
Studies in Informatics and Control, Vol. 15, No.1, March 2006 5

Software Maintenance Management Method for
Large-scale Distributed Industrial Control Systems

Yoshiki Kakumoto

Eiji Nishijima

kakumoto@sdl.hitachi.co.jp

eiji@sdl.hitachi.co.jp

1st Research Dept., Systems Development Laboratory,

Hitachi, Ltd. 292, Yoshida, Totsuka, Yokohama, Kanagawa, 244-0817,

JAPAN

Kuniyuki Kikuchi Senior Director

ku-kikuchi@itg.hitachi.co.jp

Transportation Information Systems Dept.2, Information & Control Systems Division,

Hitachi, Ltd. 2-15-2, Konan, Minato, Tokyo, 108-6113,

JAPAN

Norihisa Komoda Professor

komoda@ist.osaka-u.ac.jp

Dept. of Multimedia Eng., Graduate School of Information Science and Technology,

Osaka University 2-1, Yamadaoka, Suita, Osaka, 565-0871,

JAPAN
Abstract: Although the functions of subsystems in large-scale distributed industrial control systems seem to be identical, they differ slightly
because they change when hardware is replaced and when the functions are upgraded. When new standard systems are generated by
merging the differences between subsystems, subsystems become different when their programs are adjusted in accordance with the
conditions under which each subsystem operates. Software maintenance therefore becomes very difficult. This paper proposes a two-phase
software maintenance management assuring the integrity and consistency of the software in large-scale distributed industrial control systems.
In the generation phase, individual and standard programs are managed separately and the subsystem is completely constructed according to
the system definition file. In the execution phase, programs loaded into the execution environment are recorded in the registration data file in
each subsystem. This is method increases the effectiveness and reliability of software maintenance.

Keywords: distributed control system, software maintenance, integrity, consistency

Yoshiki Kakumoto has been a researcher of Systems Development Laboratory, Hitachi, Ltd. since 1989. He is now a senior researcher in 1st
Research Dept. He received the B. Eng. and M. Eng. degrees in Systems Science from Kyoto University in 1987, 1989 respectively. His research
interests include transportation systems, control systems, and information processing systems.

Eiji Nishijima has been a researcher of Systems Development Laboratory, Hitachi, Ltd since 1986. He received the B. Eng. degree in
Information Science and Technologies from Hitachi Keihin Institute of Technology. His research interests include train systems and
information systems.

Kuniyuki Kikuchi has been an engineer of Information & Control Systems Division, Hitachi, Ltd. since 1979. He is now a senior director
in Transportation Information Systems Dept.2. He received the M. Eng. degree in Gunma University in 1979. His research interests include
transportation systems, control systems, and information systems.

Norihisa Komoda: has been a professor of the Department of Multimedia Engineering, Graduate School of Information Science and Technologies,
Osaka University since 2002. He received the B. Eng. and M. Eng. degrees in Electrical Engineering and the Dr. Eng. from Osaka University in
1972, 1974, and 1982, respectively. His research interests include business information systems, electronic commerce systems, and knowledge
information processing. Dr. Komoda received several awards such as IEEJ Technical Development Award, IEEJ in 2000.

1. Introduction

The subsystems in large-scale distributed industrial control systems differ from each other, are distributed over a
wide area, and gradually change as a result of continuous maintenance. All of these things make software
maintenance very difficult. A train-traffic-control system, for example, has many station-level subsystems doing
the traffic control, several train-line-level systems managing the station-level subsystems, and a central
supervising system [5]. Although a process computer executes the traffic control in each station-level
subsystem, the functions of the station-level subsystems are a little different because the subsystems are

6 Studies in Informatics and Control, Vol. 15, No.1, March 2006

operating under different conditions. Each function is also continuously changing because hardware is replaced
and because the function itself is being gradually upgraded. Since software developers cannot generate common
programs for all parts of every subsystem, they generate temporary standard programs and install them in each
subsystem. The maintenance of each subsystem must be performed in a way appropriate to the conditions under
which that subsystem is operating, so the software of each subsystem becomes different.

Computer-Aided Software Engineering (CASE) tools [8] have a software version management function, and
Concurrent Versions System (CVS) [10] is one version management tool widely used in developing open source
software. These software management tools manage the sequential versions of software products. The existing
software distribution tools [3] are mainly for personal computers and work stations. Since they deploy
commercial software products to client machines uniformly, they can manage only those machines in which the
same software products are distributed. These tools are thus not suitable for large-scale distributed industrial
control systems where the software management is necessary for the individual program installed in the
subsystem and the subsystem itself.

This paper proposes a two-phase software maintenance management method assuring the integrity and
consistency of the software in large-scale distributed industrial control systems. In the generation phase,
individual and standard programs are managed separately and the subsystem is completely constructed
according to the system definition file. In the execution phase, programs loaded into the execution environment
are recorded in the registration data file in each subsystem. This is method increases the effectiveness and
reliability of software maintenance.

The rest of this paper is organized as follows. Section 2 describes features of large-scale distributed industrial control
systems. Section 3 describes requirements for software maintenance. Section 4 describes the proposed maintenance
management method. Section 5 discusses evaluation of the proposed methods. Section 6 concludes the paper.

2. Features of Target Systems

2.1. Functional Features

There are several types of distributed industrial control system. A purely distributed system is one in which not
only devices but also machines are distributed [1], and a hybrid system is one in which a centralized machine
controls distributed devices and controllers [4]. The recently introduced cellar manufacturing systems can be
rapidly reconfigured in response to changes in market demand [9], and the autonomous components of holonic
manufacturing systems [2] cooperate with each other to efficiently produce the wide variety of products needed
to meet increasingly diverse demands.

The large-scale distributed industrial control system is a purely distributed one. Although the basic functions of
its subsystems seem to be identical, they differ slightly according to the conditions under which the various
subsystems operate (i.e., differences in device arrangement and hardware performance). In large-scale train
traffic control systems [5], for example, the process computer in each station-level subsystem executes "route
control" by setting routes for arriving and departing trains. Although the basic functions of "route control" are
the same, the detailed functions differ slightly between subsystems according to the railroad structures and
device performance at the individual stations.

2.2. Subsystem Construction Process

As shown in Fig. 1, all the subsystems in a distributed system are not constructed at the same time. Instead, new
subsystems are constructed and connected to the ones constructed earlier. The first step is thus to construct a
subsystem and connecting it to another (Fig. 1(a)). The second step is to construct a local system by repeating
the fist step (Fig. 1(b)). The third step is to connect the local systems (Fig. 1(c)) because there are some
cooperative functions between them.

As construction process is progressing, a subsystem upgrades its execution-mode: The first is a single
operational mode where a subsystem executes the degraded operation by itself. The second is an adjacent
operational mode where a subsystem, connected to adjacent subsystems, executes the operational control by

Studies in Informatics and Control, Vol. 15, No.1, March 2006 7

communicating with each other. The third is an operational mode where a subsystem, connected to management
machines in a local system, executes the operational control according to the schedule and commands from the
management machines.

(a) Constructing subsystems

: New subsystem

subsystem
equipment

subsystem
equipment

(b) Constructing a local system

subsystem
equipment

Local system

subsystem
equipment

subsystem
equipment

subsystem
equipment

(c) Constructing a total system

Local system Local system

Local system

Total system

Figure 1: Construction Process

Construction step

Updating in
each subsystem

Next step Next step

Installed in each subsystem

Subsystem 1 Subsystem 2 Subsystem 3

U
pd

at
in

g
st

e
p

subsystem
equipment

subsystem
equipment

Programs

subsystem
equipment

Figure 2: Maintenance Process

2.3. Software Maintenance Process

As mentioned in section 2.1, although the basic functions of the subsystems are identical, the functions of
subsystems in large-scale distributed industrial control systems may vary slightly. These differences should be
incorporated into one system, and common programs should be generated for software maintenance (if only
these programs are installed, every subsystem can start its execution). There are, however, some problems:

8 Studies in Informatics and Control, Vol. 15, No.1, March 2006

(1) Checking the features of many subsystems and generating the programs common to them is very
difficult and time-consuming work under the step-by-step construction in Fig. 1.

(2) Since the function of each subsystem gradually changes, the generation of common programs will be
an endless task.

(3) The function in a control system cannot be fixed until the actual operation is executed, so the function
of a subsystem cannot be completely understood in advance.

Therefore, the following guidelines for software development are defined:

(1) The software structures and program names in all subsystems are unique so that maintenance is easy.

(2) Basic functions are generated as standard programs that cover the standard types of subsystems.

(3) Common functions such as communication and schedule management, which do not depend on the
operation conditions, are generated as common programs.

(4) Detail data about devices and their performance are generated as individual programs in each
subsystem.

These programs are installed and maintenance is carried out in each subsystem according to two procedures
shown in Fig. 2: installing the programs in subsystems sequentially, and updating the installed programs to fit
the operational conditions of each subsystem.

3 Requirements for Software Maintenance

3.1. In Program Generation

As described in section 2.3, programs are installed in each subsystem and are updated in each subsystem. These
programs are of three kinds:

(1) Common to all subsystems. For example, programs for communication with other subsystems or for
schedule management.

(2) Specific to its subsystem. For example, individual programs for defining the local control in its own
subsystem.

(3) Not clear whether or not it is related to other subsystems. For example, standard programs of main
control functions (Figure 3).

1. Installed in each subsystem

Subsystem 1 Subsystem 2 Subsystem 3

2. Update subsystem 33. Is the updated program to be
installed in other subsystems?

Standard
program

Updated
program for
subsystem 3

Figure 3: Updating a Program

Studies in Informatics and Control, Vol. 15, No.1, March 2006 9

An updated version of the first kind of program remains the common or standard program and must of course be
installed in all the subsystems. An updated version of a program specific to its subsystem is managed as an
individual program.

And it is necessary to check whether an updated version of a program that may or may not be related to other
subsystems can be installed in other subsystems. If the revision is due to a logical flaw (that is unrelated to
operational conditions), the updated program should be installed in all the subsystems. But if the revision is
related to the operational conditions, installing the updated program in other subsystems may cause them to
malfunction. To maintain such a program as a standard, it must be tested in all the subsystems. This is
time-consuming work. Furthermore, whether a program remains a standard one will not be known until the total
construction is completed. This kind of program therefore has to be managed as an individual program and must
be kept separate from known standard programs in order to keep it from being installed in other subsystems. The
standard programs, the individual programs, and the common programs thus coexist in subsystems and their
configurations differ between subsystems.

Figure 4 shows changes in the program configurations in subsystems. In this figure, each subsystem I, II, is
composed of Program A, B, C. In first step (05.01.01), standard programs were installed in each subsystem. In
next step (05.02.03), Program B was revised. This program was updated as a standard version (V1.2) and
installed in two subsystems again. In the third step (05.03.10), Program C was updated as a standard version
(V1.2) in two subsystems. On the other hand, when Program A was updated, this program was divided into two
versions. In subsystem I, an individual version (V1.2_I) was generated and installed. In subsystem II, a standard
version (V1.2) was installed. It is therefore necessary to manage the program configurations in each subsystem.

This means that software maintenance requires version management not only for the common and standard
programs but also for the individual programs and program configurations in each subsystem. Since only a
limited amount of time is available for software maintenance in industrial control systems, it is necessary to
minimize the volume of programs downloaded in the target subsystem.

Furthermore, the programs used in real-time control systems are not necessarily independent of each other. A
main program, for example, is related to its subroutines. All newly updated programs depending on each other
must be installed at the same time. If not, the interface between programs will be illegal and the subsystems will
not be able to execute their operations properly even if the programs executed correctly in the test system [6].

Since subsystems will not work properly until all the necessary programs are completed, before standard or individual
versions are installed the management must check whether the subsystem will have all the necessary programs.

05.01.01

05.02.03

05.03.10

Program A Program B Program C

V1.1 V1.1 V1.1

V1.2 V1.2 V1.2

V1.2_I V1.3 V1.3

Program A Program B Program C

V1.1 V1.1 V1.1

V1.2 V1.2 V1.2

V1.2_I V1.3 V1.3

Subsystem I Subsystem II
Figure 4: Changes in Program Configurations

3.2. In program Execution

Some kinds of programs used in real-time control systems are statically loaded in memory, and the subsystems
cannot be executed as a complete system until these kinds of programs are fully loaded in the execution
environment [7]. In software maintenance, these programs have to be checked in each loading module (such as

10 Studies in Informatics and Control, Vol. 15, No.1, March 2006

task program, subroutine program, etc.) to see if they are correctly loaded the execution environment. The
configurations of programs loaded in the execution environment also have to be checked. And it must be
possible to restore the previous version of a subsystem that malfunctions after being updated.

4. Software Maintenance Management Method

4.1. Generation phase

4.1.1. Programs

As mentioned in section 3.1, when the standard programs in one subsystem are updated, some of them cannot be
transferred to other subsystems. Since these programs have to be managed as individual versions, two kinds of
versions—standard and individual—coexist as shown in Fig. 5. Software maintenance management must
distinguish between these two versions.

Table 1 shows which version numbers are assigned to the standard and individual programs. The standard
version has only a version/revision number, whereas the individual version has a subsystem code number as
well as the version/revision number. The individual version and its history of changes are managed
independently of the standard version. The individual versions are tentatively assigned to the individual
programs. Since the individual version programs are not combined with the standard programs until the local
system is completed, the program versions can be managed in ways appropriate to the development phase.

V1 V2

V2_XX

V3 V4

Individual version

Standard version
Combining the individual version
with the standard version

Figure 5: Changes in Program Versions

Table 1: Numbering of program Versions

Program Version

Standard V1.5

Individual
V1.5_XX

XX: Subsystem number

4.1.2. Subsystems

To satisfy other requirements described in section 3.1, the software configuration in each subsystem is
determined ahead of time and programs are installed accordingly. The management method thus has to check
the integrity of programs in each subsystem in advance. The system definition file describing the software
configuration of the subsystem is shown in Fig. 6. It can be seen in Fig. 6 (a) that the subsystem version is set
under the subsystem code number and that there is a system definition file for each subsystem version so that
changes between the new and old versions can be checked easily. As shown in Fig. 6 (b), the definition file
contains each program name, program group name, version number, and kind of program. Programs are
installed according to this definition file.

Thanks to this management method which determines the complete subsystem in advance, the software
configuration can be managed in each subsystem. Thus the integrity of the subsystem can be guaranteed and the
lack of programs can be prevented as long as the loading of programs does not fail.

Studies in Informatics and Control, Vol. 15, No.1, March 2006 11

control phkchgss V1.5 task
control phdlfras V1.5 task
control phdaiyat V1.6 task
control phsinrot V1.5 task
control phdaiypt V1.6 task
control phjsaiit V1.5 subroutine
control phsinrpt V1.5 subroutine

Group name

Program name

Kind of program

definition root

1111

1123

V1.1

V1.2

: :

:

definition filedefinition file

V1.1

definition filedefinition file

:

definition filedefinition file

:

Subsystem No.

Subsystem version

(a) Directory tree (b) Contents
Figure 6: System Definition File

4.2. Execution phase

The programs defined in the definition file are not necessarily loaded into the execution environment of the
subsystem because loading may fail. The loaded programs must therefore be checked. This section describes the
loading procedure, the procedure used to check the consistency of programs loaded into the execution
environment, and the method used to restore the previous version if a subsystem fails.

4.2.1. Loading

Program resources are saved in the program management computer, from which they are installed in each
subsystem (Figure 7). According to the system definition file, programs are downloaded from the program
management computer to the subsystem on-line or off-line and are temporarily saved in the disk area. During
on-line downloading the program management computer compares the contents of the selected definition file
with the registration data of the present version recorded in the target subsystem, so only different version
programs are downloaded.

The loading command defined for each program loads its program and is executed when the subsystem reboots.
The command generates the execution program from its object files and loads the program into the execution
environment. It also records the loading result to the registration data file if successful. It gets source file
versions from their object files and records the version information about the subsystem, its programs, and their
source files in the registration file. The loading can thus be completed before applications start their executions.

12 Studies in Informatics and Control, Vol. 15, No.1, March 2006

process

Program
resource DB

Program management computer

definition file

1111 Ver 1.1
Ver 1.2

1123

1324

temp area

Registration data file

1. According to the definition file, programs
are downloaded on-line or off-line.

1. According to the definition file, programs
are downloaded on-line or off-line.

2. The loading command is executed
when the subsystem reboots.

2. The loading command is executed
when the subsystem reboots.

3. When the loading is successful,
the result is recorded.

3. When the loading is successful,
the result is recorded.

V1.1
control

phkchgss
@V1.5
c main.c V1.1
s sub1.c V1.3

phdlfras
task

Subsystem

Execution environment

task data

process subroutine

route phjchgss V1.5 task
route phdftras V1.5 process
route phdaiyat V1.6 subroutine
route phsinrot V1.5 data
route phjsaijit V1.5_1111 task

1111

sub1.o
main.o

phdlfras V1.5

phkchgss V1.5

loading command

System info.: 1111, Ver 1.1

Figure 7: Loading Process

4.2.2. Checking

The loading command does not record the loading result in the registration data file until it determines that the
program loading was successful. Since it is guaranteed that the execution environment and the registration data
file are identical, the execution environment can therefore be checked simply by referring to the registration data
file. Consistency between them can thus be guaranteed.

Figure 8 shows the structure of the registration data file in a subsystem. The loading results of the present
subsystem version are registered for each program group. Each program group has four files according to the
kinds of programs (task program, process program, subroutine, and data). For each program in each file are
written the program name, the program version, the name of the source file, and the source file version. Thus the
version information in the execution environment can be easily checked by referring to the registration data file.

Studies in Informatics and Control, Vol. 15, No.1, March 2006 13

1111 V1.1

Subsystem No.
Subsystem

version

control

monitor

task.artask.ar

process.arprocess.ar

subprog.arsubprog.ar

data.ardata.ar

Program
group

:

task.artask.ar

phkchgss

phdlfras

:

@V1.5
c main.c V1.1
s sub1.c V1.3
s sub2.c V1.2

: :

Kind of program

Program name Program version

Source fine
name

Source file
version

Figure 8: Registration Data File

4.2.3. Restoring a Previous State

If the subsystem malfunctions after updating, it is necessary to restore the subsystem to its previous state. This
section discusses a restoration management method that can restore the subsystem to its previous state when the
loading of a new version fails

Figure 9 shows the restoration procedures:

(1) The new version programs for updating the subsystem and the previous version programs for restoring
the subsystem are downloaded into separate disk areas (temp and temp2).

(2) The compare command in each program restoration is defined as shown in Fig. 9. From its object files it
generates the program to be restored, compares it with the execution program loaded into the execution
environment, and checks that these two programs are identical. Even if there is only one inconsistency
between these two programs, the management stops updating the subsystem to the new version.

(3) If these two programs are identical, the new version programs are loaded.

(4) Even if only one of the new version programs should fail to load, the management stops updating the
subsystem. Then all the program versions to be restored are copied to the temporary disk area (temp)
and sequentially reloaded.

14 Studies in Informatics and Control, Vol. 15, No.1, March 2006

Subsystem 1111

Program management computer

1111

definition file

progA.I

Unit info.
1111, Ver1.2

Ver 1.1 programs
for restoring

progA.I

progAA.o procAB.o

compare command

temp2 area
Unit info.
1111, Ver1.1

Program Info.
progA, V1.1

procAC.o

loading command

3. Loading the new program3. Loading the new program

2. The compare command
checks that the program
loaded into the
execution environment
and the previous
program are identical.

2. The compare command
checks that the program
loaded into the
execution environment
and the previous
program are identical.

4. If loading fails, a directory copy and
the previous programs are reloaded

4. If loading fails, a directory copy and
the previous programs are reloaded

1. The new and previous
programs are downloaded into
separate areas.

1. The new and previous
programs are downloaded into
separate areas.

Ver 1.2

Ver 1.1

Ver 1.2 programs
for updating

progB.I

temp area

progAA.o procAB.o

Program Info.
progA, V1.2

procAC.o

loading command

progB.I

Registration data file

Execution environment

task data

process subroutine

Program
resource DB

identical?

Figure 9: Restoring to the previous State

5. Evaluation

5.1. Application

A large-scale distributed train traffic control system consists of three hierarchical layers, and some train-line
systems have more than 30 station-level subsystems. The proposed method in on-line installation was applied to
a prototype system for a train-line system. No error or omission occurred when program installation was
executed more than 1000 times. And the source files of an executed program could be identified in less than 1
minute, whereas this previously took more than an hour to do by hand.

The proposed off-line installation method using a memory media was applied to the actual operation system.
The time available to update and restore a station-level subsystem is less than 20 minutes, and the execution
results obtained in this experimental evaluation in which the volume of the installed programs was about 245k
bytes are listed in Table 2. The restoration operations were completed in less than 20 minutes, and the updating
time was almost same as the restoration time.

Table 2: Restoration results

Items Time spent

(1) Installation of maintenance tool programs

(2) Installation of restored programs

(3) Rebooting of the subsystem

0.7 minutes

1.1 minutes

10.6 minutes

Total time 12.4 minutes

(4) Saving the loading results to a memory media 1.3 minutes

Studies in Informatics and Control, Vol. 15, No.1, March 2006 15

5.2. The Comparison with Other Existing Maintenance Tools

Differences between the proposed management method and existing tools [3, 8, 10] are listed in Table 3. As
mentioned before, the existing tools install package software products into personal computers and workstations.
These tools cannot update the subsystems to fit their individual conditions because they only install common
programs uniformly to subsystems and perform software version management only for software products. The
proposed method, on the other hand, performs version management for each subsystem, each of that
subsystem’s programs, and each of their source files. The proposed method can also manage individual version
programs for specific subsystems.

The proposed method can confirm the integrity of the subsystem according to the system definition. The
existing distribution tools do not have such function because they install only package software products.

As both the hardware and software in large-scale distributed industrial control systems have to be constructed by
step-by-step, software management suitable for this kind of construction—such as the proposed method—is
necessary. The existing maintenance tools do not provide the strict management needed for high reliability.

Table 3: Differences Between the Proposed Method and the Existing Tools

Items Proposed method Existing tools

Management level
Source file
Program

Subsystem
Software product

Individual management for
each subsystem Possible Not supported

Integrity management for
each subsystem Possible Not supported

6. Conclusion

The software maintenance management proposed in this paper assures the integrity and consistency of the
software in large-scale distributed industrial control systems. The two–phase method controls program
generation in a way that makes maintenance easy and controls program execution in a way that makes
maintenance more reliable. In the generation phase the individual programs and the standard ones are managed
separately and the subsystem is constructed according to the system definition file. In the execution phase
software programs in the execution environment are recorded in the registration data file and, in the event of
failure, the previous state of the subsystem is restored by installing the previous versions of updated programs.
The proposed management method has been used in a distributed train traffic-control system, where it made
software maintenance more effective and more reliable.

16 Studies in Informatics and Control, Vol. 15, No.1, March 2006

REFERENCES

1. BARRIE, D., HILL, D. S., and YUEN, A., Computer Configuration for Ontario Hydro’s New Energy
Management System, IEEE Trans. on Power Systems, 4, 3, 1989.

2. DEEN, S. M., Agent-Based Manufacturing, Advances in the Holonic Approach (Advanced
Information Processing), Springer Verlag, 2003.

3. KACZMAREK, S. D., Microsoft Systems Management Server 2003 Administrator's Companion
(Administrators Companion), Microsoft Press, 2003.

4. KAKUMOTO, Y., NISHIJIMA, E., SUIZU, H., and KOMODA, N., Development of Middleware
Applicable to Various Types of System Structure in Train-Traffic-Control Systems, Proc. 9th Conf. on
Computer Aided Design, Manufacture and Operation in the Railway and Other Mass Transit Systems, 2004.

5. KERA, K., BEKKI, K., FUJIWARA, F., KITAHARA, F., and KAMIJO, K., Assurance System
Technologies Based on Autonomous Decentralized System for Large Scale Transport Operation
Control System, IEICE Transactions on Communications, E83-B, 5, 2000.

6. KOBAYASHI, H., NAKANISHI, H., and HAYASHI, K., On-line Software Expansion in Large-Scale
Widely Distributed Systems, Proc. 1st Symposium on Autonomous Decentralized System, 1993.

7. KOPTETS, H., Real-Time Systems -Design Principles for Distributed Embedded Applications-, Kluwer
Academic, 1997.

8. MULLER, H. A., NORMAN, R. J., SLONIM, J., and MULLER, H., Computer Aided Software
Engineering, Kluwer Academic, 1996.

9. SINGH, N. and RAJAMANI, D., Cellular Manufacturing Systems: Design, Planning and Control,
Chapman & Hall, 1996.

10. VESPERMAN, J., Essential CVS, O'reilly & Associates, 2003.

