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Abstract: The control problem of a tentacle manipulator by using a robust 3 D visual servoing is presented. The theoretical model 
of this class of arms is studied. Servoing is based on binocular vision obtained by two cameras that ensure a continuous measure of 
the arm parameters. The control errors function is built in 3D cartesian space by the visual information obtained in the two image 
planes. The 2D errors are determined as the shape errors, they are calculated on the differences between the actual and desired 
continuous angle values. A spatial error is determined and a control law is discussed. The stability of the closed-loop control system 
is proven. Computer simulations and real 3-D experiments are presented to show the applicability of the method. 

Mircea Ivanescu received his B.Sc. degree in Automatic Control in 1965 from the Politehnica University of Bucharest. He 
received the Ph.D. degree in Control Systems in 1975. He is currently a Professor in  the Department of Mechatronics, University of 
Craiova. His research interests are focussed on : Distributed Parameter Systems, Discrete  Optimization Problems, Fuzzy Systems, 
Nonlinear Systems, Robotics. 

Dorian Cojocaru received the B.Sc. degree in Automatic Control in 1982 from the University of Craiova. He received the Ph.D. 
degree in Control Systems in 1999.Now,he is a Professor at the Department of Mechatronics, University of Craiova. His research 
interests are focussed on: Digital Circuits, Artificial Intelligence, Vision Control, Computer Architecture. 

Nirvana Popescu received the B.Sc. and M.Sc. in Computer Science in 1997 and 1998, respectively, from Politehnica University 
of Bucharest. He received the Ph.D. degree in Computer Science in 2003 from University Politehnica, Bucharest. She is currently a 
Lecturer at the Computer Department, Politehnica University of Bucharest. Her research interests are focussed on: Fuzzy Systems, 
Digital Circuits, Intelligent Adaptive Systems, Vision Control. 

Decebal Popescu received the B.Sc. and M.Sc. in Computer Science in 1997 and 1998, respectively, from Politehnica University 
of  Bucharest.. He received the Ph.D. degree in Computer Science in 2003 from University Politehnica, Bucharest. Now he is a 
Lecturer at the Computer Department, Politehnica University of  Bucharest. His research interests are focussed on: Fuzzy Systems, 
Digital Circuits, VLSI circuits, Robotics. 

Razvan Tudor Tănasie received B.Sc. in Computer Science in 2004 from University of Craiova. He is an assistant lecturer at the 
Computer Department, University of Craiova. His interests are focussed on : Vision Control and Computer Languages 

1.Introduction 

An ideal tentacle manipulator is a non-conventional robotic arm with an infinite mobility. It has the 
capability to take sophisticated shapes and to achieve any position and orientation in a 3D space. These 
systems are also known as hyperredundant manipulators and, over the past several years, there has been a 
rapidly expanding interest in the study and construction of them. The control of these systems is very 
complicated and a great number of researchers tried to offer solutions for this difficult problem. In [1] it 
was analysed the control by cables or tendons meant to transmit forces to the elements of the arm in order 
to closely approximate the arm as a truly continuous backbone. Also, Mochiyama has investigated the 
problem of controlling the shape of an HDOF rigid-link robot with two-degree-of-freedom joints using 
spatial curves [7], [8]. Important results were obtained by Chirikjian and Burdick [3] – [6] that laid the 
foundations for the kinematic theory of hyperredundant robots. Their results are based on a “backbone 
curve” that captures the robot’s macroscopic geometric features. The inverse kinematic problem is 
reduced to determining the time varying backbone curve behaviour. New methods for determining 
“optimal” hyper-redundant manipulator configurations based on a continuous formulation of kinematics 
are developed. In [2], Gravagne analysed the kinematic model of “hyper-redundant” robots, known as 
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“continuum” robots. Robinson and Davies [8] present the “state of art” of continuum robots, outline their 
areas of application and introduce some control issues. The great number of parameters, theoretically an 
infinite number, makes very difficult the use of classical control methods and the conventional 
transducers for position and orientation. 

In this paper the method of image-based servoing [12,15] for a hyperredundant arm is studied. Servoing is 
based on binocular vision, a continuous measure of the arm parameters derrived from the real-time 
computation of the binocular optical flow over the two images, is compared with the desired position of 
the arm. The control error function is built in 3D cartesian space by the visual information obtained by 
two cameras in two image planes [13]. The two 2D errors obtained in the two image planes are 
determined by the two differences between the actual and desired continuous angle values that define the 
projections of the arm shape. The plane errors can be considered as the errors of the arm shape. These 
errors are used to calculate the spatial error and a control law is synthesized.  

For the closed-loop control system and a control law the stability is proven by using the Lyapunov second 
method. The error function is computed in the image spaces virtually and no calibration (camera 
parameters) is required allowing the synthesis of more robust control laws. 

The paper is organised as follows: Section II reviews the basic principles of a hyperredundant 
manipulator; Section III presents the camera video system; Section IV introduces the servoing system; 
Section V verifies by computer simulations the control law and Section VI presents the results of the 
method for a real 3D application. 

2. Background 
Consider a 3D hyperredundant robot with a three dimensional Cartesian coordinate frame called the robot 
coordinate frame whose axes are labeled X, Y, Z. The mechanical structure represents an ideal arm, with 
an uniform distributed mass and torque, with ideal flexibility that can take any arbitrary shape (Fig. 1). 
We will neglect friction and structure damping. The essence of the model is a 3 – dimensional backbone 

curve C that is parametrically described by a vector 3)s(r   and an associate frame 3)s(Φ    whose 

columns create the frame base (Fig. 2) [2,3]. The independent parameter s is related to the arc length from 
the origin of the curve C. The position of a point s on the curve C is defined by the position vector, 

 

)s(rr             (2.1) 

where ]l,0[s . For a dynamic motion, the time variable is introduced, )t,s(rr  .  The parametrisation of 

the curve C is based upon two “continous angle” )s(θ  and q(s) [3,5] (Fig. 2). At each point )t,s(r , the 

robot’s orientation is given by a right-handed orthonormal basis vector }e,e,e{ zyx  and its origin 

coincides with the point )t,s(r . The set of backbone frames can be parametrized as 

 )t,s(e),t,s(e),t,s(e)t(Φ zyx
s          (2.2) 
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The pointer vector on curve C is given by  

 T)t,s(z),t,s(y),t,s(x)t,s(r          (2,3) 

where 

 
s

0

'ds)t,'s(qcos)t,'s(θsin)t,s(x  

 
s

0

'ds)t,'s(qcos)t,'s(θcos)t,s(y  (2.4) 

 
s

0

'ds)t,'s(qsin)t,s(z  

where ]s,0['s . 

We adopt the following interpretation [6,7]: at any point s the relation (2.4) determines the current 

position and sΦ  determines the robot’s orientation and the robot’s shape is defined by the behaviour of 

function )s(θ  and q(s). The robot “grows” from the origin by integrating to get )t,s(r , ]l,0[s . By using 

this definition, two position of the hyperredundant can be defined by a curve C as  

))s(q),s(θ(:C          , ]l,0[s                            (2,5) 

The motion and orientation of the arm are given by the distributed forces on the legth of the arm, )t,s(Fθ  

and )t,s(Fq  that rotate the element ds in the planes of the angles )s(θ  and q(s), respectively. The 

manipulator model is considered as a distributed parameter system defined on a fixed spatial domain [0,l] 
and the spatial coordinate is s. The dynamic model of this manipulator with hyperredundant configuration 
can be obtained from Hamilton partial differential equations [10]. 

)s,t(δν

Hδ

t

)s,t(ω





                    (2.6) 

)s,t(F
)s,t(δω

Hδ

t

)s,t(ν





 
where ω  and ν  are the generalised coordinates and momentum derivated respectively and (.)δ/(.)δ  
denotes a functional partial derivative. 

The state of the system ot any fixed time t is specified by the set ))s,t(ν),s,t(ω( , where 
T]qθ[ω  The 

control force is a distributed force along the arm 

 Tqθ FFF                           (2.7) 

In the Appendix 1 the dynamic model of the 3D spatial hyperredundant arm is determinated. 

3. Camera System 
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Two video cameras provide two images of the whole robot workspace. The two images planes are parallel 
with XOY and ZOY planes from robot coordinate frame, respectively (Fig. 3). The cameras provide the 
images of the scene that stored in the frame grabber’s video memory being displayed on the computer 
screens. Related to the image planes are defined two dimensional coordinate frames, called screen 

coordinate frames or image coordinate systems. Denote 1SX
, 1SY

 and 2SZ
, 2SY

, respectively, the axes of 
the two screen coordinate frames provided by the two cameras. The spatial centers for each camera are 
located at the distances D1 and D2, with respect to the XOY and ZOY planes, respectively. The 
orientation of the cameras arround the optical axes with respect to the robot coordinate frame, are noted 
by ψ  and φ , respectively. A point P in the coordinate frame is 

 
P=[ x, y, z]T                (3.1) 

The description of a point P in the two screen coordinate frames are denoted by 

1SP =[
1Sx ,

1Sy ]                (3.2) 

2SP =[
2Sz ,

2Sy ]                         (3.3) 

Geometric optics are used to model the mapping between the robot Cartesian space and the screen 
coordinate systems. We assume that the quantization and the lens distortion effects are negligible. The 
description of the point P=[ x, y, z]T in the robot coordinate frame is given in terms of screen coordinate 
frames as [9] 
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for the 
1S1S1S YOZ  frame and 
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for the 
2S2S2S YOZ  frame, where [

1xc ,
1yc ]T and [

2zc ,
2yc ]T the image centers, 1α  and 2α  are the scale 

factors of the length units in the front image planes given in pixel/m [9,15],  R(ψ ) and R(φ ) are the 

rotation matrices generated by clockwise rotating the cameras about their optical axes by ψ  and φ  

radians, respectively, and [o11, o12]
T and [o21, o22]

T represent the distances between the optical axes and 
the XOY and ZOY planes, respectively.  

In Fig. 4 are presented the screen images of the two cameras. From the relations (3.4), (3.5),  we obtain 
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and the orientation angles for each plane will be  

θtg
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hence  

)()'( sss    , ],0[ ls , ]',0[' ls         (3.9) 
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This relation allows the computation of the orientation angle sq  in the plane 
2S2S2S YOZ  

)(cos

1
)()''(

s
stgqstgqs 
    , ]l,0[s , ]''l,0[''s       (3.10) 

where, ''s,'s and ''l,'l  represent the projections of the variable s and the length l in the two planes, 
respectively. The projection of the forces on the two planes can be easily inferred from the Fig. 2 and the 
relations (3.8)-(3.10), 

θsθ
FF                 (3.11) 

θcosqsinqcosFF 222
qsq              (3.12) 

4. Servoing System 
The control system is an image – based visual servo control where the error control signal is defined directly in 
terms of image feature parameters. The desired position of the arm in the robot space is defined by the curve Cd,, 

))s(q),s(θ(:C dd  , ]l,o[s         (4.1)  

or, in the two image coordinate frames 
1S1S1S YOZ  and 

2S2S2S YOZ , by the projection of the curve C, 

))'((:
1

sC d
s

d
s    , ]'l,0['s        (4.2) 

))''s(q(:C d
s

d
2s  , ]''l,0[''s          (4.3) 

Define the motion errors as 

)s(θ)s,t(θ)s,t(e dθ    , ]l,0[s        (4.4) 
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)s(q)s,t(q)s,t(e dq   , ]l,0[s        (4.5) 

or, in the image coordinate frames, by 

)'s(θ)'s,t(θ)'s,t(e d
sssθ

   ]'l,0['s       (4.6) 

)''()'',()'',( sqstqste d
sssq   ]'',0['' ls       (4.7) 

The global control system is presented in Fig. 5. 

The control problem of this system is a direct visual servocontrol but we do not use the clasical concept of 
the position control in which is minimized the error between the robot end-effector and target. In this 
paper we will use the control of the shape of the curve in each point of the mechanical structure. The 
method is based on the particular structure of the system defined as a “backbone with two continuous 
angles )s(θ  and q(s)”. The control of the system is based on the control of the two angles )(s  and q(s). 

These angles are measured directly or indirectly.  The angle )(s   is measured dircetly by the projection 

on the image plane 
111 SSS YOZ  (relation 3.9) and q(s) is computed from the projection on the image plane 

222 SSS YOZ  (relation 3.10). The stability of the closed-loop system is proven by the Lyapunov’s second 

method but, in order to avoid the complex problems derived by using the nonlinear derivation integral 
model, in this paper will be developed a method based on the energy-work relationship [14]. 

Propostion   The closed-loop hyperredundant arm system is stable if the control law is given by 

),'()(),'()(),( 21 tsesktsesktsF ss




       (4.8) 

 )(),''()),'((cos)(),( 11 sqtstgqtstgsktsF d
ssqq         (4.9) 

where ]'l,0['s  , ]''l,0[''s   and )s(k),s(k),s(k 1
q

2
θ

1
θ  are positive coefficients of the control law for all 

]l,0[s . Proof. See Appendice 2. The parameter of the control law (4.8), (4.9), can be inferred from the 

image feature extraction of the two planes. The parameters 
sθ

e  can be directly calculated from equation 

4.6 and sθe


 can be indirectly computed. Also sθ , qs and d
sq  are evaluated directly from the trajectory 

projections. We remark that the control law (4.8), (4.9) represents a robust control, independent of the 
camera parameters. No intrinsec camera parameters are assumed to be known. 

5. Simulation 
Consider a hyperredundant manipulator that operates in OXYZ space. For simulation the following 
parameters will be assumed: the linear density 2.2ρ  kg/m and the length l = 0.6 m. The integral 

differential model (A.1.9), (A.1.10) is simulated by using a discretization of the length with an increment 
1.0Δ  m and a discret spatial s will be sisi  , i=1,2..6. The MATLAB Simulink is used. The initial 

position of the arm is assumed to be on the OY-axis and it is defined by the two image curves, 

0)s(:C '
i

0
s

0
s1

  ,i=1,2..6        (5.1) 

0)s(q:C ''
i

0
s

0
s2

    ,i=1,2..6       (5.2) 

The desired position is defined by the curves: 
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The control laws (4.8), (4.9) is applied when the proportional and derivative coefficients are related as 

6.5)s(k;6.173)s(k)s(k 2
θ

1
q

1
θ          (5.5) 
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The evolution of the arm is shown in the image planes 
1S1S1S YOX , 

2S2S2S YOZ  (Fig. 6 and Fig.7). We 

remark the motion of the arm projections to the desired position by several iteration positions. By using 
the relations (3.9), (3.10) the angles θ  and q in 3D space are computed and the spatial arm is plotted in 
Fig.8. The quality of the control system can be appreciated by using the phase portrait of the evolution. 
The 3D error of the motion is defined by 
 

     
l

dd dsstssqtsqte
0

)(),()(),()(       (5.6) 

The phase portrait is shown in Fig. 9. We remark the good stability of motion and the convergence to zero 
of the error. 
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6. Experimental model 

We used an experimental model presented in Fig. 10. The manipulator has a very simple 
design consisting of a highly elastic rod and its “backbone” with antagonic cable pairs 
periodically able to exert moments on the backbone to deform its shape. [1]. Although this is 
a truly continuous device, as a hyperredundant model, it is only actuated with 6 degrees of 
freedom. The driving system consists of 6 DC motors that offer the advantage of a good 
closed loop system. An Unversal Power Module – Quancer is used in order to implement the 
control of driving system. The video system is based on DT3162 frame grabber from Data 
Translation. Two Pulnix TMC 76S CCD cameras with Vista 4.8 mm F1.8 lens were mounted 
in perpendicular planes offering the input for the frame grabber. The image processing tasks 
are performed using Global LAB Image2 from Data Translation. The robot control algorithms 
are implemented in a C++ program running on a Pentium IV PC. In order to facilitate the 
image feature extraction, a set of markers are placed on joints along the backbone structure 
(Fig. 11). The localization of the markers in the image planes assures the identification of the 
curves  

1sC   and 
2sC  in the planes 

1S1S1S YOX  and 
2S2S2S YOZ  respectively. In the Fig. 12 is 

shown an example of curve 
2sC  and the desired curve d

2sC . 

 

 
 
 
 
 

Figure 10 

Figure 11: 
a) 

2s2s1s YOZ  image plane 

b) Detail of position marker 

a)  

b)  
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Figure 12 Postprocessed Image 

7. Conclusions and Future Work 

In this paper the method of image-based servoing for a hyperredundant arm is studied. Servoing is 
based on binocular vision, a continuous measure of the arm parameters derrived from the real-time 
computation of the binocular optical flow over the two images, is compared with the desired 
position of the arm. The control error function is built in 3D cartesian space by the visual 
information obtained by two cameras in two image planes. The two 2D errors obtained in the two 
image planes are determined by the two differences between the actual and desired continuous 
angle values that define the projections of the arm shape. The plane errors can be considered as 
the errors of the arm shape. These errors are used to calculate the spatial error and a control law is 
synthesized. For the closed-loop control system and a control law the stability is proven by using 
the Lyapunov second method. The error function is computed in the image spaces virtually and no 
calibration (camera parameters) is required allowing the synthesis of more robust control laws. 
Future work will implement a spatial distribute observer to increase the control quality of the 
servoing system. 
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