is a scalar. If the function f(x) is strictly quadratic:

$$f(x) = \frac{1}{2}x^T A x - b^T x,$$
(4)

where A is a symmetric and positive definite matrix, and t_k is the exact one-dimensional minimizer given by

$$t_k = \frac{g_k^T g_k}{d_k^T A d_k},\tag{5}$$

then the method (2)-(3) is called the linear conjugate gradient method. This method was firstly proposed by Hestenes and Stiefel [1952] for solving linear systems of equations:

$$Ax = b \tag{6}$$

where for β_k several formulas have been proposed, which for strictly convex quadratic objective functions are equivalent. Linear conjugate gradient algorithms are characterized by the conjugacy condition:

$$d_i^T A d_j = 0, \quad i \neq j \tag{7}$$

which guarantees the finite termination of linear conjugate gradients algorithms.

The nonlinear conjugate gradient algorithm for general unconstrained optimization problem was firstly proposed by Fletcher and Reeves [1964]. In this case the conjugacy condition is replaced by

$$d_{k+1}^{T}y_{k} = 0, (8)$$

where $y_k = g_{k+1} - g_k$. This is motivated by the following relations:

m

$$d_{k+1}^{T}Ad_{k} = \frac{1}{t_{k}}d_{k+1}^{T}A(x_{k+1} - x_{k}) = \frac{1}{t_{k}}d_{k+1}^{T}(g_{k+1} - g_{k}) = \frac{1}{t_{k}}d_{k+1}^{T}y_{k},$$

or by the mean value theorem

$$d_{k+1}^T y_k = t_k d_{k+1}^T \nabla^2 f(x_k + \theta t_k d_k) d_k$$

for some $\theta \in (0,1)$.

In order to ensure the convergence of algorithm (2), it is necessary to constrain the choice of t_k . Usually, the step length is selected to satisfy the Wolfe line search conditions [Wolfe, 1969, 1971]:

$$f(x_k + t_k d_k) - f(x_k) \le \sigma_1 t_k g_k^{T} d_k,$$
(9a)

$$\nabla f(x_k + t_k d_k)^T d_k \ge \sigma_2 g_k^T d_k, \tag{9b}$$

where $0 < \sigma_1 \le \sigma_2 < 1$.

The general conjugate gradient algorithm can be described as follows:

Algorithm CG

Step 1. Select x_0 , set $d_0 = -g_0$ and k = 0. Step 2. Compute the step length $t_k > 0$ satisfying the Wolfe line search (9a) and (9b). Step 3. Compute $x_{k+1} = x_k + t_k d_k$. If $||g_{k+1}|| \le \varepsilon$, then stop. Step 4. Compute β_k and generate the direction $d_{k+1} = -g_{k+1} + \beta_k d_k$. Step 5. Set k = k + 1 and go to step 2. \blacklozenge

Different conjugate gradient algorithms correspond to different choices for the scalar β_k . The well known formulas for β_k are summarized in Table 1. Conjugate gradient algorithms (2)-(3) with exact line searches satisfy the equality

$$g_{k}^{T}d_{k} = -\|g_{k}\|^{2},$$
(10)

which implies the sufficient descent condition

$$\boldsymbol{g}_{k}^{T}\boldsymbol{d}_{k} < -\boldsymbol{c} \|\boldsymbol{g}_{k}\|^{2}, \tag{11}$$

where c > 0 is a constant. Often, the sufficient descent condition has been used to analyze the global convergence of conjugate gradient algorithms with inexact line searches.

$\beta_k^{HS} = \frac{g_{k+1}^T y_k}{d_k^T y_k}$	The original linear conjugate gradient algorithm by Hestenes and Stiefel [1952].
$\beta_k^{FR} = \frac{g_{k+1}^T g_{k+1}}{g_k^T g_k}$	The first nonlinear conjugate gradient algorithm, proposed by Fletcher and Reeves [1964].
$\beta_k^D = \frac{g_{k+1}^T \nabla^2 f(x_k) d_k}{d_k^T \nabla^2 f(x_k) d_k}$	Proposed by Daniel [1967]. This updating formula requires evaluation of Hessian at every iteration.
$\beta_k^{PRP} = \frac{g_{k+1}^T \mathcal{Y}_k}{g_k^T g_k}$	Proposed by Polak and Ribière [1969] and Polyak [1969].
$\beta_k^{PRP+} = max\left\{0, \frac{g_{k+1}^T y_k}{g_k^T g_k}\right\}$	Proposed by Powell [1984], and analyzed by Gilbert and Nocedal [1992].
$\beta_k^{CD} = \frac{\boldsymbol{g}_{k+1}^T \boldsymbol{g}_{k+1}}{-\boldsymbol{d}_k^T \boldsymbol{g}_k}$	Proposed by Fletcher [1987] as a Conjugate descent method
$\beta_k^{LS} = \frac{g_{k+1}^T y_k}{-d_k^T g_k}$	Proposed by Liu and Storey [1991].
$\beta_k^{DY} = \frac{\boldsymbol{g}_{k+1}^T \boldsymbol{g}_{k+1}}{\boldsymbol{d}_k^T \boldsymbol{y}_k}$	Proposed by Dai and Yuan [1999].
$\beta_{k}^{DL} = \frac{g_{k+1}^{T}(y_{k} - ts_{k})}{d_{k}^{T}y_{k}}, t > 0$	Proposed by Dai and Liao [2001].
$\beta_k^{DL+} = max\left\{0, \frac{g_{k+1}^T y_k}{d_k^T y_k}\right\} - t \frac{g_{k+1}^T s_k}{d_k^T y_k}$	Proposed by Dai and Liao [2001]
$\beta_k^{YT} = \frac{g_{k+1}^T(z_k - ts_k)}{d_k^T z_k}$	Proposed by Yabe and Takano [2004], where $z_k = y_k + \frac{\rho \mathcal{G}_k}{s_k^T u_k} u_k, \ \rho \ge 0,$
	$ \vartheta_k = 6(f_k - f_{k+1}) + 3(g_k + g_{k+1})^T s_k $
$\beta_k^{YT+} = max\left\{0, \frac{g_{k+1}^T z_k}{d_k^T z_k}\right\} - t\frac{g_{k+1}^T s_k}{d_k^T z_k}$	Proposed by Yabe and Takano [2004].

Table 1: Choices for β_k parameter in conjugate gradient algorithms.

Observe that the FR, DY and CD methods all have in numerator the quantity $g_{k+1}^T g_{k+1}$. The first result concerning the global convergence of FR method was given by Zoutendijk [1970]. Later, Powell [1977] showed that FR method is susceptible to jamming, that is the algorithm could take many steps without making a significant progress to minimum. The CD method of Fletcher is very close to the FR method, and with an exact line search we can prove that $\beta_k^{FR} = \beta_k^{CD}$. The difference between FR and CD is that CD satisfy the sufficient descent condition. The DY method is fundamentally different from either FR or the CD method. Using standard Wolfe line search conditions, the DY method always generates descent directions. Also DY and CD methods are susceptible to jamming.

On the other hand, the HS, PRP and LS methods all have in the numerator $g_{k+1}^T y_k$. The main characteristic of these methods is that they possess a built-in restart feature that addresses the jamming problem. When $s_k = x_{k+1} - x_k$ is small, the factor $y_k = g_{k+1} - g_k$ in the numerator of β_k tends to

zero. Therefore, β_k becomes small and the new direction d_{k+1} is essentially the steepest descent direction given by $-g_{k+1}$. These methods automatically adjust β_k to avoid jamming. Hence, the numerical performances of these methods are better than the performance of methods with $\|g_{k+1}\|^2$ in the numerator of β_k . For algorithms related to the Polak-Ribière-Polyak method, Gilbert and Nocedal [1992] proved the first global convergence result of the conjugate gradient algorithm with β_k^{PRP+} using inexact line search. However, numerically, under inexact line search the conjugate gradient algorithm with β_k^{PRP+} is not an improving of its variant using β_k^{PRP} .

The DL method is very close to HS, when g_{k+1} is orthogonal to s_k , then $\beta_k^{DL} = \beta_k^{HS}$. Like HS method, for an exact line search, the DL method may not converge. In order to ensure convergence, Dai and Liao uses the same idea like in PRP+, modifying their formula to obtain DL+. If d_k satisfies the sufficient descent condition, and f is Lipschitz continuous, then DL+ scheme, implementing strong Wolfe line search, is globally convergent. Very recently Yabe and Takano [2004], based on a modified secant condition, suggested another choice for the update the β_k parameter. In their formula, $u_k \in \mathbb{R}^n$ satisfies $u_k^T s_k \neq 0$. Similarly, the YT+ scheme is globally convergent when d_k satisfies the sufficient descent condition and the strong Wolfe conditions are used, with a bounded value of parameter ρ . Numerical experiments show that, both DL+ and YT+ are efficient only with a proper selection of the parameters. For different choices, the performances of these methods are very different.

The numerical experiments show that although the FR, DY and CD conjugate gradients methods have strong convergence properties; however they may be affected by jamming. On the other hand, the HS, PRP and LS methods although theoretically may not converge, computationally they often are significantly better. The idea to combine these methods in order to get efficient algorithms leads to *hybrid conjugate gradient algorithms*. Table 2 contains the main hybrid conjugate gradient methods.

$\beta_{k}^{TAS} = \begin{cases} \beta_{k}^{PRP}, & 0 \le \beta_{k}^{PRP} \le \beta_{k}^{FR}, \\ \beta_{k}^{FR}, & \text{otherwise.} \end{cases}$	Proposed by Touat-Ahmed and Storey [1990].
$\beta_{k}^{PRP-FR} = max\left\{0, min\left\{\beta_{k}^{PRP}, \beta_{k}^{FR}\right\}\right\}$	Proposed by Hu and Storey [1991].
$\boldsymbol{\beta}_{k}^{GN} = max\left\{-\boldsymbol{\beta}_{k}^{FR}, min\left\{\boldsymbol{\beta}_{k}^{PRP}, \boldsymbol{\beta}_{k}^{FR}\right\}\right\}$	Proposed by Gilbert and Nocedal [1992].
$\boldsymbol{\beta}_{k}^{HS-DY} = max\left\{0, min\left\{\boldsymbol{\beta}_{k}^{HS}, \boldsymbol{\beta}_{k}^{DY}\right\}\right\}$	Proposed by Dai and Yuan [2001] and Dai and Ni [2003].
$\beta_{k}^{hDY} = max\left\{-\left(\frac{1-\sigma}{1+\sigma}\right)\beta_{k}^{DY}, min\left\{\beta_{k}^{HS}, \beta_{k}^{DY}\right\}\right\}$	Proposed by Dai and Yuan [2001]. σ is the parameter used in the second Wolfe line search condition.
$\boldsymbol{\beta}_{k}^{LS-CD} = max\left\{0, min\left\{\boldsymbol{\beta}_{k}^{LS}, \boldsymbol{\beta}_{k}^{CD}\right\}\right\}$	

Table 2. Hybrid choices for the β_k parameter in conjugate gradient algorithms.

Conjugate gradient methods can be combined to get the so called *parameter conjugate gradient algorithms*. Dai and Yuan [1998, 2003] proposed a one-parameter family of conjugate gradient algorithms with:

$$\beta_{k} = \frac{\left\| g_{k+1} \right\|^{2}}{\lambda_{k} \left\| g_{k} \right\|^{2} + (1 - \lambda_{k}) d_{k}^{T} y_{k}},$$
(12)

where $\lambda_k \in [0,1]$ is a parameter. For $\lambda_k = 1$ we get the Fletcher-Reeves method, while the Dai-Yuan method correspond to $\lambda_k = 0$. By considering convex combinations of the numerators and denominators of β_k^{FR} and β_k^{HS} , Nazareth [1999] suggested a two-parameter family of conjugate gradient methods:

$$\beta_{k} = \frac{\mu_{k} \left\| \boldsymbol{g}_{k+1} \right\|^{2} + (1 - \mu_{k}) \boldsymbol{g}_{k+1}^{T} \boldsymbol{y}_{k}}{\lambda_{k} \left\| \boldsymbol{g}_{k} \right\|^{2} + (1 - \lambda_{k}) \boldsymbol{d}_{k}^{T} \boldsymbol{y}_{k}},$$
(13)

where $\lambda_k, \mu_k \in [0,1]$. Observe that this two-parameter family includes FR, DY, PRP and HS methods. Dai and Yuan [2001] considered a three-parameter family of hybrid conjugate gradient method; they chose:

$$\beta_{k} = \frac{\mu_{k} \left\| g_{k+1} \right\|^{2} + (1 - \mu_{k}) g_{k+1}^{T} y_{k}}{(1 - \lambda_{k} - \omega_{k}) \left\| g_{k} \right\|^{2} + \lambda_{k} d_{k}^{T} y_{k} - \omega_{k} d_{k}^{T} g_{k}},$$
(14)

where $\lambda_k, \mu_k \in [0,1]$ and $\omega_k \in [0,1-\lambda_k]$. This three-parameter family includes the six standard conjugate gradient methods, the previous one-parameter and two-parameter families, as well as many hybrid methods as special cases.

Another class of conjugate gradient algorithms is given by the so called the *scaled conjugate gradient algorithms*. For these algorithms the direction is computed as:

$$d_{k+1} = -\theta_{k+1}g_{k+1} + \beta_k d_k, \tag{15}$$

where θ_{k+1} is a positive parameter.

Observe that if $\theta_{k+1} = 1$, then we get the classical conjugate gradient algorithms according to the value of the scalar parameter β_k . On the other hand, if $\beta_k = 0$, then we get another class of algorithms according to the selection of the parameter θ_{k+1} . There are two possibilities for θ_{k+1} : a positive scalar or a positive definite matrix. If $\theta_{k+1} = 1$, we have the steepest descent algorithm. If $\theta_{k+1} = \nabla^2 f(x_{k+1})^{-1}$, or an approximation of it, then we get the Newton or the quasi-Newton algorithms, respectively. Therefore, we see that in the general case, when $\theta_{k+1} \neq 0$ is selected in a quasi-Newton manner and $\beta_k \neq 0$, then (15) represents a combination between the quasi-Newton and conjugate gradient methods.

To determine β_k Andrei [2004a, 2004b, 2005, 2006a, 2006b] considers the following procedure. As we know the Newton direction for solving (1) is given by $d_{k+1} = -\nabla^2 f(x_{k+1})^{-1} g_{k+1}$. Therefore, from the equality

$$-\nabla^2 f(x_{k+1})^{-1} g_{k+1} = -\theta_{k+1} g_{k+1} + \beta_k d_k,$$

we get:

$$\beta_{k} = \frac{\theta_{k+1} s_{k}^{T} \nabla^{2} f(x_{k+1}) g_{k+1} - s_{k}^{T} g_{k+1}}{s_{k}^{T} \nabla^{2} f(x_{k+1}) s_{k}}.$$
(16)

Using the Taylor development, after some algebra we obtain:

$$\beta_{k} = \frac{\left(\theta_{k+1}y_{k} - s_{k}\right)^{T} g_{k+1}}{y_{k}^{T} s_{k}},$$
(17)

where $s_k = x_{k+1} - x_k$ and $y_k = g_{k+1} - g_k$. If $\theta_{k+1} = 1$, then (17) is the parameter corresponding to the direction considered by Perry [1977], i.e. we get the *scaled Perry* algorithm. This value of parameter β_k is used by Birgin and Martinez [2001] in their SCG (spectral conjugate gradient) package for unconstrained optimization, where θ_{k+1} is selected in a spectral manner, as suggested by Raydan [1997]. The following particularizations can be remarked. If $s_j^T g_{j+1} = 0$, j = 0, 1, ..., k, then we get a generalization of the Polak and Ribière formula [1969], i.e. *the scaled Polak and Ribière* formula. If $s_j^T g_{j+1} = 0$, j = 0, 1, ..., k, and additionally the successive gradients are orthogonal, then we obtain a generalization of the Fletcher and Reeves formula [1964] i.e. *the scaled Fletcher and Reeves* formula. Table 3 summarizes the scaled choices for the parameter β_k .

$\beta_k^{sP} = \frac{g_{k+1}^T(\theta_k y_k - s_k)}{y_k^T s_k}$	Scaled Perry. Suggested by Birgin and Martínez [2001] and Andrei [2004a, 2004b, 2005, 2006a, 2006b].				
$\beta_k^{sP+} = max\left\{0, \frac{\theta_k g_{k+1}^T y_k}{y_k^T s_k}\right\} - \frac{g_{k+1}^T s_k}{y_k^T s_k}$	Scaled Perry +. Suggested by Birgin and Martínez [2001].				
$\beta_{k}^{sPRP} = \frac{\theta_{k} g_{k+1}^{T} y_{k}}{t_{k} \theta_{k-1} g_{k}^{T} g_{k}}$	Scaled Polak-Ribière-Polyak. Suggested by Birgin and Martínez [2001] and Andrei [2004a, 2004b, 2005, 2006a, 2006b].				
$\beta_{k}^{sFR} = \frac{\theta_{k} g_{k+1}^{T} g_{k+1}}{t_{k} \theta_{k-1} g_{k}^{T} g_{k}}$	Scaled Fletcher-Reeves. Suggested by Birgin and Martínez [2001] and Andrei [2004a, 2004b, 2005, 2006a, 2006b].				

Table 3. Scaled choices for the β_k parameter in conjugate gradient algorithms.

The parameter θ_{k+1} is selected in a *spectral manner*, θ^s , as the inverse of the Rayleigh quotient or in an *anticipative manner*, θ^a , as given in Andrei [2004a, 2004b, 2005, 2006a, 2006b].

There is a result of Shanno [1978] that says that the conjugate gradient method is the BFGS quasi-Newton method for which at every iteration, the initial approximation to the inverse of the Hessian is taken as the identity matrix. Shanno [1978] shows how the traditional Fletcher-Reeves and Polak-Ribière conjugate gradient algorithms may be modified in a form established by Perry to a sequence which can be considered as a *memoryless BFGS preconditioned*. The algorithm is embedded into a restarting procedure based on Powell's restart criterion. The idea of the algorithm is to modify the direction in such a manner to overcome the lack of positive definiteness of the matrix defining the search direction. The CONMIN algorithm based on this technique proved to be one of the most powerful for solving large-scale unconstrained optimization problems. The extension of the preconditioning technique to the scaled conjugate gradient is very simple. Using the same methodology Andrei [2004a, 2004b, 2005, 2006a, 2006b] obtained the following direction d_{k+1} :

$$d_{k+1} = -\theta_{k+1}g_{k+1} + \theta_{k+1}\left(\frac{g_{k+1}^{T}s_{k}}{y_{k}^{T}s_{k}}\right)y_{k} - \left[\left(1 + \theta_{k+1}\frac{y_{k}^{T}y_{k}}{y_{k}^{T}s_{k}}\right)\frac{g_{k+1}^{T}s_{k}}{y_{k}^{T}s_{k}} - \theta_{k+1}\frac{g_{k+1}^{T}y_{k}}{y_{k}^{T}s_{k}}\right]s_{k}, \quad (18)$$

Observe that if $g_{k+1}^T s_k = 0$, then (18) reduces to:

$$d_{k+1} = -\theta_{k+1}g_{k+1} + \theta_{k+1}\frac{g_{k+1}^{T}y_{k}}{y_{k}^{T}s_{k}}s_{k}.$$
(19)

Thus, in this case, the effect is simply one of multiplying the Hestenes and Stiefel [1952] search direction by a positive scalar. Thus, we get another class of scaled memoryless BFGS preconditioned conjugate gradient algorithms. The implementation of the direction (18), in the context of Powell restarts, is given by Andrei [2004a, 2004b, 2005, 2006a, 2006b] in SCALCG package. The scaling factor is selected as the spectral gradient or in an anticipative manner as it is described in [Andrei, 2004a, 2004b, 2005, 2006a, 2006b].

Recently, for solving (1), Hager and Zhang [2004a, 2004b] presented a *conjugate gradient algorithm with guaranteed descent* and the performance of the Fortran 77 package CG_DESCENT which implements it. The directions d_k are computed by the following rule:

$$d_{k+1} = -g_{k+1} + \beta_k d_k, \tag{20}$$

$$\beta_{k} = \frac{1}{d_{k}^{T} y_{k}} \left(y_{k} - 2 \frac{y_{k}^{T} y_{k}}{d_{k}^{T} y_{k}} d_{k} \right)^{T} g_{k+1},$$
(21)

 $d_0 = -g_0$. We see that the above direction d_{k+1} of Hager and Zhang, given in (20)-(21), denoted d_{k+1}^{HZ} , can be expressed as:

$$d_{k+1}^{HZ} = -g_{k+1} - \frac{y_k^T y_k}{s_k^T y_k} \left[2 \frac{s_k^T g_{k+1}}{s_k^T y_k} - \frac{y_k^T g_{k+1}}{y_k^T y_k} \right] s_k.$$
(22)

On the other hand, the direction generated by Shanno, let call it d_{k+1}^S , is given as :

$$d_{k+1}^{S} = -\frac{s_{k}^{T} y_{k}}{y_{k}^{T} y_{k}} g_{k+1} - \left[2 \frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}} - \frac{y_{k}^{T} g_{k+1}}{y_{k}^{T} y_{k}} \right] s_{k} + \frac{s_{k}^{T} g_{k+1}}{y_{k}^{T} y_{k}} y_{k}.$$
(23)

After some simple algebra we see that the direction d_{k+1}^{HZ} of Hager and Zhang is related to the direction d_{k+1}^{S} of Shanno in the following way:

$$d_{k+1}^{S} = \frac{s_{k}^{T} y_{k}}{y_{k}^{T} y_{k}} \left(d_{k+1}^{HZ} + \frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}} y_{k} \right), \quad \text{or} \quad d_{k+1}^{HZ} = \frac{y_{k}^{T} y_{k}}{s_{k}^{T} y_{k}} d_{k+1}^{S} - \frac{s_{k}^{T} g_{k+1}}{s_{k}^{T} y_{k}} y_{k}.$$

With other words, the direction d_{k+1}^{HZ} is obtained from d_{k+1}^{S} by deleting the term

$$\frac{s_k^T g_{k+1}}{y_k^T y_k} y_k.$$
(24)

In their algorithm Hager and Zhang restrict β_k to be nonnegative. This is motivated by the work of Gilbert and Nocedal [1992] who modified the Polak and Ribière updating formula as $\beta_k^+ = max\{\beta_k, 0\}$ and proved the global convergence of this computational scheme for general nonlinear functions. Similar to the approaches considered by Gilbert and Nocedal [1992], Han, Liu, Sun and Yin [1994], and Wang, Han and Wang [2000] in their studies on the Polak-Ribière version of the conjugate gradient method, Hager and Zhang prove the convergence for general nonlinear functions by restricting the lower bound of β_k in the following manner:

$$d_{k+1} = -g_{k+1} + \bar{\beta}_k d_k,$$
(25)

$$\overline{\beta}_{k} = \max\{\beta_{k}, \eta_{k}\},\tag{26}$$

$$\eta_k = \frac{-1}{\left\| d_k \left\| \min\{\eta, \left\| g_k \right\| \right\}},\tag{27}$$

where β_k is given by (21), and the parameter $\eta > 0$ is a user specified constant. (Suggested value: $\eta = 0.01$, considered in all numerical experiments).

An important innovation given by Hager and Zhang in their approach consists of a *new efficient and highly accurate line search procedure*. This is based on the Wolfe conditions (9a)-(9b) and on a very fine interpretation of the numerical issue concerning the first Wolfe condition (9a). Intensive numerical experiments with conjugate gradient algorithms show that the SCALCG package is top performer among conjugate gradient algorithms [Andrei, 2004a, 2004b, 2005, 2006a, 2006b],

3. Performance of Conjugate Gradient Algorithms on some MINPACK-2 Unconstrained Optimization Applications

In the following we present the performances of 14 conjugate gradient algorithms on 6 applications from MINPACK-2 collection [Averick, Carter and Moré, 1991], [Averick, Carter, Moré, and Xue Guo-Liang, 1992]. In this numerical study we consider only the performances of SCALCG [Andrei, 2004a, 2004b, 2005, 2006a, 2006b], SCG [Birgin and Martínez, 2001], CONMIN [Shanno and Phua, 1976], sPR, sFR, Perry-Shanno, Dai-Yuan, Dai-Liao, Dai Liao+, hHS-DY, HS, PRP, PRP+ and FR. All codes are written in Fortran 77 (default compiler settings) on a workstation Intel 4, 1.8GHz. SCALCG is authored by Andrei, CONMIN is co-authored by Shanno and Phua, and SCG by Birgin and Martínez. The rest of algorithms are implemented by Andrei. In all these numerical experiments we have considered the standard initial point, as it is recommended in MINPACK-2 and the iterations were stopped according to the following criteria:

$$\|g_k\|_{\infty} \le 10^{-5} \text{ or } t_k |g_k^T d_k| \le 10^{-20} |f(x_{k+1})|.$$

SCALCG packages uses the Powell restart criterion. SCG and scaled variants of Polak-Ribière-Polyak or Fletcher-Reeves use the angle restart criterion (see [Andrei, 2005]). All these algorithms uses the same implementation of the Wolfe line search procedure with the same values of parameters σ_1 and σ_2 .

3.1. Elastic-Plastic Torsion

This problem consists of determination of the stress field on an infinitely long cylindrical bar. The infinite-dimensional version of the problem is as follows:

$$\min\{q(v):v\in K\},\$$

where $q: K \rightarrow R$ is the quadratic function

$$q(v) = \frac{1}{2} \int_{D} \|\nabla v(x)\|^2 dx - c \int_{D} v(x) dx$$

for some constant c and D is a bounded domain with smooth boundary. The convex set K is defined by

$$K = \left\{ v \in H_0^1(D) : \left| v(x) \le dist(x, \partial D), x \in D \right| \right\},\$$

where $dist(.,\partial D)$ is the distance function to the boundary of D, and $H_0^1(D)$ is the Hilbert space of all functions with compact support in D such that v and $\|\nabla v\|^2$ belong to $L^2(D)$. This formulation, as well as the physical interpretation of the torsion problem are presented by Glowinski [1984, pp.41-55]. The finite element approximation to the torsion problem is obtained by triangulating D and replacing the minimization of q over $H_0^1(D)$ by the minimization of q over the set of picewise linear functions that satisfy the constraints specified by K, as is given by Averick, Carter and Moré [1991, pp.21-23]. More specifically, the finite element approximation considered by Averick, Carter and Moré is for a quadratic q is of the general form:

$$q(v) = \frac{1}{2} \int_{D} w_q(x) \|\nabla v(x)\|^2 dx - \int_{D} w_l(x) v(x) dx$$

where $w_q : D \to R$ and $w_l : D \to R$ are functions defined on the rectangle D. In the torsion problem $w_q = 1$ and $w_l = c$. This problem is solved by triangulation of D by choosing $n_x \times n_y$ grid points inside of D.

Considering $D = (0,1) \times (0,1)$ and c = 5 the performances of the optimization packages considered in this numerical study are given in Tables 4 and 5.

		θ^{s}			$ heta$ a	
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	217	284	12.20	255	338	14.45
SCG	193	291	16.04	233	356	19.60
sPRP	229	363	19.77	243	389	21.09
sFR	274	430	23.40	215	342	18.51
Perry-Shanno	237	361	19.83	259	396	21.76
Dai-Yuan	318	496	27.08	245	379	20.70
Dai-Liao	286	432	23.89	279	423	23.34
Dai-Liao +	276	428	23.35	274	422	23.12
hHS-DY	211	330	17.96	248	391	21.26
HS	262	412	22.41	260	407	22.25
PRP	237	391	20.98	264	443	23.68
PRP+	237	391	20.98	264	443	23.61
FR	247	412	22.02	201	339	18.07

Table 4: Performance of Conjugate Gradient AlgorithmsElastic-Plastic Torsion Problem.nx = 100, ny = 100, c = 5., n = 10000.

Table 5. Performance of Conjugate Gradient AlgorithmsElastic-Plastic Torsion Problem.nx = 200, nv = 200, c = 5., n = 40000.

	θ^{s}				$ heta$ a		
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)	
SCALCG	398	511	87.39	473	614	104.80	
SCG	370	573	126.77	427	659	146.15	
sPRP	466	743	163.13	419	669	146.65	
sFR	387	620	135.34	394	612	134.73	
Perry-Shanno	445	684	151.43	400	619	136.60	

Dai-Yuan	439	677	149.61	511	810	177.68
Dai-Liao	452	711	156.76	326	510	113.32
Dai-Liao +	497	772	170.38	338	529	116.11
hHS-DY	398	625	137.75	379	591	130.01
HS	401	620	136.82	431	675	148.41
PRP	291	486	104.47	475	807	174.45
PRP+	291	486	104.52	475	807	173.62
FR	445	748	161.76	518	886	190.20

Numerical results for the elastic-plastic torsion problem are presented, for example, by Elliot and Ockendon [1982], O'Leary and Yang [1989] and Moré and Toraldo [1991]. The solution for nx = 10, ny = 10 is illustrated in Figure 1.

Figure: 1. Elastic-Plastic Torsion solution. nx = 10, ny = 10.

3.2. Pressure Distribution in a Journal Bearing

This problem consists of determining the pressure distribution in a thin film of lubricant between two circular cylinders. The infinite-dimensional version of the problem is of the form:

$$\min\{q(v): v \in K\}, \qquad q(v) = \frac{1}{2} \int_{D} w_q(x) \|\nabla v(x)\|^2 dx - \int_{D} w_l(x) v(x) dx$$

with

$$w_q(z_1, z_2) = (1 + \varepsilon \cos z_1)^3, \quad w_l(z_1, z_2) = \varepsilon \sin z_1$$

for some constant $\varepsilon \in (0,1)$ and $D = (0,2\pi) \times (0,2b)$ for some constant b > 0. The convex set K is defined by $K = \{v \in H_0^1(D) : v \in D\}$. Considering b = 10 and $\varepsilon = 0.1$, then the performances of the optimization packages considered are given in Tables 6 and 7.

		θ^{s}			$ heta$ a	
Algorithm	# iter	# fg	Cpu (s)	# iter	# fg	cpu (s)
SCALCG	433	567	23.51	461	620	25.71
SCG	617	956	53.28	443	692	38.40
sPRP	523	838	46.08	652	1035	57.23
sFR	495	777	42.79	546	864	47.62
Perry-Shanno	453	709	39.33	503	783	43.61
Dai-Yuan	532	835	46.08	506	792	43.77
Dai-Liao	443	696	38.39	546	854	47.41
Dai-Liao +	476	744	41.03	510	797	44.05
hHS-DY	485	755	41.69	421	661	36.36
HS	458	726	39.87	409	636	35.15
PRP	530	856	46.69	474	767	41.80
PRP+	530	856	46.69	474	767	41.80
FR	590	898	49.98	312	501	27.24

Table 6. Performance of Conjugate Gradient AlgorithmsPressure Distribution in a Journal Bearingnx = 100, ny = 100, ecc = 0.1, b = 10, n = 10000.

Table 7. Performance of Conjugate Gradient AlgorithmsPressure Distribution in a Journal Bearingnx = 200, ny = 200, ecc = 0.1, b = 10, n = 40000.

		θ^{s}			$ heta$ a	
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	876	1143	189.11	900	1157	191.14
SCG	1117	1746	387.00	1115	1749	386.41
sPRP	980	1556	341.86	1120	1775	390.52
sFR	874	1399	305.49	839	1326	290.17
Perry-Shanno	848	1332	294.78	1101	1745	385.35
Dai-Yuan	1098	1721	379.16	1206	1888	415.35
Dai-Liao	959	1508	333.50	1171	1823	403.81
Dai-Liao +	975	1530	336.37	1213	1907	419.25
hHS-DY	1096	1722	379.42	918	1449	317.69
HS	872	1386	303.96	1022	1609	353.99
PRP	Ť			1033	1549	344.82
PRP+	Ť			1033	1549	344.11
FR	1101	1758	384.04	2235	2860	676.02

† Failure, $f(x_{207}) = 0.366117$, $\|g_{207}\|_2 = 0.2628$.

Numerical results for the journal bearing problem can be found, for example, in Lin and Cryer [1985], Cimatti and Menchi [1978] and Moré and Toraldo [1991]. Figure 2 illustrates the solution of the problem for nx = 10, ny = 10.

Figure 2: Pressure Distribution in a Journal Bearing solution. nx = 10, ny = 10.

3.3. Optimal Design with Composite Materials

This problem requires determining the placement of two elastic materials in the cross-section of a rod with maximal torsional rigidity. The formulation of the problem is given in Goodman, Kohn and Reyna [1986] and Averick, Carter and Moré [1991].

Let $D \subset R^2$ be a bounded domain, and let w < |D|, where |D| denotes the area of D. The problem is formulated as:

$$min\left\{F(v,\Omega): v \in H_0^1(D), \ \left|\Omega\right| = w\right\},\$$

where

$$F(v,\Omega) = \int_{D} \left\{ \frac{1}{2} \mu(x) \| \nabla v(x) \|^{2} + v(x) \right\} dx,$$

and

 $\mu(x) = \mu_1$ for $x \in \Omega$, and $\mu(x) = \mu_2$ for $x \notin \Omega$.

The reciprocals of the constants μ_1 and μ_2 are the shear moduli of the elastic materials in the rod. It is assumed that $\mu_1 < \mu_2$.

Goodman, Kohn and Reyna [1986] give some details and formulate the optimal design problem in terms of a family of problems of the following form:

$$min\left\{f_{\lambda}(v):v\in H_0^1(D)\right\},\,$$

where $f_{\lambda}: H_0^1(D) \to R$ is the functional

$$f_{\lambda}(v) = \int_{D} \left\{ \psi_{\lambda} \left(\left\| \nabla v(x) \right\| \right) + v(x) \right\} dx$$

and $\psi_{\lambda}: R \to R$ is a picewise quadratic. In this formulation λ is the Lagrange multiplier associated to the optimal design problem, and the picewise quadratic ψ_{λ} is of the form:

$$\psi_{\lambda}(t) = \begin{cases} \frac{1}{2}\mu_{2}t^{2}, & 0 \le t \le t_{1}, \\ \mu_{2}t_{1}(t - \frac{1}{2}t_{1}), & t_{1} \le t \le t_{2}, \\ \frac{1}{2}\mu_{1}(t^{2} - t_{2}^{2}) + \mu_{2}t_{1}(t_{2} - \frac{1}{2}t_{1}), & t_{2} \le t, \end{cases}$$

with the breakpoints t_1 and t_2 defined by

$$t_1 = \left(2\lambda \frac{\mu_1}{\mu_2}\right)^{1/2}$$
 and $t_2 = \left(2\lambda \frac{\mu_2}{\mu_1}\right)^{1/2}$.

The problem considered in Averick, Carter and Moré [1991] is that of minimizing f_{λ} for a fixed value of λ . A finite element approximation to this problem is obtained, in a canonical manner, by minimizing f_{λ} over the space of picewise linear functions ν with values ν_{ij} at z_{ij} , where $z_{ij} \in \mathbb{R}^2$ are the vertices of a triangulation of D with grid spacings h_x and h_y . Considering $\mu_1 = 1$ and $\mu_2 = 2$, the Tables 8 and 9 give the performances of the packages for different values of discretization n_x and n_y .

nx = 100, ny = 100, c = 5., n = 10000.						
		θ^{s}		θ^{a}		
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	628	801	49.49	644	815	50.31
SCG	1519	2309	169.99	1249	1907	140.11
sPRP	1461	2280	166.65	1314	2069	150.72
sFR	1451	2295	166.81	1421	2229	162.09
Perry-Shanno	1353	2060	152.31	1256	1926	141.87
Dai-Yuan	1147	1744	128.26	1337	2035	149.67
Dai-Liao	1543	2355	173.95	1365	2074	152.53
Dai-Liao +	1603	2426	178.07	1165	1788	130.72
hHS-DY	1211	1835	134.68	1397	2140	156.54
HS	1452	2222	162.80	1265	1935	142.26
PRP	Ť			•		
PRP+	Ť			•		
FR	**			*		

Table 8. Performance of Conjugate Gradient Algorithms *Optimal Desing with Composite materials.* nx = 100, nv = 100, c = 5., n = 10000.

† Failure, $f(x_{25}) = 0.00856922$,	$\ g_{25}\ _2 = 0.111017$
$Failure, f(x_{68}) = 0.00427538$	$\ g_{68}\ _2 = 0.0691171_{.}$
• Failure, $f(x_{68}) = -0.000109309$,	$\ g_{68}\ _2 = 0.0623754$
• Failure, $f(x_{267}) = -0.0096339$,	$\ g_{267}\ _2 = 0.0155195$

nx = 200, ny = 200, c = 5., n = 40000.						
		θ^{s}			$ heta$ a	
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	1413	1753	431.82	939	1157	285.06
SCG	3952	6003	1758.38	3184	4828	1414.88
sPRP	4528	7148	2073.66	4567	7158	2080.25
sFR	3957	6139	1783.10	4019	6227	1810.51
Perry-Shanno	4278	6471	1908.49	4246	6396	1887.90
Dai-Yuan	4485	6854	1999.07	4477	6819	1990.06
Dai-Liao	4371	6674	1950.40	3767	5779	1691.44
Dai-Liao +	4080	6157	1801.22	4027	6166	1796.72
hHS-DY	3062	4643	1356.66	3782	5723	1672.48
HS	3990	6071	1772.89	3936	5990	1746.41
PRP	Ť			•		
PRP+	Ť			•		
FR	*			*		

Table 9. Performance of Conjugate Gradient Algorithms *Optimal Desing with Composite materials.* nx = 200, nv = 200, c = 5., n = 40000.

† Failure, $f(x_{79}) = 0.0122556$, $||g_{79}||_2 = 0.0834894$.

‡ Failure, $f(x_{111}) = 0.0026687$, $||g_{111}||_2 = 0.0369373$.

• Failure,
$$f(x_{354}) = -0.00748145$$
, $\|g_{354}\|_2 = 0.0312285$.

• Failure, $f(x_{56}) = 0.0105501$, $||g_{56}||_2 = 0.0851817$.

Figure 3 presents the solution of the problem for discretization nx = 10, ny = 10.

Figure 3: Optimal Design with Composite Materials solition. nx = 10, ny = 10.

3.4. Inhomogeneous Superconductors

This problem appears in the solution of Ginzburg-Landau equations for inhomogeneous superconductors in the absence of a magnetic field. The one-dimensional system consists of alternating layers of lead and tin. The formulation of the problem is given by Garner and Benedek [1990] and Averick, Carter and Moré [1991].

The optimization problem is to minimize the Gibbs free energy as a function of the temperature. The infinite-dimensional version of the problem is of the form

$$min\{f(v): v(-d) = v(d), v \in C^{1}[-d, d]\},\$$

where 2d is the width of the material, and f is the Gibbs free energy function:

$$f(v) = \frac{1}{2d} \int_{-d}^{d} \left\{ \alpha(\xi) |v(\xi)|^{2} + \frac{1}{2} \beta(\xi) |v(\xi)|^{4} + \frac{\hbar}{4m} |v'(\xi)|^{2} \right\} d\xi,$$

where the functions α and β are picewise constant for a fixed value of the temperature, \hbar is the Planck's constant (1.05459e-27 erg-sec), and *m* is the mass of the electron (9.11e-28 grams).

The functions α and β are constant in the intervals that correspond to the lead and the tin. The finite element approximation to the superconductivity problem is obtained by minimizing f over the space of picewise linear functions v with values v_i at points t_i , where

$$-d = t_1 < t_2 < \dots < t_n = d.$$

Therefore the values v_i are obtained as solution of the following minimization problem

$$min\left\{\frac{1}{2d}\sum_{i=1}^n f_i(v): v \in \mathbb{R}^n\right\},\$$

where

$$f_i(v) = h_i \left\{ \frac{\alpha_i}{3} \frac{v_{i+1}^3 - v_i^3}{v_{i+1} - v_i} + \frac{\beta_i}{5} \frac{v_{i+1}^5 - v_i^5}{v_{i+1} - v_i} + \frac{\hbar}{4m} \left(\frac{v_{i+1} - v_i}{h_i} \right)^2 \right\},\$$

with $h_i = t_{i+1} - t_i$ is the length of the *i*-th subinterval, and the constants α_i and β_i the values of the functions α and β in the subinterval $[t_i, t_{i+1}]$.

Table 10. Performance of Conjugate Gradient Algorithms Inhomogeneous Superconductors. t = 7, n = 1000

$t = 7, \ n = 1000$.						
		θ^{s}		θ^a		
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	7422	9499	141.32	5560	7107	108.04
SCG	10001	15724	230.02	10001	15664	229.92
sPRP	10001	15976	236.62	10001	16028	237.66
sFR	10001	15860	235.57	10001	15864	236.23
Perry-Shanno	10001	15737	236.51	10001	15675	232.78
Dai-Yuan	10001	15736	233.60	10001	15697	233.10
Dai-Liao	10001	15759	235.19	10001	15706	233.98
Dai-Liao +	10001	15747	232.34	10001	15738	233.66
hHS-DY	10001	15714	233.81	10001	15677	228.05
HS	10001	15710	234.32	10001	15720	233.38
PRP	10001	10931	170.71	10001	10124	159.50
PRP+	10001	10931	170.15	10001	10124	159.45
FR	10001	11262	174.61	10001	11753	181.14

In Figure 4 it is shown the solution of the problem for n = 100.

Figure 4: Ginzburg-Landau (1-dimensional) solution. n=100.

3.5. Lennard-Jones Clusters. Molecular Conformation.

The molecular conformation problem consists of determination of the minimum energy configuration of a cluster of atoms or molecules. This is a central problem in the study of cluster statics [Hoare, 1979] Given the positions p_1, p_2, \ldots, p_n of n molecules (points) in R^d , the energy potential function is defined as

$$V_d(p) = \sum_{j=2}^n \sum_{i=1}^{j-1} v \Big(\|p_j - p_i\|_2 \Big),$$

where $v : R \to R$ is the potential function between pairs of atoms. The Lennard-Jones potential function is defined as

$$v(r) = r^{-12} - 2r^{-6}.$$

The molecular conformation problem is to determine a configuration (position for the n points) such that the energy function V_d is minimized. Table 11 shows the results of the conjugate gradient algorithms considered in this study.

	θ^{s}			θ^{a}		
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	1252	2002	383.16	1583	2007	384.37
SCG	4552	7103	1117.24	4656	7229	1137.89
sPRP	2058	3259	668.33	2202	3477	713.37
sFR	1711	2915	595.89	2127	3325	680.92
Perry-Shanno	2467	3886	796.14	2603	4141	848.38
Dai-Yuan	1932	3087	633.07	2889	4893	1001.84
Dai-Liao	1719	2780	569.85	1888	3124	639.55
Dai-Liao +	2989	4806	985.15	2934	4709	965.26
hHS-DY	1593	2512	515.25	1806	2981	610.11
HS	1791	2894	593.25	1440	2351	481.42
PRP	2464	3694	758.80	6998	9019	1858.57
PRP+	2464	3694	758.68	6998	9019	1857.80
FR	5683	8090	1662.37	2208	3428	702.39

Table 11. Performance of Conjugate Gradient AlgorithmsLeonard-Jones Clusters. Molecular Conformationndim=3, natoms=1000, n = 3000.

3.6. Steady State Combustion. Solid fuel ignition.

The study of the steady-state in solid fuel ignition models leads to the infinite-dimensional optimization problem

 $\min\{f_{\lambda}(v): v \in H_0^{\perp}(D)\},\$

where $f_{\lambda}: H_0^{\perp}(D) \to R$ is the functional

$$f_{\lambda}(v) = \int_{D} \left\{ \frac{1}{2} \left\| \nabla v(x) \right\|^{2} - \lambda \exp[v(x)] \right\} dx,$$

and $\lambda \ge 0$ is a parameter. This problem is the variational formulation of the boundary value problem

$$-\Delta v(x) = \lambda \exp[v(x)], x \in D, v(x) = 0 \text{ for } x \in \partial D$$

where Δ is the Laplacian operator. Aris [1975], Bebernes and Eberly [1989] discuss this problem in the context of combustion process.

The problem is solved using a finite element approximation, by minimizing f over the space of piecewise linear functions v with values v_{ij} at z_{ij} , where $z_{ij} \in R^2$ are the vertices of a triangulation of D with grid spacings h_x and h_y . The values v_{ij} are obtained as solution of the following minimization problem:

$$min\left\{\sum \left(f_{ij}^{L}(v)+f_{ij}^{U}(v)\right): v \in \mathbb{R}^{n}\right\},\$$

where

$$f_{ij}^{L}(v) = \frac{h_{x}h_{y}}{4} \left\{ \left(\frac{v_{i+1,j} - v_{ij}}{h_{x}} \right)^{2} + \left(\frac{v_{i,j+1} - v_{ij}}{h_{y}} \right)^{2} - \lambda \mu_{ij}^{L} \right\},$$
$$\mu_{ij}^{L} = \frac{2}{3} \left\{ \exp(v_{ij}) + \exp(v_{i+1,j}) + \exp(v_{i,j+1}) \right\},$$
$$f_{ij}^{U} = \frac{h_{x}h_{y}}{4} \left\{ \left(\frac{v_{i-1,j} - v_{ij}}{h_{x}} \right)^{2} + \left(\frac{v_{i,j-1} - v_{ij}}{h_{y}} \right)^{2} - \lambda \mu_{ij}^{U} \right\},$$
$$\mu_{ij}^{U} = \frac{2}{3} \left\{ \exp(v_{ij}) + \exp(v_{i-1,j}) + \exp(v_{i,j-1}) \right\}.$$

In this formulation f_{ij}^{L} is defined only when $0 \le i \le n_x$ and $0 \le j \le n_y$, while f_{ij}^{U} is defined when $1 \le i \le n_x + 1$ and $1 \le j \le n_y + 1$. Tables 12 and 13 show the performances of the conjugate gradient algorithms considered in this study.

	θ^{s}			θ^{a}		
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	312	408	33.28	266	348	28.40
SCG	340	527	50.75	288	445	42.85
sPRP	316	494	47.01	230	361	34.27
sFR	298	478	45.21	307	486	46.08
Perry-Shanno	336	515	49.38	389	601	57.57
Dai-Yuan	400	632	59.97	311	488	46.30
Dai-Liao	431	682	64.87	275	431	40.98
Dai-Liao +	269	430	40.70	299	469	44.54
hHS-DY	364	564	53.66	336	524	49.76

Table 12. Performance of Conjugate Gradient AlgorithmsSteady State Combustion. Solid fuel ignition. $nx = 100, ny = 100, \lambda = 0.07, n = 10000$.

HS	313	481	45.87	290	446	42.46
PRP	383	639	60.08	434	726	68.28
PRP+	383	639	60.09	434	726	68.21
FR	430	737	68.99	346	560	52.89

Table 13. Performance of Conjugate Gradient AlgorithmsSteady State Combustion. Solid fuel ignition. $nx = 200, ny = 200, \lambda = 0.07, n = 40000$.

	θ^{s}			θ^{a}		
Algorithm	# iter	# fg	cpu (s)	# iter	# fg	cpu (s)
SCALCG	546	720	233.65	460	586	190.05
SCG	589	927	354.21	503	787	300.88
sPRP	532	845	319.39	613	966	365.63
sFR	637	1007	380.58	540	853	322.47
Perry-Shanno	463	736	279.19	622	977	372.01
Dai-Yuan	675	1048	397.33	555	869	328.45
Dai-Liao	479	756	285.94	564	892	337.35
Dai-Liao +	580	911	345.32	640	988	374.87
hHS-DY	697	1084	410.95	561	873	330.49
HS	681	1067	403.71	426	673	253.64
PRP	553	941	350.81	487	831	309.39
PRP+	553	941	351.30	487	831	309.78
FR	636	1079	403.26	663	1129	421.50

In the following we present the performances of CONMIN by Shanno and Phua [1976] on these unconstrained optimization applications. CONMIN implements an algorithm which is very close to SCALCG. Both of them consider a BFGS modification of the Perry updating scheme which satisfy the quasi-Newton equation in a Beale-Powell restart environment. Mainly, the difference is in the scaling of gradient parameter. SCALCG considers a scalar approximation of the inverse Hessian, which prove to be efficient and robust in numerical experiments, while CONMIN uses a value minimizing the condition number of the matrix $H_k^{-1}H_{k+1}$. CONMIN implements the Wolfe line searches in a similar manner as they are implemented in SCALCG. Table 14 shows the performance of CONMIN on these unconstrained optimization MINPACK-2 applications.

Application	n	#iter	# fg	cpu(s)	$f(x^*)$
Electic Disstic Torgion	10000	217	420	17.00	0.42016220
Elastic-Plastic Torsion	10000	217	439	17.90	-0.43916320
	40000	242	486	78.76	-0.43926781
Pressure Distribution in a					
Journal Bearing	10000	396	801	32.74	-0.2828400078
	40000	819	1657	270.23	-0.282892943
Optimal Design with					
Composite Materials	10000	359	729	40.76	-0.011377240
	40000	675	1370	305.28	-0.011381291
Inhomogeneous					
Superconductors	1000	9881	20001	270.12	0.11079927e-03
Lennard-Jones Clusters.					
Molecular Conformation	3000	880	1819	507.07	-6605.4586893
Steady State					
Combustion. Solid fuel	10000	171	346	28.40	-0.070086368
ignition.					
	40000	467	948	310.60	-0.070086374

Table 14. Performances of CONMIN on 10 MINPACK-2 applications.

4. Conclusion

In this study we have presented a survey and comparative numerical performances of a number of well known conjugate gradient algorithms for solving some applications from MINPACK-2 collection. The conjugate gradient algorithms classifies in four groups: conjugacy condition algorithms, hybrid conjugate gradient, scaled conjugate gradient and preconditioned conjugate gradient algorithms. All conjugate gradient algorithms are able to solve a large variety of large-scale unconstrained optimization problems. The above Tables give computational evidence that our SCALCG - scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization is the top performer among the conjugate gradient algorithms. Close to SCALCG is CONMIN algorithm by Shanno and Phua. Both these algorithms use the same philosophy based on a BFGS preconditioning of the search direction in such a way to satisfy the quasi-Newton equation. Although SCALCG and CONMIN have a lot of algebra in common, we see that SCALCG is more performant than CONMIN. We see that SCALCG is with 488.32 seconds faster than CONMIN. The other conjugate gradient algorithms considered in this study are less robust showing that the conjugacy condition alone is unable to provide an efficient searching direction. The preconditioned variants of conjugate gradient algorithms (CONMIN and SCALCG) proved to be more robust and more efficient for solving large-scale nonlinear unconstrained optimization problems.

REFERENCES

- 1. ANDREI, N., (2006a). Scaled conjugate gradient algorithms for unconstrained optimization. Accepted: Computational Optimization and Applications.
- 2. ANDREI, N., (2006b). Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization. Accepted: Optimization Methods and Software.
- 3. ARIS, R., (1975). The mathematical theory of diffusion and reaction in permeable catalysts. Oxford, 1975.
- AVERICK, B.M., CARTER, R.G. and MORÉ, J.J., (1991). The MINPACK-2 test problem collection (preliminary version). Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, Technical Memorandum No.150, May 1991.
- AVERICK, B.M., CARTER, R.G., MORÉ, J.J. and XUE, GUO-LIANG, (1992). The MINPACK-2 test problem collection. Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, Preprint MCS-P153-0692, June 1992.
- 6. BEBERNES, J. and EBERLY, D., (1989). Mathematical problems from combustion theory. Applied Mathyematical Science, 83, Springer-Verlag, 1989.
- 7. BIRGIN, E. and MARTINEZ, J.M., (2001). A spectral conjugate gradient method for unconstrained optimization. Applied Math. And Optimization, 43, pp. 117-128, 2001.
- 8. CIMATTI, G. and MENCHI, O., (1978). On the numerical solution of a variational inequality connected with the hydrodynamic lubrication of a complete journal bearing. Calcolo, 15, 1978, pp.249-258.
- 9. DAI, Y.H. and LIAO, (2001). New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim., 43, pp. 87-101, 2001.
- 10. DAI, Y.H. and NI, Q., (2003). Testing different conjugate gradient methods for large-scale unconstrained optimization. J. Comput. Math., 21, 2003, pp. 311-320.

- 11. DAI, Y.H. and YUAN Y., (1998). A class of globally convergent conjugate gradient methods. Research report ICM-98-030, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 1998.
- 12. DAI, Y.H. and YUAN, Y., (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim., 10, pp.177-182, 1999.
- 13. DAI, Y.H. and YUAN, Y., (2001). A three-parameter family of hybrid conjugate gradient method.Math. Comp., 70, pp.1155-1167, 2001.
- 14. DAI, Y.H. and YUAN, Y., (2003). A class of globally convergent conjugate gradient methods. Sci. China Ser. A, 46 pp.251-261, 2003.
- 15. DANIEL, J.W., (1967). The conjugate gradient method for linear and nonlinear operator equations. SIAM J. Numer. Anal., 4, pp.10-26, 1967.
- 16. ELLIOT, C.M. and OCKENDON, J.R., (1982). Weak and variational methods for moving boundary problems. Research Notes in Mathematics, vol.59, Pittman, 1982.
- 17. FLETCHER, R. (1987). Practical Methods of Optimization vol.1: Unconstrained Optimization. Jhon Wiley & Sons, New York, 1987.
- 18. FLETCHER, R. and REEVES, C.M. (1964). Function minimization by conjugate gradients. Computer Journal, 7, 1964, pp.149-154.
- 19. GARNER, J. and BENEDEK, R. (1990). Solution of Ginzburg-Landau equations for inhomogeneous superconductors by nonlinear optimization. Phys. Rev., B. 42, 1990, pp.376-385.
- 20. GILBERT, J.C. and NOCEDAL, J., (1992). Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim., 2, pp.21-42, 1992.
- 21. GLOWINSKI, R.(1984). Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, 1984.
- 22. GOODMAN, J., KOHN, R. and REYNA, L. (1986). Numerical study of a relaxed variational problem from optimal design. Comput. Methods Appl. Mech. Engrg., 57, 1986, pp.107-127.
- 23. HAGER, W.W., and ZHANG, H. (2004a). A new conjugate gradient method with guaranteed descent and an efficient line search. University of Florida, Department of Mathematics, November 17, 2003 (theory and comparisons), revised July 3, 2004.
- 24. HAGER, W.W., and ZHANG, H. (2004b). CG-DESCENT, A conjugate gradient method with guaranteed descent (algorithm details and comparisons). University of Florida, Department of Mathematics, January 15, 2004.
- 25. HAGER, W.W. and ZHANG, H. (2005). A survey of nonlinear conjugate gradient methods. Department of Mathematics, University of Florida, February 7, 2005.
- HAN, J.Y., LIU, G.H., SUN D.F., and YIN, H.X. (1994). On the global convergence of nonlinear conjugate gradient methods, Technical Report 94-011, Inst. of Applied Math., Chinese Academy of Science, Beijing, 1994.
- 27. HESTENES, M.R. and STIEFEL, E. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 1952, pp. 409-436.

- 28. HOARE, M.R. (1979). Structure and dynamics of simple microclusters. Advances in Chemical Physics, 40, pp. 49-135, 1979.
- 29. HU, Y.F. and STOREY, C. (1991). Global convergence result for conjugate gradient methods. JOTA, 71, pp. 399-405, 1991.
- LIN, Y. and CRYER, C.W. (1985). An alternating direction implicit algorithm for the solution of linear complementarity problems arising from free boundary problems. Appl. Math. Optim., 13, 1985, pp.1-17.
- 31. LIU, Y. and STOREY, C. (1991). Efficient generalized conjugate gradient algorithms, Part 1: Theory. JOTA, 69, pp. 129-137, 1991.
- 32. MORÉ, J.J. and TORALDO, G. (1991). On the solution of large quadratic programming problems with bound constraints. SIAM J. Optimization, 1, 1991, pp. 93-113.
- 33. NAZARETH, J.L. (1999). Conjugate gradient methods. Enciclopedia of Optimization, C. Floudas and P. Pardalos, (Eds.), Kluwer Academic Publishers, Boston, 1999.
- 34. O'LEARY, D.P. and YANG, W.H. (1978). Elastoplastic torsion by quadratic programming, Comput. Methods Appl. Mech. Engrg., 16, 1978, pp. 361-368.
- 35. TOUATI-AHMED, D. and STOREY, C. (1990). Efficient hybrid conjugate gradient techniques. JOTA, 64, pp.379-397, 1990.
- PERRY, J.M. (1977). A class of conjugate gradient algorithms with a two step variable metric memory. Discussion paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern University, 1977.
- 37. POLAK, E., and RIBIÈRE, G. (1969). Note sur la convergence de directions conjugées. Rev. Francaise Informat. Recherche Operationelle, 3e Année 16, pp. 35-43, 1969.
- 38. POLYAK, B.T. (1969). The conjugate gradient method in extreme problems. URSS Comp. Math. Math. Phys., 9, pp. 94-112, 1969.
- 39. POWELL, M.J.D. (1977). Restart procedures of the conjugate gradient method. Math. Programm., 2, pp. 241-254, 1977.
- 40. POWELL, M.J.D. (1984). Nonconvex minimization calculations and the conjugate gradient method. Numerical Analysis (Dundee, 1983), Lecture Notes in Mathematics, vol. 1066, Springer Verlag, 1984, pp. 122-141.
- 41. RAYDAN, M. (1997). The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Opt., 7, 26-33, 1997.
- 42. SHANNO, D.F. (1978). Conjugate gradient methods with inexact searches. Mathematics of Operations Research, vol. 3, pp. 244-256, 1978.
- 43. SHANNO, D.F., and PHUA, K.H. Algorithm 500, Minimization of unconstrained multivariate functions [E4], ACM Trans. on Math. Soft., 2, pp .87-94, 1976.
- 44. WANG, C., HAN, J., and WANG, L. (2000). Global convergence of the Polak-Ribière and Hestens-Stiefel conjugate gradient methods for the unconstrained nonlinear optimization, OR Transactions, 4, pp. 1-7, 2000.

- 45. WOLFE, P. (1969). Convergence conditions for ascent methods. SIAM Rev., 11, pp. 226-235, 1969.
- 46. WOLFE, P. (1971). Convergence conditions for ascent methods II: some corrections. SIAM Rev., 13, pp. 185-188, 1971.
- 47. YABE, H. and TAKANO, M. (2004). Global convergence properties of nonlinear conjugate gradient methods with modified secant conditions. Comput. Optim. Appl., (COAP) 28, pp. 203-225, 2004.
- 48. ZOUTENDIJK, G. (1970). Nonlinear programming, computational methods. In Integer and Nonlinear Programming, J. Abadie (ed.), North-Holland, Amsterdam, pp. 37-86, 1970.