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1. Introduction 

Conjugate gradient methods represent an important class of unconstrained optimization algorithms 
characterized by low memory requirements and strong local and global convergence properties. Their 
implementation is very easy and accessible in codes able to solve large-scale problems with millions of 
variables. These methods have been the subject of intense research and analysis for more than 50 years. 
For the very beginning they started as algorithms for solving symmetric, positive-definite linear systems 
of equations by works of Cornelius Lanczos and Magnus Hestenes and others (notably Forsythe, 
Motzkin, Rosser, Stein) at the Institute for Numerical Analysis, and with independent research of Eduard 
Stiefel at Technische Hochschule Zürich. The first paper was published by Hestenes and Stiefel in 1952, 
where an algorithm for solving symmetric, positive-definite linear systems was presented. The algorithm 
was soon extended to general nonlinear unconstrained optimization. Today, conjugate gradient algorithms 
represent a very important class of algorithms for solving large scale unconstrained optimization 
problems with good global convergence properties.  

In this paper we survey the nonlinear conjugate gradient algorithms, emphasizing their definition and 
global convergence properties and present the computational performances of a number of conjugate 
gradient algorithms on some MINPACK-2 applications [Averick, Carter, and Moré, 1991], [Averick, 
Carter, Moré and Xue, 1992] All conjugate gradient algorithms can be classified in four general classes. 
The first class contains the algorithms based on conjugacy condition. Here the classical conjugate 
gradient algorithms like Hestenes and Stiefel [1952], Fletcher and Reeves [1964], Polak and Ribière 
[1969], Polyak [1969], Liu and Storey [1991], Dai and Yuan [1999, 2001] or Yabe and Takano [2004] are 
included. The second class of conjugate gradient algorithms is based on a combination of the methods 
from the first class, leading to the hybrid conjugate gradient algorithms. The scaled conjugate gradient 
algorithms form the third class of algorithms. Finally, the preconditioned conjugate gradient algorithms 
form the fourth class. 
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The structure of the paper is as follows. Section 2 contains a survey of nonlinear conjugate gradient 
algorithms. The other sections contain the numerical performances of 14 nonlinear conjugate gradient 
algorithms on 6 applications from MINPACK-2 collection. 

2. A survey of nonlinear conjugate gradient algorithms 

An excellent survey of nonlinear conjugate gradient methods, with special attention to global 
convergence properties, has been given by Hager and Zhang [2005]. In this section we focus on different 
versions of nonlinear conjugate gradient methods and their convergence properties. 

Consider the problem to minimize a function of n  variables: 

),(min xf              (1) 

where RRf n : is a continuous differentiable function with )()( xfxg   its gradient. Conjugate 
gradient algorithms solving (1) are iterative methods of the form: 

,1 kkkk dtxx              (2) 

where kt  >0 is a step length and kd
 is a search direction. The search direction at the very first iteration is 

the steepest descent direction: ).( 000 xfgd  The directions along the iterations are computed 
according to: 

,11 kkkk dgd               (3) 

where k  is a scalar. If the function )(xf  is strictly quadratic: 

,
2

1
)( xbAxxxf TT 

            (4) 

where A  is a symmetric and positive definite matrix, and kt  is the exact one-dimensional minimizer 
given by 

,
k

T
k

k
T
k

k Add

gg
t 

             (5) 

then the method (2)-(3) is called the linear conjugate gradient method. This method was firstly proposed 
by Hestenes and Stiefel [1952] for solving linear systems of equations: 

bAx                (6) 

where for k  several formulas have been proposed, which for strictly convex quadratic objective 
functions are equivalent. Linear conjugate gradient algorithms are characterized by the conjugacy 
condition: 

,0j
T
i Add

  ji              (7) 

which guarantees the finite termination of linear conjugate gradients algorithms. 

The nonlinear conjugate gradient algorithm for general unconstrained optimization problem was firstly 
proposed by Fletcher and Reeves [1964]. In this case the conjugacy condition is replaced by 

,01  k
T
k yd

             (8) 

where .1 kkk ggy    This is motivated by the following relations: 
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or by the mean value theorem 

,)(2
11 kkkk

T
kkk

T
k ddtxfdtyd    

for some ).1,0(  

In order to ensure the convergence of algorithm (2), it is necessary to constrain the choice of .kt  Usually, 
the step length is selected to satisfy the Wolfe line search conditions [Wolfe, 1969, 1971]: 

,)()( 1 k
T
kkkkkk dgtxfdtxf 

       (9a) 

,)( 2 k
T
kk

T
kkk dgddtxf 

         (9b) 

where .10 21     

The general conjugate gradient algorithm can be described as follows: 

Algorithm CG 

Step 1. Select 0x , set 0 0d g   and .0k  

Step 2. Compute the step length kt >0 satisfying the Wolfe line search (9a) and (9b). 

Step 3. Compute .1 kkkk dtxx   If 1kg , then stop. 

Step 4. Compute k  and generate the direction .11 kkkk dgd    

Step 5. Set 1 kk  and go to step 2.  

Different conjugate gradient algorithms correspond to different choices for the scalar .k  The well 

known formulas for k  are summarized in Table 1. Conjugate gradient algorithms (2)-(3) with exact line 

searches satisfy the equality  

,
2

kk
T
k gdg             (10) 

which implies the sufficient descent condition 

,
2

kk
T
k gcdg             (11) 

where 0c  is a constant. Often, the sufficient descent condition has been used to analyze the global 
convergence of conjugate gradient algorithms with inexact line searches. 
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Table 1: Choices for k parameter in conjugate gradient algorithms. 

k
T
k

k
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yg 1  
The original linear conjugate gradient algorithm by 
Hestenes and Stiefel [1952].  

k
T
k

k
T
kFR

k gg

gg 11   
The first nonlinear conjugate gradient algorithm, 
proposed by Fletcher and Reeves [1964]. 
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Proposed by Daniel [1967]. This updating formula 
requires evaluation of Hessian at every iteration. 

k
T
k

k
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k gg

yg 1  
Proposed by Polak and Ribière [1969] and Polyak 
[1969]. 
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Proposed by Powell [1984], and analyzed by Gilbert and 
Nocedal [1992]. 
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Proposed by Fletcher [1987] as a Conjugate descent 
method 
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Proposed by Liu and Storey [1991]. 
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Proposed by Dai and Yuan [1999]. 
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Proposed by Dai and Liao [2001]. 
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Proposed by Dai and Liao [2001] 
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Proposed by Yabe and Takano [2004]. 

Observe that the FR, DY and CD methods all have in numerator the quantity .11  k
T
k gg  The first result 

concerning the global convergence of FR method was given by Zoutendijk [1970]. Later, Powell [1977] 
showed that FR method is susceptible to jamming, that is the algorithm could take many steps without 
making a significant progress to minimum. The CD method of Fletcher is very close to the FR method, 

and with an exact line search we can prove that .CD
k

FR
k    The difference between FR and CD is that 

CD satisfy the sufficient descent condition. The DY method is fundamentally different from either FR or 
the CD method. Using standard Wolfe line search conditions, the DY method always generates descent 
directions. Also DY and CD methods are susceptible to jamming.  

On the other hand, the HS, PRP and LS methods all have in the numerator k
T
k yg 1 . The main 

characteristic of these methods is that they possess a built-in restart feature that addresses the jamming 

problem. When kkk xxs  1  is small, the factor kkk ggy  1  in the numerator of k  tends to 
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zero. Therefore, k  becomes small and the new direction 1kd is essentially the steepest descent 

direction given by .1 kg  These methods automatically adjust k  to avoid jamming. Hence, the 

numerical performances of these methods are better than the performance of methods with 
2

1kg  in the 

numerator of k . For algorithms related to the Polak-Ribière-Polyak method, Gilbert and Nocedal [1992] 

proved the first global convergence result of the conjugate gradient algorithm with PRP
k using inexact 

line search. However, numerically, under inexact line search the conjugate gradient algorithm with 
PRP

k is not an improving of its variant using PRP
k .  

The DL method is very close to HS, when 1kg is orthogonal to ks , then .HS
k

DL
k    Like HS method, 

for an exact line search, the DL method may not converge. In order to ensure convergence, Dai and Liao 

uses the same idea like in PRP+, modifying their formula to obtain DL+. If kd  satisfies the sufficient 

descent condition, and f  is Lipschitz continuous, then DL+ scheme, implementing strong Wolfe line 

search, is globally convergent. Very recently Yabe and Takano [2004], based on a modified secant 

condition, suggested another choice for the update the k  parameter. In their formula, n
k Ru   satisfies 

.0k
T
k su  Similarly, the YT+ scheme is globally convergent when kd  satisfies the sufficient descent 

condition and the strong Wolfe conditions are used, with a bounded value of parameter .  Numerical 

experiments show that, both DL+ and YT+ are efficient only with a proper selection of the parameters. 
For different choices, the performances of these methods are very different.  

The numerical experiments show that although the FR, DY and CD conjugate gradients methods have 
strong convergence properties; however they may be affected by jamming. On the other hand, the HS, 
PRP and LS methods although theoretically may not converge, computationally they often are 
significantly better. The idea to combine these methods in order to get efficient algorithms leads to hybrid 
conjugate gradient algorithms. Table 2 contains the main hybrid conjugate gradient methods. 

Table 2. Hybrid choices for the k  parameter in conjugate gradient algorithms. 



 


otherwise.,

,0,
FR
k
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k

PRP
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k 
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  
Proposed by Touat-Ahmed and Storey 
[1990]. 

  0, ,PRP FR PRP FR
k k kmax min     

Proposed by Hu and Storey [1991]. 

  , ,GN FR PRP FR
k k k kmax min      

Proposed by Gilbert and Nocedal 
[1992]. 

  0, ,HS DY HS DY
k k kmax min     

Proposed by Dai and Yuan [2001] and 
Dai and Ni [2003]. 
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
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Proposed by Dai and Yuan [2001].   
is the parameter used in the second 
Wolfe line search condition. 

  0, ,LS CD LS CD
k k kmax min     

 

Conjugate gradient methods can be combined to get the so called parameter conjugate gradient 
algorithms. Dai and Yuan [1998, 2003] proposed a one-parameter family of conjugate gradient 
algorithms with: 
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where [0,1]k  is a parameter. For 1k  we get the Fletcher-Reeves method, while the Dai-Yuan 

method correspond to 0.k   By considering convex combinations of the numerators and denominators 

of FR
k and ,HS

k Nazareth [1999] suggested a two-parameter family of conjugate gradient methods: 

2

1 1
2

(1 )
,

(1 )

T
k k k k k

k T
k k k k k

g g y

g d y

 


 
  


 

        (13) 

where , [0,1].k k   Observe that this two-parameter family includes FR, DY, PRP and HS methods. 

Dai and Yuan [2001] considered a three-parameter family of hybrid conjugate gradient method; they 
chose: 

2

1 1
2

(1 )
,

(1 )

T
k k k k k

k T T
k k k k k k k k k

g g y

g d y d g

 


   
  


   

       (14) 

where , [0,1]k k   and [0,1 ].k k    This three-parameter family includes the six standard 

conjugate gradient methods, the previous one-parameter and two-parameter families, as well as many 
hybrid methods as special cases.  

Another class of conjugate gradient algorithms is given by the so called the scaled conjugate gradient 
algorithms. For these algorithms the direction is computed as: 

1 1 1 ,k k k k kd g d                (15) 

where 1k  is a positive parameter. 

Observe that if 1 1,k   then we get the classical conjugate gradient algorithms according to the value of 

the scalar parameter .k  On the other hand, if 0,k   then we get another class of algorithms 

according to the selection of the parameter 1.k   There are two possibilities for 1 :k   a positive scalar or 

a positive definite matrix. If 1 1k   , we have the steepest descent algorithm. If 
2 1

1 1( ) ,k kf x 
   or an approximation of it, then we get the Newton or the quasi-Newton algorithms, 

respectively. Therefore, we see that in the general case, when 1 0k    is selected in a quasi-Newton 

manner and 0k  , then (15) represents a combination between the quasi-Newton and conjugate 

gradient methods.  

To determine k  Andrei [2004a, 2004b, 2005, 2006a, 2006b] considers the following procedure. As we 

know the Newton direction for solving (1) is given by 2 1
1 1 1( ) .k k kd f x g
     Therefore, from the 

equality 

2 1
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Using the Taylor development, after some algebra we obtain: 

 1 1 ,
T

k k k k
k T

k k

y s g

y s


  

          (17) 

where 1k k ks x x   and 1 .k k ky g g   If 1 1k   , then (17) is the parameter  corresponding to the 

direction considered by Perry [1977], i.e. we get the scaled Perry algorithm. This value of parameter k  

is used by Birgin and Martinez [2001] in their SCG (spectral conjugate gradient) package for 

unconstrained optimization, where 1k   is selected in a spectral manner, as suggested by Raydan [1997]. 

The following particularizations can be remarked. If 1 0,T
j js g   0,1, , ,j k   then we get a 

generalization of the Polak and Ribière formula [1969], i.e. the scaled Polak and Ribière formula. If 

1 0,T
j js g   0,1, , ,j k  and additionally the successive gradients are orthogonal, then we obtain a 

generalization of the Fletcher and Reeves formula [1964] i.e. the scaled Fletcher and Reeves formula. 

Table 3 summarizes the scaled choices for the parameter k . 

Table 3. Scaled choices for the k  parameter in conjugate gradient algorithms. 

k
T
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kkk
T
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k sy

syg )(1 
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Scaled Perry. Suggested by Birgin and 
Martínez [2001] and Andrei [2004a, 2004b, 
2005, 2006a, 2006b]. 
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g y g s
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y s y s
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Scaled Perry +. Suggested by Birgin and 
Martínez [2001]. 

k
T
kkk

k
T
kksPRP

k ggt

yg

1

1





  

Scaled Polak-Ribière-Polyak. Suggested by 
Birgin and Martínez [2001] and Andrei [2004a, 
2004b, 2005, 2006a, 2006b]. 

k
T
kkk

k
T
kksFR

k ggt

gg

1

11





  

Scaled Fletcher-Reeves. Suggested by Birgin 
and Martínez [2001] and Andrei [2004a, 2004b, 
2005, 2006a, 2006b]. 

The parameter 1k  is selected in a spectral manner, s , as the inverse of the Rayleigh quotient or in an 

anticipative manner, a , as given in Andrei [2004a, 2004b, 2005, 2006a, 2006b]. 

There is a result of Shanno [1978] that says that the conjugate gradient method is the BFGS quasi-Newton 
method for which at every iteration, the initial approximation to the inverse of the Hessian is taken as the 
identity matrix. Shanno [1978] shows how the traditional Fletcher-Reeves and Polak-Ribière conjugate 
gradient algorithms may be modified in a form established by Perry to a sequence which can be 
considered as a memoryless BFGS preconditioned. The algorithm is embedded into a restarting procedure 
based on Powell’s restart criterion. The idea of the algorithm is to modify the direction in such a manner 
to overcome the lack of positive definiteness of the matrix defining the search direction. The CONMIN 
algorithm based on this technique proved to be one of the most powerful for solving large-scale 
unconstrained optimization problems. The extension of the preconditioning technique to the scaled 
conjugate gradient is very simple. Using the same methodology Andrei [2004a, 2004b, 2005, 2006a, 
2006b] obtained the following direction dk1 : 
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11    ,   (18) 

Observe that if g sk
T

k 1 0,  then (18) reduces to: 
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d g
g y

y s
sk k k k

k
T

k

k
T

k
k   

  1 1 1 1
1  .         (19) 

Thus, in this case, the effect is simply one of multiplying the Hestenes and Stiefel [1952] search direction 
by a positive scalar. Thus, we get another class of scaled memoryless BFGS preconditioned conjugate 
gradient algorithms. The implementation of the direction (18), in the context of Powell restarts, is given 
by Andrei [2004a, 2004b, 2005, 2006a, 2006b] in SCALCG package. The scaling factor is selected as the 
spectral gradient or in an anticipative manner as it is described in [Andrei, 2004a, 2004b, 2005, 2006a, 
2006b].  

Recently, for solving (1), Hager and Zhang [2004a, 2004b] presented a conjugate gradient algorithm with 
guaranteed descent and the performance of the Fortran 77 package CG_DESCENT which implements it. 
The directions dk are computed by the following rule: 

d g dk k k k   1 1  ,           (20) 
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d g0 0  . We see that the above direction dk1 of Hager and Zhang, given in (20)-(21), denoted 
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1 , can be expressed as: 
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On the other hand, the direction generated by Shanno, let call it dk
S
1 , is given as : 
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After some simple algebra we see that the direction dk
HZ
1  of Hager and Zhang is related to the direction 

dk
S
1 of Shanno in the following way: 
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With other words, the direction dk
HZ
1  is obtained from dk

S
1  by deleting the term 
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In their algorithm Hager and Zhang restrict  k to be nonnegative. This is motivated by the work of 

Gilbert and Nocedal [1992] who modified the Polak and Ribière updating formula as 

  k kmax  ,0 and proved the global convergence of this computational scheme for general 

nonlinear functions. Similar to the approaches considered by Gilbert and Nocedal [1992], Han, Liu, Sun 
and Yin [1994], and Wang, Han and Wang [2000] in their studies on the Polak-Ribière version of the 
conjugate gradient method, Hager and Zhang prove the convergence for general nonlinear functions by 
restricting the lower bound of  k in the following manner: 
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d g dk k k k   1 1  ,           (25) 

   k k k max , ,           (26) 

 


k

k kd min g


1

,
,          (27) 

where  k is given by (21), and the parameter   0  is a user specified constant.  (Suggested value: 

  0 01. , considered in all numerical experiments). 

An important innovation given by Hager and Zhang in their approach consists of a new efficient and 
highly accurate line search procedure. This is based on the Wolfe conditions (9a)-(9b) and on a very fine 
interpretation of the numerical issue concerning the first Wolfe condition (9a). Intensive numerical 
experiments with conjugate gradient algorithms show that the SCALCG package is top performer among 
conjugate gradient algorithms [Andrei, 2004a, 2004b, 2005, 2006a, 2006b], 

3. Performance of Conjugate Gradient Algorithms on some 
MINPACK-2 Unconstrained Optimization Applications 

In the following we present the performances of 14 conjugate gradient algorithms on 6 applications from 
MINPACK-2 collection [Averick, Carter and Moré, 1991], [Averick, Carter, Moré, and Xue Guo-Liang, 
1992]. In this numerical study we consider only the performances of SCALCG [Andrei, 2004a, 2004b, 
2005, 2006a, 2006b], SCG [Birgin and Martínez, 2001], CONMIN [Shanno and Phua, 1976], sPR, sFR, 
Perry-Shanno, Dai-Yuan, Dai-Liao, Dai Liao+, hHS-DY, HS, PRP, PRP+ and FR. All codes are written 
in Fortran 77 (default compiler settings) on a workstation Intel 4, 1.8GHz. SCALCG is authored by 
Andrei, CONMIN is co-authored by Shanno and Phua, and SCG by Birgin and Martínez.  The rest of 
algorithms are implemented by Andrei. In all these numerical experiments we have considered the 
standard initial point, as it is recommended in MINPACK-2 and the iterations were stopped according to 
the following criteria: 

510kg 

   or  20

110 ( ) .T
k k k kt g d f x

  

SCALCG packages uses the Powell restart criterion. SCG and scaled variants of Polak-Ribière-Polyak or 
Fletcher-Reeves use the angle restart criterion (see [Andrei, 2005]). All these algorithms uses the same 

implementation of the Wolfe line search procedure with the same values of parameters 1  and 2.  

3.1. Elastic-Plastic Torsion 

This problem consists of determination of the stress field on an infinitely long cylindrical bar. The 
infinite-dimensional version of the problem is as follows: 

 ,:)(min Kvvq   

where RKq :  is the quadratic function 

 
D D

dxxvcdxxvvq )()(
2

1
)(

2

 

for some constant c and D is a bounded domain with smooth boundary. The convex set K  is defined by 
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 ,),,()(:)(1
0 DxDxdistxvDHvK 

 

where )(., Ddist   is the distance function to the boundary of ,D and )(1
0 DH is the Hilbert space of all 

functions with compact support in D  such that v  and 
2

v  belong to ).(2 DL  This formulation, as 
well as the physical interpretation of the torsion problem are presented by Glowinski [1984, pp.41-55]. 
The finite element approximation to the torsion problem is obtained by triangulating D  and replacing the 

minimization of q  over )(1
0 DH  by the minimization of q  over the set of picewise linear functions that 

satisfy the constraints specified by K , as is given by Averick, Carter and Moré [1991, pp.21-23]. More 
specifically, the finite element approximation considered by Averick, Carter and Moré is for a quadratic 
q  is of the general form: 

 
D D

lq dxxvxwdxxvxwvq )()()()(
2

1
)(

2

, 

where RDwq :  and RDwl :  are functions defined on the rectangle .D  In the torsion problem 

1qw  and 
.cwl   This problem is solved by triangulation of D  by choosing yx nn  grid points 

inside of .D  

Considering )1,0()1,0( D  and 5c  the performances of the optimization packages considered in 
this numerical study are given in Tables 4 and 5. 

Table 4: Performance of Conjugate Gradient Algorithms 
Elastic-Plastic Torsion Problem.  

nx  100,  ny  100,  c  5.,  n  10000. 
  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 217 284 12.20 255 338 14.45 

SCG 193 291 16.04 233 356 19.60 
sPRP 229 363 19.77 243 389 21.09 
sFR 274 430 23.40 215 342 18.51 

Perry-Shanno 237 361 19.83 259 396 21.76 
Dai-Yuan 318 496 27.08 245 379 20.70 
Dai-Liao 286 432 23.89 279 423 23.34 

Dai-Liao + 276 428 23.35 274 422 23.12 
hHS-DY 211 330 17.96 248 391 21.26 

HS 262 412 22.41 260 407 22.25 
PRP 237 391 20.98 264 443 23.68 

PRP+ 237 391 20.98 264 443 23.61 
FR 247 412 22.02 201 339 18.07 

Table 5. Performance of Conjugate Gradient Algorithms 
Elastic-Plastic Torsion Problem.  

nx  200,  ny  200,  c  5.,  n  40000.  

  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 398 511 87.39 473 614 104.80 

SCG 370 573 126.77 427 659 146.15 
sPRP 466 743 163.13 419 669 146.65 
sFR 387 620 135.34 394 612 134.73 

Perry-Shanno 445 684 151.43 400 619 136.60 
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Dai-Yuan 439 677 149.61 511 810 177.68 
Dai-Liao 452 711 156.76 326 510 113.32 

Dai-Liao + 497 772 170.38 338 529 116.11 
hHS-DY 398 625 137.75 379 591 130.01 

HS 401 620 136.82 431 675 148.41 
PRP 291 486 104.47 475 807 174.45 

PRP+ 291 486 104.52 475 807 173.62 
FR 445 748 161.76 518 886 190.20 

Numerical results for the elastic-plastic torsion problem are presented, for example, by Elliot and 
Ockendon [1982], O’Leary and Yang [1989] and Moré and Toraldo [1991]. The solution for 
nx ny 10 10,  is illustrated in Figure 1. 

 

Figure: 1. Elastic-Plastic Torsion solution. nx ny 10 10, . 

3.2. Pressure Distribution in a Journal Bearing 

This problem consists of determining the pressure distribution in a thin film of lubricant between two 
circular cylinders. The infinite-dimensional version of the problem is of the form: 

 ( ) : ,min q v v K         
D D

lq dxxvxwdxxvxwvq )()()()(
2

1
)(

2
 

with  

,)cos1(),( 3
121 zzzwq     121 sin),( zzzwl   

for some constant )1,0(  and )2,0()2,0( bD    for some constant .0b  The convex set K  is 

defined by  .:)(1
0 DvDHvK   Considering 10b  and 1.0 , then the performances of the 

optimization packages considered are given in Tables 6 and 7. 
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Table 6. Performance of Conjugate Gradient Algorithms 
Pressure Distribution in a Journal Bearing 

nx  100,  ny  100,  ecc  01. , b  10,  n  10000. 
  s   a  

Algorithm # iter # fg Cpu (s) # iter # fg cpu (s) 
SCALCG 433 567 23.51 461 620 25.71 

SCG 617 956 53.28 443 692 38.40 
sPRP 523 838 46.08 652 1035 57.23 
sFR 495 777 42.79 546 864 47.62 

Perry-Shanno 453 709 39.33 503 783 43.61 
Dai-Yuan 532 835 46.08 506 792 43.77 
Dai-Liao 443 696 38.39 546 854 47.41 

Dai-Liao + 476 744 41.03 510 797 44.05 
hHS-DY 485 755 41.69 421 661 36.36 

HS 458 726 39.87 409 636 35.15 
PRP 530 856 46.69 474 767 41.80 

PRP+ 530 856 46.69 474 767 41.80 
FR 590 898 49.98 312 501 27.24 

 

Table 7. Performance of Conjugate Gradient Algorithms 
Pressure Distribution in a Journal Bearing 

nx  200,  ny  200,  ecc  01. , b  10,  n  40000.  
  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 876 1143 189.11 900 1157 191.14 

SCG 1117 1746 387.00 1115 1749 386.41 
sPRP 980 1556 341.86 1120 1775 390.52 
sFR 874 1399 305.49 839 1326 290.17 

Perry-Shanno 848 1332 294.78 1101 1745 385.35 
Dai-Yuan 1098 1721 379.16 1206 1888 415.35 
Dai-Liao 959 1508 333.50 1171 1823 403.81 

Dai-Liao + 975 1530 336.37 1213 1907 419.25 
hHS-DY 1096 1722 379.42 918 1449 317.69 

HS 872 1386 303.96 1022 1609 353.99 
PRP †   1033 1549 344.82 

PRP+ †   1033 1549 344.11 
FR 1101 1758 384.04 2235 2860 676.02 

† Failure, 366117.0)( 207 xf , 2628.0
2207 g . 

Numerical results for the journal bearing problem can be found, for example, in Lin and Cryer [1985], 
Cimatti and Menchi [1978] and Moré and Toraldo [1991]. Figure 2 illustrates the solution of the problem 
for nx ny 10 10, . 
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Figure 2: Pressure Distribution in a Journal Bearing solution. nx ny 10 10, . 

3.3. Optimal Design with Composite Materials 

This problem requires determining the placement of two elastic materials in the cross-section of a rod 
with maximal torsional rigidity. The formulation of the problem is given in Goodman, Kohn and Reyna 
[1986] and Averick, Carter and Moré [1991].  

Let 
2

RD  be a bounded domain, and let ,Dw   where D  denotes the area of .D  The problem is 

formulated as: 

 1
0( , ) : ( ), ,min F v v H D w     

where 

,)()()(
2

1
),(

2
dxxvxvxvF

D
 






    

and 

1)(  x  for x , and 2)(  x  for .x  

The reciprocals of the constants 1  and 2  are the shear moduli of the elastic materials in the rod. It is 

assumed that .21     

Goodman, Kohn and Reyna [1986] give some details and formulate the optimal design problem in terms 
of a family of problems of the following form: 

 1
0( ) : ( ) ,min f v v H D   
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where RDHf )(: 1
0  is the functional  

  dxxvxvvf
D
  )()()(    

and RR :  is a picewise quadratic. In this formulation   is the Lagrange multiplier associated to 

the optimal design problem, and the picewise quadratic   is of the form: 
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The problem considered in Averick, Carter and Moré [1991] is that of minimizing f  for a fixed value of 

.  A finite element approximation to this problem is obtained, in a canonical manner, by minimizing f  

over the space of picewise linear functions v  with values ijv  at ijz , where 
2Rzij   are the vertices of a 

triangulation of D  with grid spacings xh  and .yh  Considering 11   and 22  , the Tables 8 and 9 

give the performances of the packages for different values of discretization xn  and .yn  

Table 8. Performance of Conjugate Gradient Algorithms 
Optimal Desing with Composite materials.  

nx  100,  ny  100,  c  5.,  n  10000. 
  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 628 801 49.49 644 815 50.31 

SCG 1519 2309 169.99 1249 1907 140.11 
sPRP 1461 2280 166.65 1314 2069 150.72 
sFR 1451 2295 166.81 1421 2229 162.09 

Perry-Shanno 1353 2060 152.31 1256 1926 141.87 
Dai-Yuan 1147 1744 128.26 1337 2035 149.67 
Dai-Liao 1543 2355 173.95 1365 2074 152.53 

Dai-Liao + 1603 2426 178.07 1165 1788 130.72 
hHS-DY 1211 1835 134.68 1397 2140 156.54 

HS 1452 2222 162.80 1265 1935 142.26 
PRP †      

PRP+ †      
FR ‡      

 



Studies in Informatics and Control, Vol. 15, No. 2, June 2006  159

† Failure, 00856922.0)( 25 xf ,          111017.0
225 g . 

‡ Failure, 00427538.0)( 68 xf ,          0691171.0
268 g . 

 Failure, 000109309.0)( 68 xf ,    0623754.0
268 g . 

 Failure, 0096339.0)( 267 xf ,       0155195.0
2267 g . 

Table 9. Performance of Conjugate Gradient Algorithms 
Optimal Desing with Composite materials.  

nx  200,  ny  200,  c  5.,  n  40000.  

  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 1413 1753 431.82 939 1157 285.06 

SCG 3952 6003 1758.38 3184 4828 1414.88 
sPRP 4528 7148 2073.66 4567 7158 2080.25 
sFR 3957 6139 1783.10 4019 6227 1810.51 

Perry-Shanno 4278 6471 1908.49 4246 6396 1887.90 
Dai-Yuan 4485 6854 1999.07 4477 6819 1990.06 
Dai-Liao 4371 6674 1950.40 3767 5779 1691.44 

Dai-Liao + 4080 6157 1801.22 4027 6166 1796.72 
hHS-DY 3062 4643 1356.66 3782 5723 1672.48 

HS 3990 6071 1772.89 3936 5990 1746.41 
PRP †      

PRP+ †      
FR ‡      

† Failure, 0122556.0)( 79 xf ,        0834894.0
279 g . 

‡ Failure, 0026687.0)( 111 xf ,       0369373.0
2111 g . 

 Failure, 00748145.0)( 354 xf , 0312285.0
2354 g . 

 Failure, 0105501.0)( 56 xf ,        0851817.0
256 g . 

Figure 3 presents the solution of the problem for discretization nx ny 10 10, . 
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Figure 3: Optimal Design with Composite Materials solition. nx ny 10 10, . 

3.4. Inhomogeneous Superconductors 

This problem appears in the solution of Ginzburg-Landau equations for inhomogeneous superconductors 
in the absence of a magnetic field. The one-dimensional system consists of alternating layers of lead and 
tin. The formulation of the problem is given by Garner and Benedek [1990] and Averick, Carter and Moré 
[1991].  

 The optimization problem is to minimize the Gibbs free energy as a function of the temperature. 
The infinite-dimensional version of the problem is of the form 

 1( ) : ( ) ( ), [ , ] ,min f v v d v d v C d d     

where d2  is the width of the material, and f  is the Gibbs free energy function: 
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where the functions   and   are picewise constant for a fixed value of the temperature,   is the 

Planck’s constant (1.05459e-27 erg-sec), and m  is the mass of the electron (9.11e-28 grams). 

The functions   and   are constant in the intervals that correspond to the lead and the tin. The finite 

element approximation to the superconductivity problem is obtained by minimizing f  over the space of 

picewise linear functions v  with values iv  at points it , where 

.21 dtttd n    

Therefore the values iv  are obtained as solution of the following minimization problem 
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with iii tth  1  is the length of the i th subinterval, and the constants i  and i  the values of the 

functions   and   in the subinterval ].,[ 1ii tt  

Table 10. Performance of Conjugate Gradient Algorithms 
Inhomogeneous Superconductors.  

7,t  1000n  . 

  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 7422 9499 141.32 5560 7107 108.04 

SCG 10001 15724 230.02 10001 15664 229.92 
sPRP 10001 15976 236.62 10001 16028 237.66 
sFR 10001 15860 235.57 10001 15864 236.23 

Perry-Shanno 10001 15737 236.51 10001 15675 232.78 
Dai-Yuan 10001 15736 233.60 10001 15697 233.10 
Dai-Liao 10001 15759 235.19 10001 15706 233.98 

Dai-Liao + 10001 15747 232.34 10001 15738 233.66 
hHS-DY 10001 15714 233.81 10001 15677 228.05 

HS 10001 15710 234.32 10001 15720 233.38 
PRP 10001 10931 170.71 10001 10124 159.50 

PRP+ 10001 10931 170.15 10001 10124 159.45 
FR 10001 11262 174.61 10001 11753 181.14 

In Figure 4 it is shown the solution of the problem for 100.n   

 

Figure 4: Ginzburg-Landau (1-dimensional) solution. n=100. 
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3.5. Lennard-Jones Clusters. Molecular Conformation.  

The molecular conformation problem consists of determination of the minimum energy configuration of a 
cluster of atoms or molecules. This is a central problem in the study of cluster statics [Hoare, 1979] Given 

the positions 1 2, , , np p p  of n  molecules (points) in dR , the energy potential function is defined as 

 
1

2
2 1

( ) ,
jn

d j i
j i

V p v p p


 

   

where :v R R  is the potential function between pairs of atoms. The Lennard-Jones potential function 
is defined as 

12 6( ) 2 .v r r r    

The molecular conformation problem is to determine a configuration (position for the n  points) such that 

the energy function dV  is minimized. Table 11 shows the results of the conjugate gradient algorithms 

considered in this study. 

Table 11. Performance of Conjugate Gradient Algorithms 
Leonard-Jones Clusters. Molecular Conformation  

ndim=3, natoms=1000, 3000n  . 

  s   a  
Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 1252 2002 383.16 1583 2007 384.37 

SCG 4552 7103 1117.24 4656 7229 1137.89 
sPRP 2058 3259 668.33 2202 3477 713.37 
sFR 1711 2915 595.89 2127 3325 680.92 

Perry-Shanno 2467 3886 796.14 2603 4141 848.38 
Dai-Yuan 1932 3087 633.07 2889 4893 1001.84 
Dai-Liao 1719 2780 569.85 1888 3124 639.55 

Dai-Liao + 2989 4806 985.15 2934 4709 965.26 
hHS-DY 1593 2512 515.25 1806 2981 610.11 

HS 1791 2894 593.25 1440 2351 481.42 
PRP 2464 3694 758.80 6998 9019 1858.57 

PRP+ 2464 3694 758.68 6998 9019 1857.80 
FR 5683 8090 1662.37 2208 3428 702.39 

3.6. Steady State Combustion. Solid fuel ignition. 

The study of the steady-state in solid fuel ignition models leads to the infinite-dimensional optimization 
problem 

 0( ) : ( ) ,min f v v H D
  

where 0: ( )f H D R
   is the functional 

21
( ) ( ) exp[ ( )] ,

2D

f v v x v x dx     
   
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and 0   is a parameter. This problem is the variational formulation of the boundary value problem 

( ) exp[ ( )],v x v x    ,x D   ( ) 0v x   for x D  

where   is the Laplacian operator. Aris [1975], Bebernes and Eberly [1989] discuss this problem in the 
context of combustion process. 

The problem is solved using a finite element approximation, by minimizing f over the space of 

piecewise linear functions v  with values ijv  at ijz , where 2
ijz R  are the vertices of a triangulation of 

D with grid spacings xh  and .yh  The values ijv  are obtained as solution of the following minimization 

problem: 

  ( ) ( ) : ,L U n
ij ijmin f v f v v R   

where 

22

1, , 1( ) ,
4
x y i j ij i j ijL L

ij ij
x y

h h v v v v
f v

h h
 

                
 

 1, , 1

2
exp( ) exp( ) exp( ) ,

3
L
ij ij i j i jv v v      

 
22

1, , 1 ,
4
x y i j ij i j ijU U

ij ij
x y

h h v v v v
f

h h
 

                
 

 1, , 1

2
exp( ) exp( ) exp( ) .

3
U
ij ij i j i jv v v      

In this formulation L
ijf is defined only when 0 xi n   and 0 ,yj n   while U

ijf is defined when 

1 1xi n    and 1 1.yj n    Tables 12 and 13 show the performances of the conjugate gradient 

algorithms considered in this study. 

 
 

Table 12. Performance of Conjugate Gradient Algorithms 
Steady State Combustion. Solid fuel ignition. 

nx  100,  ny  100,  0.07,  10000n  . 

  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 312 408 33.28 266 348 28.40 

SCG 340 527 50.75 288 445 42.85 
sPRP 316 494 47.01 230 361 34.27 
sFR 298 478 45.21 307 486 46.08 

Perry-Shanno 336 515 49.38 389 601 57.57 
Dai-Yuan 400 632 59.97 311 488 46.30 
Dai-Liao 431 682 64.87 275 431 40.98 

Dai-Liao + 269 430 40.70 299 469 44.54 
hHS-DY 364 564 53.66 336 524 49.76 
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HS 313 481 45.87 290 446 42.46 
PRP 383 639 60.08 434 726 68.28 

PRP+ 383 639 60.09 434 726 68.21 
FR 430 737 68.99 346 560 52.89 

Table 13. Performance of Conjugate Gradient Algorithms 
Steady State Combustion. Solid fuel ignition. 

nx  200,  ny  200,  0.07,  40000n  . 

  s   a  

Algorithm # iter # fg cpu (s) # iter # fg cpu (s) 
SCALCG 546 720 233.65 460 586 190.05 

SCG 589 927 354.21 503 787 300.88 
sPRP 532 845 319.39 613 966 365.63 
sFR 637 1007 380.58 540 853 322.47 

Perry-Shanno 463 736 279.19 622 977 372.01 
Dai-Yuan 675 1048 397.33 555 869 328.45 
Dai-Liao 479 756 285.94 564 892 337.35 

Dai-Liao + 580 911 345.32 640 988 374.87 
hHS-DY 697 1084 410.95 561 873 330.49 

HS 681 1067 403.71 426 673 253.64 
PRP 553 941 350.81 487 831 309.39 

PRP+ 553 941 351.30 487 831 309.78 
FR 636 1079 403.26 663 1129 421.50 

In the following we present the performances of CONMIN by Shanno and Phua [1976] on these 
unconstrained optimization applications. CONMIN implements an algorithm which is very close to 
SCALCG. Both of them consider a BFGS modification of the Perry updating scheme which satisfy the 
quasi-Newton equation in a Beale-Powell restart environment. Mainly, the difference is in the scaling of 
gradient parameter. SCALCG considers a scalar approximation of the inverse Hessian, which prove to be 
efficient and robust in numerical experiments, while CONMIN uses a value minimizing the condition 

number of the matrix 1
1.k kH H
  CONMIN implements the Wolfe line searches in a similar manner as 

they are implemented in SCALCG. Table 14 shows the performance of CONMIN on these unconstrained 
optimization MINPACK-2 applications. 

Table 14. Performances of CONMIN on 10 MINPACK-2 applications. 

Application n  #iter # fg cpu(s) *( )f x  

Elastic-Plastic Torsion 10000 217 439 17.90 -0.43916320 
 40000 242 486 78.76 -0.43926781 

Pressure Distribution in a 
Journal Bearing 

 
10000 

 
396 

 
801 

 
32.74 

 
-0.2828400078 

 40000 819 1657 270.23 -0.282892943 
Optimal Design with 
Composite Materials 

 
10000 

 
359 

 
729 

 
40.76 

 
-0.011377240 

 40000 675 1370 305.28 -0.011381291 
Inhomogeneous 
Superconductors 

 
1000 

 
9881 

 
20001 

 
270.12 

 
0.11079927e-03 

Lennard-Jones Clusters. 
Molecular Conformation 

 
3000 

 
880 

 
1819 

 
507.07 

 
-6605.4586893 

Steady State 
Combustion. Solid fuel 

ignition. 

 
10000 

 
171 

 
346 

 
28.40 

 
-0.070086368 

 40000 467 948 310.60 -0.070086374 
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4. Conclusion 

In this study we have presented a survey and comparative numerical performances of a number of well 
known conjugate gradient algorithms for solving some applications from MINPACK-2 collection. The 
conjugate gradient algorithms classifies in four groups: conjugacy condition algorithms, hybrid conjugate 
gradient, scaled conjugate gradient and preconditioned conjugate gradient algorithms. All conjugate 
gradient algorithms are able to solve a large variety of large-scale unconstrained optimization problems. 
The above Tables give computational evidence that our SCALCG - scaled memoryless BFGS 
preconditioned conjugate gradient algorithm for unconstrained optimization is the top performer among 
the conjugate gradient algorithms. Close to SCALCG is CONMIN algorithm by Shanno and Phua. Both 
these algorithms use the same philosophy based on a BFGS preconditioning of the search direction in 
such a way to satisfy the quasi-Newton equation. Although SCALCG and CONMIN have a lot of algebra 
in common, we see that SCALCG is more performant than CONMIN. We see that SCALCG is with 
488.32 seconds faster than CONMIN. The other conjugate gradient algorithms considered in this study 
are less robust showing that the conjugacy condition alone is unable to provide an efficient searching 
direction. The preconditioned variants of conjugate gradient algorithms (CONMIN and SCALCG) proved 
to be more robust and more efficient for solving large-scale nonlinear unconstrained optimization 
problems.  
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