
Studies in Informatics and Control, Vol. 15, No.1, March.2006 17

Person Movement Prediction Using
Hidden Markov Models

Arpad Gellert

Lucian Vintan

Computer Science Department,

“Lucian Blaga” University of Sibiu,

E. Cioran Str., No. 4, Sibiu-550025,

Romania

{arpad.gellert, lucian.vintan}@ulbsibiu.ro

Abstract: Ubiquitous systems use context information to adapt appliance behavior to human needs. Even more convenience is reached if the
appliance foresees the user’s desires and acts proactively. This paper introduces Hidden Markov Models, in order to anticipate the next
movement of some persons. The optimal configuration of the model is determined by evaluating some movement sequences of real persons
within an office building. The simulation results show accuracy in next location prediction reaching up to 92%.

Keywords: Ubiquitous Computing, Context Prediction Methods, Hidden Markov Models, Neural Networks

Professor Lucian N. Vinţan, PhD („Lucian Blaga” University of Sibiu, RO) is an active researcher in Advanced Computer
Architecture, Context Prediction in Ubiquitous Computing Systems, Parallel and Distributed Systems. He is a member of Academy
of Technical Sciences from Romania, European Commission Expert in Computer Science, Visiting Researcher Fellow at University
of Hertfordshire, UK. Professor Vinţan published 8 books and over 100 scientific papers (Romania, USA, Italy, UK, Portugal,
Hungary, Austria, Germany, Poland, etc.). He introduced some well-known original architectural concepts in Computer Architecture
domain (Dynamic Neural Branch Prediction, Pre-Computed Branches, Value Prediction focused on CPU's Context, etc.),
recognized, cited and debated through over 50 papers published in many prestigious international conferences and scientific reviews
(ACM, IEEE, IEE, etc.)

Arpad Gellert, MSc, is working as a teaching assistant at Computer Science Department from “Lucian Blaga” University of Sibiu,
Romania. He received the Master of Science degree in Computer Science at the same university in 2003. Arpad Gellert is currently
a PhD student in Computer Science, working on a thesis entitled “Advanced Prediction Methods Integrated into Speculative
Computer Architectures”, having as supervisor professor dr. Lucian Vinţan and co-supervisor professor dr. Theo Ungerer from
University of Augsburg, Germany. He is an active researcher in Advanced Computer Architecture, Context Prediction in Ubiquitous
Computing Systems and he published over 10 scientific papers in some appreciate reviews (IEE Proc. Computer and Digital
Techniques) and international conferences (UK, Germany, Belgium and Romania).

1. Introduction

Ubiquitous systems strive for adaptation to user needs by utilizing information about the current context
in which a user’s appliance works. A new quality of ubiquitous systems may be reached if context
awareness is enhanced by predictions of future contexts based on current and previous context
information. Such a prediction enables the system to proactively initiate actions that enhance the
convenience of the user or that lead to an improved overall system.

Humans typically act in a certain habitual pattern, however, they sometimes interrupt their behavior pattern and
they sometimes completely change the pattern. Our aim is to relieve people of actions that are done habitually
without determining a person’s action. The system should learn habits automatically and reverse assumptions if
a habit changes. The predictor information should therefore be based on previous behavior patterns and applied
to speculate on the future behavior of a person. If the speculation fails, the failing must be recognized, and the
predictor must be updated to improve future prediction accuracy [4, 5].

For our application domain we chose next location prediction instead of general context prediction. The
algorithms may also be applicable for other more general context domains; however, there already exist
numerous scenarios within our application’s domain. Some sample scenarios may be the following [4]:

 Smart doorplates that are able to direct visitors to the current location of an office owner based on a
location-tracking system and predict if the office owner is soon coming back. This scenario is
currently developed at Augsburg University and we are involved in the context prediction approach.

 Elevator prediction could anticipate at which floor an elevator will be needed next.
 Routing prediction for cellular phone systems may predict the next radio cell a cellular phone owner

will enter based on his previous movement behavior.

18 Studies in Informatics and Control, Vol. 15, No.1, March.2006

To predict or anticipate a future situation, learning techniques as e.g. Markov Chains, Hidden Markov
Models, Bayesian Networks, Time Series or Neural Networks are obvious candidates. The challenge is to
transfer these algorithms to work with context information.

Petzold, et al., in their work [4], transformed some prediction algorithms used in branch prediction techniques
of current high-performance microprocessors, to handle context prediction. They evaluated the one-level one-
state, two-state, and multiple-state predictors, and the two-level two-state predictors with local and global first-
level histories. The evaluation was performed by simulating the predictors with behavior patterns of people
walking through a building as workload. Their simulation results show that the context predictors perform well
but exhibit differences in training and retraining speed and in their ability to learn complex patterns.

In another work [5], Petzold, et al., introduced context prediction techniques based on previous behavior
patterns, in order to anticipate a person’s next movement. They analyzed the two-level predictors with
global first-level histories and the two-state predictors and they compared these predictors with the
Prediction by Partial Matching (PPM) method. They evaluated the predictors by some movement
sequences of real persons within an office building reaching up to 59% accuracy in next location
prediction without pre-training and, respectively, up to 98% with pre-training.

Rabiner in his work [7], shows how HMMs can be applied to selected problems in speech recognition.
His paper presents the theory of HMMs from the simplest concepts (discrete Markov chains) to the most
sophisticated models (variable duration, continuous density models, etc.). He also illustrated some
applications of the theory of HMMs to simple problems in speech recognition, and pointed out how the
techniques have been applied to more advanced speech recognition problems.

Liu et al. in their work [3], describe a HMM based framework for hand gesture detection and recognition.
The goal of gesture interpretation is to improve human-machine communication and to bring human-
machine interaction closer to human-human interaction, making possible new applications such as sign
language translation. They present an efficient method for extracting the observation sequence using the
feature model and Vector Quantization, and demonstrate that, compared to the classic template-based
methods, the HMM-based approach offers a more flexible framework for recognition.

Galata et al. in their work [2], present a novel approach for automatically acquiring stochastic models of
the high-level structure of a human activity without the assumption of any prior knowledge. The process
involves temporal segmentation into plausible atomic behaviour components and the use of variable
length Markov models for the efficient representation of behaviours. Their experimental results
demonstrate that the use of variable length Markov models provides an efficient mechanism for learning
complex behavioral dependencies and constraints.

Machine Learning techniques based on HMMs has been also applied to problems in computational biology and
they can be used as mathematical models of molecular processes and biological sequences. The goal of
computational biology is to elucidate additional information required for drug design, medical diagnosis and
medical treatment. The majority of molecular data used in computational biology consists in sequences of
nucleotides corresponding to the primary structure of DNA and RNA, or sequences of amino acids
corresponding to the primary structure of proteins. Birney in his work [1], reviews gene-prediction HMMs and
protein family HMMs. The role of gene-prediction in DNA is to discover the location of genes on the genome.
HMMs have also been used in protein profiling to discriminate between different protein families and predict a
new protein-family or subfamily. Yoon et al. in their work [10], proposed a new method based on context-
sensitive HMMs, which can be used for predicting RNA secondary structure. The RNA secondary structure
results from the base pairs formed by the nucleotides of RNA. The context-sensitive HMM can be viewed as
an extension of the traditional HMM, where some of the states are equipped with auxiliary memory. Symbols
that are emitted at certain states are stored in the memory, and they serve as the context that affects the emission
and transition probabilities of the model. They demonstrated that the proposed model predicts the secondary
structure very accurately, at a low computational cost.

This paper focuses on a Hidden Markov Model (HMM) approach, introducing the HMM-based predictors
and comparing them with simple Markov and respectively neural predictors. Our application predicts the
next room based on the history of rooms, visited by a certain person moving within an office building.
We evaluate these predictors by some movement sequences of real persons, acquired from the Smart
Doorplates project developed at Augsburg University [4, 5, 6]. The next sections describe the proposed
Hidden Markov Models and present the simulation results.

Studies in Informatics and Control, Vol. 15, No.1, March.2006 19

2. Hidden Markov Models of order 1

2.1. Elements of a HMM of Order 1

1. N - the number of hidden states, with S = {S0, S1, …, SN-1} the set of hidden states, and qt the hidden
state at time t. N will be varied in order to obtain the optimal value.

2. M - the number of observable states, with V = {V0, V1, …, VM-1} the set of observable states
(symbols), and Ot the observable state at time t.

3. A = {aij} - the transition probabilities between the hidden states Si and Sj, where

1,0],[1 NjiSqSqPa itjtij .

4. B = {bj(k)} - the probabilities of the observable states Vk in hidden states Sj, where

10,10],[)(MkNjSqVOPkb jtktj .

5. π = {πi} - the initial hidden state probabilities, where 10],[1 NiSqP ii .

There are also defined the following variables:

),...()(21 ittt SqOOOPi - the forward variable [7], representing the probability of the

partial observation sequence until time t, and hidden state Si at time t, given the model
),,(BA .

),...()(21 itTttt SqOOOPi - the backward variable [7], representing the probability of the

partial observation sequence from t+1 to the end T, given hidden state Si at time t and the model),,(BA .

),...,(),(211 Tjtitt OOOSqSqPji - the probability of being in hidden state Si at

time t, and hidden state Sj at time t+1, given the model),,(BA and the observation sequence.

),...()(21 Titt OOOSqPi - the probability of being in hidden state Si at time t, given the

model),,(BA and the observation sequence.

 H - the history (the number of observations used in the prediction process). In [7] and [8] the entire
observation sequence is used in the prediction process (H=T), but in some practical applications the
observation sequence increases continuously, therefore it is necessary its limitation. Thus, the last H
observations can be stored in a left shift register.

 I - the maximum number of iterations in the adjustment process. Usually the adjustment process ends
when the probability of the observation sequence doesn’t increase anymore, but for a faster
adjustment, it is limited the number of iterations.

2.2. Adjustment Process of a HMM of Order 1

1. INITIALIZE),,(BA ;

2. COMPUTE 1...,,0,1...,,0,...,,1),(),,(),(),(NjNiTtijiii tttt ;

3. ADJUST THE MODEL),,(BA ;

4. IF)(OP INCREASES, GO TO 2.

2.3. Initialization of the Model of Order 1

 The transition probabilities between the hidden states A(NXN) = {aij}, are randomly initialized to
approximately 1/N, each row summing to 1.

 The probabilities of the observable states B(NXM) = {bj(k)}, are randomly initialized to
approximately 1/M, each row summing to 1.

 The initial hidden state probabilities π(1XN) = {πi} are randomly set to approximately 1/N, their sum being 1.

20 Studies in Informatics and Control, Vol. 15, No.1, March.2006

2.4. Prediction Algorithm Using a HMM of Order 1

1. T=1 (T is the length of the observation sequence);

2. T=T+1;

if T<H go to 2.)

3. c=0 (c is the number of current iteration, its maximum value is given by I);

4. The model),,(BA is repeatedly adjusted based on the last H observations

THTHT OOO ...,,, 21 (the entire observation sequence if H=T), in order to increase the

probability of the observation sequence)...(21 THTHT OOOP . In 4.1, 4.2 and 4.3 steps

the denominators are used in order to obtain a probability measure, and to avoid underflow. As
Stamp showed in [8], underflow is inevitable without scaling, since the probabilities tend to 0
exponentially as T increases.

4.1. Compute the forward variable in a recursive manner:

1,...,0,
)(

)(
)(

1

0
1

1
1

 Ni

Ob

Ob
i

N

i
HTii

HTii
HT

 , where)(1 iHT is the

probability of
observation symbol OT-H+1 and initial hidden state Si, given the model),,(BA ;

1,...,0,...,,2,
)()(

)()(
)(

1

0

1

0
1

1

0
1

NjTHTt
Obai

Obai
j

N

j

N

i
tjijt

N

i
tjijt

t

 , where

)(jt

is the probability of the partial observation sequence until time t (OT-H+1 … Ot), and hidden
state Sj at time t, given the model),,(BA . Since, by definition,

),...()(21 jTTHTHTT SqOOOPj ,

the sum of the terminal forward variables)(jT gives the probability of the observation

sequence:

1

0
21)()...(

N

j
TTHTHT jOOOP .

4.2. Compute the backward variable in a recursive manner:

;1,...0,
)()(

1
)(

1

0

1

0
1

Ni
Obai

i
N

j

N

i
TjijT

T

1,...,0,1,...,1,
)()(

)()(

)(
1

0

1

0
11

1

0
11

NiHTTt
jOba

jOba

i
N

i

N

j
ttjij

N

j
ttjij

t

 ,

where

)(it is the probability of the partial observation sequence from t+1 to the end T

(Ot+1Ot+2…OT), given hidden state Si at time t and the model),,(BA .

4.3. Compute :

Studies in Informatics and Control, Vol. 15, No.1, March.2006 21

1...,,0

,1...,,0,1...,,1,
)()()(

)()()(
),(

1

0

1

0
11

11

Nj

NiTHTt
jObai

jObai
ji

N

i

N

j
ttjijt

ttjijt
t

where),(jit is the probability of being in hidden state Si at time t and respectively Sj at time

t+1, given the observation sequence THTHT OOO ...21 and the model),,(BA .

4.4. Compute :

1

0

1...,,0,1...,,1),,()(
N

j
tt NiTHTtjii , where)(it is the

probability of being in the hidden state Si at time t, given the model),,(BA and the

observation sequence THTHT OOO ...21 .

4.5. Adjust π:

)(1 iHTi - represents the expected number of times the hidden state is Si at the initial

time 1 HTt .
4.6. Adjust A:

1

1

1

1

)(

),(

T

HTt
t

T

HTt
t

ij

i

ji
a

 - represents the probability of transition from hidden state Si to Sj.

The numerator is the expected number of transitions from state Si to Sj, while the denominator
is the expected number of transitions from state Si to any state.

4.7. Adjust B:

1

1

1

1

)(

)(

)(
T

HTt
t

T

VO
HTt

t

j

j

j

kb kt

 - the probability of observation symbol Vk given that the model is in

hidden state Sj. The numerator is the expected number of times the model is in hidden state Sj
and the observation symbol is Vk, while the denominator is the expected number of times the
model is in hidden state Sj.

4.8. c=c+1;

if)]...(log[)]...(log[11 THTTHT OOPOOP and c<I then go to 4.).

Since P would be out of the dynamic range of the machine [7], we compute the log of P, using
the following formula [8]:

T

HTt
N

j

N

i
tjijt

N

i
HTii

THT

ObaiOb
OOP

2
1

0

1

0
1

1

0
1

1

)()(

1
log

)(

1
log)]...(log[

1.) At current time T, it is predicted the next observation symbol OT+1, using the adjusted model

),,(BA :

- choose hidden state Si at time T, i=0, …, N-1, maximizing)(iT ;

- choose next hidden state Sj (at time T+1), j=0, …, N-1, maximizing ija ;

- predict next symbol Vk (at time T+1), k=0, …, M-1, maximizing)(kb j .

If the process continues, then T=T+1 and go to 3.).

22 Studies in Informatics and Control, Vol. 15, No.1, March.2006

3. A Possible Generalization: Hidden Markov Models of Order R

In this paragraph we try to develop a Hidden Markov Model of order R, R≥1. There are multiple
possibilities for doing this but we present here only one we considered the most appropriate. The key of
our proposed model is represented by the so-called hidden super-states, a combination of R primitive
hidden states. Therefore, the main difference, comparing with an order 1 HMM, consists in the fact that
the stochastic hidden Markov model is of order R instead of order one. This new model is justified
because we suppose that in some specific applications, there are longer correlations within the hidden
state model. In other words, we suppose that the next hidden state is better determined by the current
super-state rather than by the current primitive state. As it can be further seen, the new proposed model is
similar with the well-known HMM of order one, excepting that the generic primitive hidden state
becomes now a generic super-state.

3.1. Elements of a HMM of Order R

1. R - the order of HMM (a combination of R primitive hidden states form a so called super-state).

2. N - the number of primitive hidden states (belonging to a HMM of order 1), with

}...,,,{
110

 RN
SSSS being the set of hidden super-states and Sqt the hidden super-

state at time t. The current super-state determines the transition into the next one based on a
super-state transition matrix with restrictions (this transition matrix involve a non-ergodic model,
see example of Table 1). N will be varied in order to obtain the optimal value.

3. M - the number of observable states, with V = {V0, V1, …, VM-1} the set of observable states
(symbols), and Ot the observable state at time t.

4. A = {aij} - the transition probabilities between the hidden super-states Si and Sj, where

1,0],[1
R

itjtij NjiSqSqPa .

5. B = {bj(k)} - the probabilities of the observable states Vk, considering the current hidden super-

state Sj, where 10,10],[)(MkNjSqVOPkb R
jtktj .

6. π = {πi} - the initial hidden super-state probabilities, where

10],[1 R
ii NiSqP .

In order to simplify the terminology, in the rest of the paper we’ll refer to the hidden super-states as
simply hidden states belonging to the HMM of order R.

We also define the following variables:

),...()(21 ittt SqOOOPi - the forward variable [7], representing the probability of the

partial observation sequence until time t, and hidden state Si at time t, given the model),,(BA .

),...()(21 itTttt SqOOOPi - the backward variable [7], representing the probability

of the partial observation sequence from t+1 to the end T, given hidden state Si at time t and the
model),,(BA .

),...,(),(211 Tjtitt OOOSqSqPji - the probability of being in hidden state Si at

time t, and hidden state Sj at time t+1, given the model),,(BA and the observation sequence.

),...()(21 Titt OOOSqPi - the probability of being in hidden state Si at time t, given

the model),,(BA and the observation sequence.

 H - the history (the number of observations used in the prediction process). In [7] and [8] the entire
observation sequence is used in the prediction process (H=T), but in some practical applications the
observation sequence increases continuously, therefore it is necessary its limitation. Thus, the last H
observations can be stored in a left shift register having a certain length.

Studies in Informatics and Control, Vol. 15, No.1, March.2006 23

 I - the maximum number of iterations in the adjustment process. Usually the adjustment process ends
when the probability of the last H observations doesn’t increase anymore, but for a faster adjustment,
it is limited the number of iterations.

For a HMM of order R with N hidden states, the transition probabilities between the hidden states A(NR
XNR) =

{aij}, are stored in a table with NR rows and NR columns but not all cells of the table are used; there are only N
consistent (possible) transitions from each state involving a non-ergodic model. The following table, for
example, corresponds to a HMM of order 3 (R=3) with 2 primitive hidden states (N=2):

j
0 1 2 3 4 5 6 7

AAA
AAB

ABA ABB BAA BAB BBA BBB

0 AAA X X
1 AAB X X
2 ABA X X
3 ABB X X
4 BAA X X
5 BAB X X
6 BBA X X

i

7 BBB X X

Table 1. Consistent Transitions for a HMM of Order 3 (R=3), with 2 Hidden States (N=2)

There are used only the consistent cells marked with “X”, because transitions are possible only between
states which end and respectively start with the same (R-1) primitive hidden states. The consistent cells of
the transition table are given by the following formulas:

 For next hidden states (columns) 1...,,0 RNj , are consistent only the current hidden states

(rows) 11)1(...,,0

 RR NN

N

j
N

N

j
i ;

 For current hidden states (rows) 1...,,0 RNi , are consistent only the next hidden states

(columns) 1)mod(...,,)mod(11 NNNiNNij RR .

3.2. Adjustment Process of a HMM of Order R

1. Initialize),,(BA ;

2. Compute 1...,,0,1...,,0,...,,1),(),,(),(),(RR
tttt NjNiTtijiii ;

3. Adjust the model),,(BA ;

4. If)(OP increases, go to 2.

3.3. Initialization of the Model of Order R

1. The transition probabilities between the hidden states A(NRXNR) = {aij}, are randomly initialized to
approximately 1/N; the sum of each row’s elements must be 1. The hidden state transition

probabilities are initialized for 1...,,0 RNi and

1)mod(...,,)mod(11 NNNiNNij RR .

2. The probabilities of the observable states B(NRXM) = {bj(k)}, are randomly initialized to
approximately 1/M; the sum of each row’s elements must be 1.

3. The initial hidden state probabilities π(1XNR) = {πi} are randomly set to approximately 1/NR, their
sum being 1.

24 Studies in Informatics and Control, Vol. 15, No.1, March.2006

3.4. Prediction Algorithm Using a HMM of Order R

1. T=1 (T is the length of the observation sequence);

2. T=T+1;

 if T<H go to 2.)

3. c=0 (c is the number of current iteration, its maximum value is given by I);

4. The model),,(BA is repeatedly adjusted based on the last H observations

THTHT OOO ...,,, 21 (the entire observation sequence if H=T), in order to increase the

probability of the observation sequence)...(21 THTHT OOOP . In 4.1, 4.2 and 4.3 the

denominators are used in order to obtain a probability measure, and to avoid underflow. As Stamp
showed in [8], underflow is inevitable without scaling, since the probabilities tend to 0 exponentially
as T increases.

4.1. Compute the forward variable in a recursive manner:

1,...,0,

)(

)(
)(

1

0
1

1
1

R

N

i
HTii

HTii
HT Ni

Ob

Ob
i R

 , where)(1 iHT is the probability

of observation symbol OT-H+1 and initial hidden state Si, given the model),,(BA ;

1,...,0,...,,2,

)()(

)()(

)(
1

0

)1(

0

1

)1(

0

1

1

1

1

1

R

N

j

NN
N

j

N
N

j
i

tjijt

NN
N

j

N
N

j
i

tjijt

t NjTHTt

Obai

Obai

j
R

R

R

R

R

 ,

where)(jt is the probability of the partial observation sequence until time t (OT-H+1 …

Ot), and hidden state Sj at time t, given the model),,(BA . Since, by definition,

),...()(21 jTTHTHTT SqOOOPj ,

the sum of the terminal forward variables)(jT gives the probability of the observation

sequence:

1

0
21)()...(

RN

j
TTHTHT jOOOP .

4.2. Compute the backward variable in a recursive manner:

;1,...0,

)()(

1
)(

1

0

)1(

0

1

1

1

R

N

j

NN
N

j

N
N

j
i

TjijT

T Ni

Obai

i
R

R

R

,1,...,0,1,...,1,

)()(

)()(

)(
1

0

1)mod(

)mod(
11

1)mod(

)mod(
11

1

1

1

1

R

N

i

NNNi

NNij
ttjij

NNNi

NNij
ttjij

t NiHTTt

jOba

jOba

i
R R

R

R

R

Studies in Informatics and Control, Vol. 15, No.1, March.2006 25

where)(it is the probability of the partial observation sequence from t+1 to the end T

(Ot+1Ot+2…OT), given hidden state Si at time t and the model),,(BA .

4.3. Compute :

,1...,,1,

)()()(

)()()(
),(

1

0

1)mod(

)mod(
11

11
1

1

THTt

jObai

jObai
ji

R R

R

N

i

NNNi

NNij
ttjijt

ttjijt
t

,1)mod(...,,)mod(,1...,,0 11 NNNiNNijNi RRR where

),(jit is the probability of being in hidden state Si at time t and respectively Sj at time t+1,

given the observation sequence THTHT OOO ...21 and the model),,(BA .

4.4. Compute :

1)mod(

)mod(

1

1

1...,,0,1...,,1),,()(
NNNi

NNij

R
tt

R

R

NiTHTtjii , where)(it is

the probability of being in hidden state Si at time t, given the model),,(BA and the

observation sequence THTHT OOO ...21 .

4.5. Adjust π:

)(1 iHTi - represents the expected number of times the hidden state is Si

)1...,,0(RNi at the initial time 1 HTt .

4.6. Adjust A:

1

1

1

1

)(

),(

T

HTt
t

T

HTt
t

ij

i

ji
a

 - the probability of transition from hidden state Si to Sj,

where 1...,,0 RNi and 1)mod(...,,)mod(11 NNNiNNij RR .

The numerator is the expected number of transitions from state Si to Sj, while the denominator
is the expected number of transitions from state Si to any state.

4.7. Adjust B:

1

1

1

1

)(

)(

)(
T

HTt
t

T

VO
HTt

t

j

j

j

kb kt

 - the probability of observation symbol Vk (1...,,0 Mk) given

that the model is in hidden state Sj (1...,,0 RNj). The numerator is the expected

number of times the model is in hidden state Sj and the observation symbol is Vk, while the
denominator is the expected number of times the model is in hidden state Sj.

4.8. c=c+1;

if)]...(log[)]...(log[11 THTTHT OOPOOP and c<I then go to 4.).

Since P would be out of the dynamic range of the machine [7], we compute the log of P, using
the following formula [8]:

26 Studies in Informatics and Control, Vol. 15, No.1, March.2006

T

HTt N

j

NN
N

j

N
N

j
i

tjijt

N

i
HTii

THT
R

R

R

R

Obai
Ob

OOP
2 1

0

)1(

0

1

1

0
1

1
1

1

)()(

1
log

)(

1
log)]...(log[

1.) At time T, it is predicted the next observation symbol OT+1, using the adjusted model

),,(BA :

- choose hidden state Si at time T, 1...,,0 RNi , maximizing)(iT ;

- choose next hidden state Sj (at time T+1),

1)mod(...,,)mod(11 NNNiNNij RR , maximizing ija ;

- predict next symbol Vk (at time T+1), 1...,,0 Mk , maximizing)(kb j .

If the process continues, then T=T+1 and go to 3.).

4. Experimental Results
Our application predicts the next room based on the history of rooms, visited by a certain person moving
within an office building. We evaluate these HMM predictors by some movement sequences of real
persons developed by the research group at the University of Augsburg [6]. In this work we are interested
in predicting the next room from all rooms except for the own office.

Each line from the original benchmarks [6] represents a person’s movement (his/her entry in a room). It
contains the movement’s date and hour, the room’s name, the person’s name and a timestamp. In the
codification process we eliminated from the benchmark the common corridor, because it could behave as
noise. Table 2 shows how looks the benchmark before and after the room codification process.

Original benchmark Benchmark after
room codification

2003.07.07 10:13:45; 402; Employee2; 1057565625801 0
2003.07.07 10:21:41; corridor; Employee2; 1057566101067 -
2003.07.07 10:21:45; 411; Employee2; 1057566105152 1
2003.07.07 10:21:48; corridor; Employee2; 1057566108771 -
2003.07.07 10:21:54; 402; Employee2; 1057566114338 0

Table 2. The First Lines From a Certain Benchmark (With a Movement Sequence of Employee 2)
Before and After the Room Codification Process.

After the codification process the benchmarks contain only the room codes (0÷13), because in this
starting stage of our work only this information is used in the prediction process. We used two benchmark
types: some short benchmarks containing about 300-400 movements and some long benchmarks
containing about 1000 movements. We used the short benchmarks to pre-train the HMM predictors, and
the long benchmarks for evaluations.

We started with a HMM of order 1 with 2 hidden states (N=2), and we tested it on the fall benchmarks –
developed at Augsburg University [6] – without corridor. The following simulation methodology was
used in order to predict each room from a certain benchmark: we predicted the next room at time t based
on the entire room sequence from that benchmark until time t-1. We compared a HMM without attached
confidence automata with HMMs using different confidence automata. We denoted as n rooms m states
conf an m-state confidence counter, associated to each sequence of the last n rooms visited by the person.
The 4-state automata have 2 predictable states, while the 2-state automata have only 1 predictable state. In
the case of using 4-state automata, a prediction is generated in each of the two predictable states [9].
Table 3 shows that the best average prediction accuracy (AM) is obtained when using a 4-state
confidence for each sequence of 2 rooms:

Studies in Informatics and Control, Vol. 15, No.1, March.2006 27

Benchmark no conf 2 rooms 4 states conf 2 rooms 2 states conf 1 room 4 states conf
Employee 1 91.89 92.68 90.80 93.33

Employee 2 77.9 84.06 86.41 79.24
Employee 3 65.66 73.82 71.05 69.35
Boss 79.07 84.72 84.07 84.35
AM 78.63 83.82 83.0825 81.5675

Table 3. Comparing a HMM Without Confidence with HMMs Using Different Types of Confidence.

We continued our simulations varying the number of hidden states. We used again the fall benchmarks
[6], and a HMM of order 1 with 4-state confidence automata associated to each sequence of two rooms.
Table 4 shows how is affected the prediction accuracy of a HMM by the number of hidden states:

Benchmark N=1 N=2 N=3 N=4 N=5 N=6 N=7

Employee 1
92.68 92.68 92.68 92.68 92.68 92.68 92.68

Employee 2 84.15 84.06 84 84.57 82.84 82.45 83.13
Employee 3 73.37 73.82 74.65 74.63 76.55 73.91 74.04
Boss 84.72 84.72 85.6 85.49 87.17 85.82 85.6
AM 83.73 83.82 84.2325 84.3425 84.81 83.715 83.8625

Table 4. Study of the Number of Hidden States Using HMM with 4-State Confidence Automata.

It can be observed in Table 4 that for a HMM of order 1, the optimal number of hidden states is 5. Our
scientific hypothesis is that the hidden states are the five working days of a week. We varied again the
number of hidden states without using the confidence automata. Table 5 shows that in this case the
optimal number of hidden states is 1.

Benchmark N=1 N=2 N=3 N=4 N=5 N=6 N=7
Employee 1 91.89 91.89 91.89 91.89 91.89 91.89 90.09

Employee 2 79.77 77.9 76.77 76.02 75.65 74.53 75.65
Employee 3 70.18 65.66 64.9 64.15 65.28 61.13 64.9
Boss 79.49 79.07 72.38 71.12 72.8 71.54 71.12
AM 80.33 78.63 76.48 75.79 76.4 74.77 75.44

Table 5. Study of the Number of Hidden States Using HMM Without Confidence Automata.

We compare now the best HMM of order 1 with different configurations of some “equivalent” NNs (Neural
Networks) developed in our previous work [9] and respectively simple Markov predictors. “Equivalent” means
in this case that we compare all these different predictors considering that they have, however, the same inputs.
We used the HMM of order 1 with 5 hidden states considering an attached 4-state confidence automata. We
compared it with a statically pre-trained NN with a room history length of 1 (NN of order 1) and 2 (NN of
order 2), a learning rate of 0.2 and a threshold of 0.3 (having the same confidence automata). We also
compared the HMM with some simple Markov predictors of order 1 and 2 (having the same confidence
automata). The NN was statically trained on the summer benchmarks [6], and each predictor was tested on the
longer fall benchmarks [6]. Table 6 presents the prediction accuracies obtained with the HMM, NN and
Markov predictors, all with 4-state confidence automata associated to each sequence of two rooms:

Benchmark HMM of order 1
(N=5)

NN of order 1 NN of order 2 Markov of order 1 Markov of order 2

Employee 1 92.68 92.4 92.5 93.42 93.33

Employee 2 82.84 84.35 85.96 83.43 84.33
Employee 3 76.55 73.91 74.17 73.75 75
Boss 87.17 86.71 85.93 85.82 85.71
AM 84.81 84.34 84.64 84.1 84.59

Table 6. Comparing a HMM of Order 1 with NN and Markov Predictors Using 4-State Confidence Automata.

Employee 2 hasn’t got a behavior correlated with days of week (see Table 4 and also Table 6). It can be
seen in Table 6 too, because the Markov predictor of order 1 outperforms the HMM of order 1. NNs are
better than HMM on Employee 2, but we suspect that these results are too optimistic due to the NN’s pre-
training (first case) and respectively due to the NN’s order 2 (second case).

28 Studies in Informatics and Control, Vol. 15, No.1, March.2006

Table 7 presents the prediction accuracies obtained with the HMM, NN and simple Markov predictors
(the same configuration) without confidence automata:

Benchmark HMM of order 1
(N=1)

NN of order 1 NN of order 2 Markov of order 1 Markov of order 2

Employee 1 91.89 89.18 90.09 81.98 75.67

Employee 2 79.77 77.15 76.4 74.15 70.03
Employee 3 70.18 62.26 67.54 64.9 56.98
Boss 79.49 76.56 75.73 73.64 62.34
AM 80.33 76.28 77.44 73.66 66.25

Table 7. Comparing a HMM of order 1 with NN and simple Markov predictors without confidence automata.

In order to confirm or infirm our scientific hypothesis that, in the case of HMM with 4-state confidence automata, the
five hidden states might be the working days of the week, we implemented a predictor which consists of five simple
Markov predictors. Each Markov predictor is associated to one of the 5 days (Monday, Tuesday, …, Friday). Table 8
compares this predictor containing 5 simple Markov predictors with HMMs and simple Markov predictors, using the
4-state confidence automata, and shows that only on one person (Boss) is confirmed our hypothesis.

Benchmark HMM of order 1
(N=5)

Markov of order 1 5 Markov predictors of
order 1

Employee 1 92.68 93.42 86.53

Employee 2 82.84 83.43 78.44
Employee 3 76.55 73.75 55.81
Boss 87.17 85.82 88.46
AM 84.81 84.1 77.31

Table 8. Comparing a HMM of order 1 with Markov of order 1 and a predictor consisting in 5
Markov predictors using 4-state confidence automata.

Table 9 compares the same predictors (HMM, Markov, 5 Markovs) without using the confidence automata. In
this case, however, the best number of hidden states was 1. We obtained (for all benchmarks) lower prediction
accuracies when we used 5 simple Markov predictors, even related to the simple Markov predictor.

Benchmark HMM of order 1
(N=1)

Markov of order 1 5 Markov predictors of
order 1

Employee 1 91.89 81.98 63.46
Employee 2 79.77 74.15 59.77
Employee 3 70.18 64.9 50.57
Boss 79.49 73.64 59.57
AM 80.33 73.66 58.34

Table 9. Comparing a HMM of order 1 with Markov of order 1 and a predictor consisting in 5
Markov predictors without using confidence automata.

In order to decrease prediction latency, we pre-trained HMMs on the summer benchmarks [6] and after
that we tested them on the longer fall benchmarks [6]. Table 10 presents comparatively the obtained
results when we used HMM with 5 hidden states and 4-state confidence automata:

HMM of order 1 (N=5) Pre-trained HMM of order 1 (N=5)
Benchmark Prediction

accuracy
[%]

Total time
[ms]

Prediction Time
of the last room

[ms]

Prediction
accuracy

[%]

Total time
[ms]

Prediction Time
of the last room

[ms]

Employee 1
92.68 128074 2053 92.68 3455 40

Employee 2 82.84 620572 4787 84.15 17195 110
Employee 3 76.55 589537 4466 73.37 26578 90
Boss 87.17 489243 4256 84.72 13720 100
AM 84.81 456856.5 3890.5 83.73 15237 85

Table 10. Comparing simple HMMs with pre-trained HMMs, both with 4-state confidence
automata, in terms of prediction latency.

Studies in Informatics and Control, Vol. 15, No.1, March.2006 29

As it can be observed, with pre-trained HMMs we obtained better prediction latencies (about 85 ms) but
for Employee 3 and Boss we obtained lower prediction accuracies. The same prediction accuracies were
obtained using the untrained HMM with only 1 hidden state (see Table 4). Thus, in our opinion, through
pre-training, the HMM with 5 hidden states, uses only 1 of the hidden states. We repeated the same
simulations without using the confidence automata. Table 11 presents the results for HMM with 5 hidden
states and Table 12 presents the results for HMM with 1 hidden state:

HMM of order 1 (N=5) Pre-trained HMM of order 1 (N=5)
Benchmark Prediction

accuracy
[%]

Total time
[ms]

Prediction Time
of the last room

[ms]

Prediction
accuracy

[%]

Total time
[ms]

Prediction Time
of the last room

[ms]

Employee 1 91.89 118701 2273 91.89 3175 50
Employee 2 75.65 652768 5158 79.77 16393 120
Employee 3 65.28 620322 4727 70.18 62390 90
Boss 72.8 519497 4517 79.49 13088 111
AM 76.4 477822 4168.75 80.33 23761.5 92.75

Table 11. Comparing simple HMMs with pre-trained HMMs, both without confidence automata, in
terms of prediction latency (N=5).

HMM of order 1 (N=1) Pre-trained HMM of order 1 (N=1)
Benchmark Prediction

accuracy
[%]

Total time
[ms]

Prediction Time
of the last room

[ms]

Prediction
accuracy

[%]

Total time
[ms]

Prediction Time
of the last room

[ms]

Employee 1 91.89 471 20 91.89 441 10

Employee 2 79.77 2393 20 79.77 2003 10
Employee 3 70.18 2333 20 70.18 2594 10
Boss 79.49 1963 20 79.49 2234 10
AM 80.33 1790 20 80.33 1818 10

Table 12. Comparing simple HMMs with pre-trained HMMs, both without confidence automata, in
terms of prediction latency (N=1).

As it can be seen in Table 11, for a HMM with 5 hidden states through pre-training there are obtained
better prediction latencies and better prediction accuracies. It is interesting that we obtained the same
prediction accuracies using the untrained HMM with 1 hidden state (see Table 7, N=1). And it is more
interesting that for HMM with 1 hidden state, after pre-training, the prediction accuracy is the same again.
These results encourage our previous conclusion, that the best number of hidden states is 1, when we
don’t use confidence automata. Through pre-training, the HMM with 5 hidden states and without
confidence automata, uses only 1 of the hidden states.

The next parameter we varied was the order of HMM. We studied HMMs of different orders and the
same number of hidden states (N=2). As it can be observed in Table 13, with a first order HMM were
obtained the best prediction accuracies:

With 4-state confidence Without confidence BENCHMARK
R=1 R=3 R=5 R=1 R=3 R=5

EMPLOYEE 1 92.68 83.11 80.76 91.89 81.98 84.68
EMPLOYEE 2 84.06 64.06 62.30 77.9 61.04 58.80
EMPLOYEE 3 73.82 63.63 53.33 65.66 53.58 50.56
BOSS 84.72 76.15 73.27 79.07 61.08 60.25
AM 83.82 71.73 67.41 78.63 64.42 63.57

Table 13. Studying HMMs of different orders.

30 Studies in Informatics and Control, Vol. 15, No.1, March.2006

5. Conclusions and Further Work
This paper analyzed machine learning techniques based on HMMs, used in a ubiquitous computing
application. Our goal was to predict accurately the movements of persons within an office building. Two
predictor types were analyzed: HMMs with confidence automata and respectively without confidence
automata. The experimental results show that HMMs outperform other implemented prediction
techniques such as Neural Network and respectively Markov predictors. The evaluations show that the
simplest configuration of HMM (N=1 and R=1, equivalent with a simple Markov model of order 0) is the
most accurate for this specific application. We continued our study implementing a statically pre-trained
HMM and we obtained lower prediction latencies.

Predicting from all rooms except own room and using a HMM with 4-state confidence automata, we
obtained an average prediction accuracy of 84.81%, but the prediction accuracy measured on some local
predictors grew up to over than 92%. As a further work we intend to use our NN and HMM developed
predictors in other context prediction in ubiquitous computing applications (e.g., next cell movements in
GSM communications based on Nokia’s benchmarks).

Acknowledgments

This work was supported in part by the Romanian National Council of Academic Research (CNCSIS)
through the grant CNCSIS 71 / 2004 - 2006. Also our gratitude to Professor Theo Ungerer from the
University of Augsburg, Germany, for providing us the used benchmarks for persons’ movements and for
supporting the second author during a two months research stage at Augsburg in 2003.

REFERENCES

1. BIRNEY E., Hidden Markov Models in Biological Sequence Analysis, IBM Journal of Research
and Development, Volume 45, Numbers 3/4, 2001.

2. GALATA A., JOHNSON N., HOGG D., Learning Behaviour Models of Human Activities,
Proceedings of British Machine Vision Conference, pages 12-22, Nottingham, UK, September 1999.

3. LIU N., LOVELL B. C., Gesture Classification Using Hidden Markov Models and Viterbi Path
Counting, Proceedings of the Seventh International Conference on Digital Image Computing:
Techniques and Applications, pages 273-282, Sydney, Australia, December 2003.

4. PETZOLD J., BAGCI F., TRUMLER W., UNGERER T., Context Prediction Based on Branch
Prediction Methods, Technical Report, University of Augsburg, Germany, 2003.

5. PETZOLD J., BAGCI F., TRUMLER W., UNGERER T., VINTAN L., Global State Context Prediction
Techniques Applied to a Smart Office Building, Communication Networks and Distributed Systems
Modeling and Simulation Conference, San Diego, California, SUA, January 18-21, 2004

6. PETZOLD J., Augsburg Indoor Location Tracking Benchmarks, Technical Report 2004-9,
Institute of Computer Science, University of Augsburg, Germany, 2004, http://www.informatik.uni-
augsburg.de/skripts/techreports/.

7. RABINER L. R., A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition, Proceedings of the IEEE, Vol 77, No. 2, February 1989.

8. STAMP M., A Revealing Introduction to Hidden Markov Models, January 2004,
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf.

9. VINTAN L., GELLERT A., PETZOLD J., UNGERER T., Person Movement Prediction Using
Neural Networks, Proceedings of the KI2004 International Workshop on Modeling and Retrieval of
Context (MRC 2004), Vol-114, ISSN 1613-0073, Ulm, Germany, September 2004.

10. YOON B., VAIDYNATHAN P. P., RNA Secondary Structure Prediction Using Context-Sensitive
Hidden Markov Models, Proceedings of International Workshop on Biomedical Circuits and
Systems, Singapore, December 2004.

