

Studies in Informatics and Control, Vol. 14. No.4, December 2005 221

On the Use of Neural Techniques for
Path Following Control of a Car-like Mobile Robot

Abderrazak Chatti1

Imen Ayari2

Pierre Borne2

Mohamed Benrejeb1

LARA, Ecole Nationale d’Ingénieurs de Tunis,1

BP. 37, Le Belvédère ,1002 Tunis,

TUNISIE

abderrazak.chatti@insat.rnu.tn

mohamed.benrejeb@enit.rnu.tn

LAGIS, Ecole Centrale de Lille,2

BP. 48, F 59651 Villeneuve d’Ascq Cedex,

FRANCE

ayari_i@voila.fr

p.borne@ec-lille.fr
Abstract: A neural approach for the control of a car-like mobile robot, proposed in this paper, is based on the use of an inverse
neural model adapted to the path following problem. In order to assure path following with obstacle avoidance, a neuro-fuzzy
approach is also developed for a sensor referenced control.

Keywords: Mobile robots, non holonomic systems, path following, neural or neuro-fuzzy modeling and control, inverse model,
internal model control.

1. Introduction
On one side, the conception of autonomous mobile robots able to move in a given environment without
any collision risk constitutes at the present moment the aim of many research works. On the other side,
techniques based on the use of Artificial Neural Networks (ANN) are nowadays of a great interest in
control and robotic domains. The fastness of treatment and their capacity of approximating complex non-
linear functions motivate their use for mobile robot control [1,2,3].

Hence, is proposed in this framework firstly a neural network modeling and a control approach in order to
solve path following problem for a car-like mobile robot. Then, it is presented a sensor-equipped robot
control for path following with obstacle avoidance, using a neuro-fuzzy technique.

2. Problem Statement
The robot under consideration is a car-like one with non holonomic property that restricts its mobility in the
sideways direction and with limitation of the steering angle [2,4]. To realize the robot control by changing the
steering angle, the velocity is considered constant. For this aim, inverse and direct neural models of the
proposed robot are elaborated and a path following is realized for different trajectories using direct inverse
neural control and internal model one. Results are compared with feedback linearising control structure ones
[4]. The case of obstacle avoidance of the robot equipped with a virtual sensor in the front direction [5,6,7], is
then considered by the use of a specific neuro-fuzzy approach is used.

3. Kinematic Model of a Car-like Mobile Robot
The kinematic model of a four wheeled robot can be considered as a tricycle with a motion front wheel
and drive back wheels, figure 1 [2], with :
R : reference point,
xR,yR : coordinates of the point R, middle of the back axle taken as a reference point of the robot,
θ: heading angle of the robot ,
: steering angle of the robot,
VR : reference point velocity,
L: distance between axes .

222 Studies in Informatics and Control, Vol. 14. No.4, December 2005

Figure 1: Geometric Model of a Car-like Mobile Robot

The inputs of this system are  and VR ; the outputs are (xR,yR) and θ.
In perfect adhesion conditions (movement without sliding), this kinematic model can be described by the
following equations:

 (1)

The two first equations of the system (1) lead to the following equation:

0θcosyθsinx RR =+-  (2)

which constitutes a non holonomic constraint, also called a constraint of non wheels sliding.

4. System Decomposition and Discretization Proposed for the Studied
Car-like Robot

In order to control the car-like robot direction, a discrete time simulated model is elaborated; it represents the
lateral dynamic of a vehicle by modelling separately the driving actuator and the vehicle kinematic, figure 2.

Figure 2: Structure of the Model of the Car-like Robot

The driving actuator is represented by a DC machine with limitation of the angle amplitude α: α ≤
αmax=1.2 rd =67°, and the rotation velocity of the driving actuator: dα/dt ≤ (dα/dt)max =0.5 rd/s, to express
the wheels mechanical constraints existing in a real vehicle. The input of this block is the control angle α
of the driving actuator and the output is the steering angle .

The inputs of the vehicle kinematic block are the steering angle  and the velocity supposed constant in
our work, VR =0.5m/s. Outputs are the position (x,y) and the heading θ.
By discretization of the system (1) using Euler method [3], it comes:

 (3)

with l= 1m and the discretization step T=0.05s.

x
xR

l

VR

θ


y

yR R

=

=

=

φtan
l

V
θ

θsinVy

θcosVx

R

RR

RR






))1-k(θ sin(
l

V
T1)-(kθ(k)θ R+=

))1-k(θ sin(TV1)-(ky(k)y R+=

))1-k(θcos(TV1)-(kx(k)x R+=

Driving
actuator



 α x

y

θ

Kinematic
model

 VR

Studies in Informatics and Control, Vol. 14. No.4, December 2005 223

5. Neural Networks Modelling of the Car-like Mobile Robot
The robot control is realized in this work using two neural modelling based structures: the control by the
inverse model and the internal model one. Both proposed control strategies use a closed loop structure
that allows good reference tracking and promising performances when dealing with measurement
disturbances in a real vehicle. These structures need the elaboration of direct and inverse neural models of
the robot.

5.1. On the direct model training

The Direct Neural Model (DNM) of the studied robot, figure 3, is obtained by exciting the robot model
and the neural network with the same input vector and comparing the outputs according to the figure 4.

Figure 3: Robot Direct Model

Figure 4: Direct Model Training

Then, the DNM training consists of the minimization of the following criterion J:





N

i

i
r

i yyJ
1

2)(
2

1

 (4)

with :

N : number of training examples,

yi : robot output,

yi
r : DNM output.

Two types of direct modeling can be considered: a black box model and a semi physical one[2,3].

The Black box modeling needs to make the following choices of:

the type of representation: input-output or state representation,
the model order,
the NARX (Non linear AutoRegressive with eXogen inputs) model assuming the existence of a state

noise, or the NOE model (Non linear Output Error) assuming the existence of an output error, or the
NARMAX (Non linear AutoRegressive with Mean Average and eXogen inputs) model assuming
the existence of a state and an output noise.

If no information is given about the process, can be tried all possible representations and hypothesis, and
used increasing model orders until obtaining a satisfactory model [3].
The robot black box model consists in a feedforward network with a single hidden layer.
The semi physical or grey box model can be considered as a compromise between a well known model and a black
box one, taking in consideration available information about the process described by algebraic or differential
equations. This model can use parameterized functions where parameters are determined by training [3].

The semi physical model of the studied robot is inspired from the one used by I.Rivals [2] to model the
lateral behavior of a real vehicle. It exploits the information about the kinematic model of the robot
composed of a black box model and a semi physical one.

+-

y u

yr
DNM

Robot

Robot direct

model

x
y

 α

θ

224 Studies in Informatics and Control, Vol. 14. No.4, December 2005

The black box model of the driving is considered as a first order non linear system with a predictor in the form:

Ф(k)= f (Ф(k-1), α(k-1) , W) (5)

where f is a non linear function and W is the weights matrix.

The corresponding neural network model is composed of 2 hidden neurons with sigmoidal activation
functions and an output linear neuron. The training algorithm used is the backpropagation algorithm with
simple gradient.

The semi physical model of the dynamical robot behaviour describes the kinematic model (3). In fact,
supposing a perfect adhesion of the system, the two first equations are always verified, while the third one
relating the heading θ to the steering angle  is not surely verified for a real robot and depends on the
direction mechanism. This equation is consequently approximated by a non linear neuron [2].

By approximating the function ‘tan’ by a sigmoidal neuron, the neural predictor of the last equation of the
system (3) becomes:

)w),1-k(φ(g w
l

V
 T1)-(kθ(k)θ 12

R+=
 (6)

where g is the function realized by the network, w1 and w2 are weights to determine.

Table 1: Mean Square Error of Trained Models

MSE
Black-box

model
Semi-physical

model
x 0.9040 0.0307
y 0.7640 0.0315
θ 0.4548 0.0181

Both types of models were simulated; the summary of the results is shown in table 1 in the form of Mean Square
Error (MSE) for an easier comparison. The two columns show the prediction error respectively for the black box
model and the semi physical one for all outputs. It is clear that the error for the semi physical model is better; this
is justified by the use of a well known kinematic model. Thus, the latter is used for the internal model control
design.

5.2 Neural Inverse Model Characterization

The Inverse Neural Model (INM) structure to elaborate is so that this model gives, at every step Δt, the control
angle α corresponding to the realized movement (distance r and angle variation dθ representing the difference
between previous θ and actual θ), figure 5. The movement is computed according to the robot reference.

Figure 5: Robot inverse Model Structure

For the design of the robot INM, a normalized multi-layer perceptron with a hidden layer composed of
sigmoidal hidden neurons and with a linear output neuron.

The elaborated network realizes the function h as follows:

α(k)=h[r(k), r(k-1), r(k-2), dθ(k), dθ(k-1), dθ(k-2), α(k-1), α(k-2)] (7)

Inputs r and dθ are normalized respectively in [0, 1] and [-1,1] intervals and the output α in [-1,1] interval.

Figure 6: Inverse Neural Model Training Structure

Robot Inverse
Model

α
r

dθ

û

u

INM

Robot

+-

y

Studies in Informatics and Control, Vol. 14. No.4, December 2005 225

The backprobagation training algorithm minimizing the following criterion J :





N

i
ii ûuJ

1

2)(
2

1
 (8)

is used in two versions, the simple gradient version and the gradient with a momentum term, figure 6,
with :

ui : robot input,

û I : INM output.

The simple gradient version consists in modifying the weights w according to the following formula:

w(k) w(k 1) w(k) (9)

with :

w

J
μ)k(wΔ
∂

∂
=

 (10)

where μ is the training step.

The gradient with a momentum consists in adding a momentum term λ to the weights modifying formula:

)1k(wΔ λ
w

J
μ)k(wΔ -+
∂

∂
=

 (11)

The last gives better results in simulation than the one with simple gradient since it takes into account the
last weights modification. The figure 7 presents the results of test sequence and generalized error for μ =
0.2 and λ=0.2.

Figure 7: Network Output and Prediction Error

The MSE of the tr ained model is 0.0323; the model is then considered satisfactory since it generates a
small generalized error.

226 Studies in Informatics and Control, Vol. 14. No.4, December 2005

6. Neural Control for Path Following Problem

In this section, the robot path following using the elaborated inverse model as a controller, is simulated
for different reference trajectories with different curves. The results are compared to those of an internal
model control exploiting the generated inverse and direct models of the robot.

6.1 Controller Using the Inverse Model for Path Following Problem
To guide the studied robot, the produced Inverse Neural Model (INM) is used, as shown in the figure 8.
At each sample, the movement, represented by the distance r and angle variation dθ, is given to the
controller represented by the INM to let the robot reach the next reference point, figure 9. The inverse
model elaborated has as reference inputs r and dθ, and should generate the appropriate command α
allowing executing the right movement. The realized structure is then a closed loop one.

The movement parameters are computed according to the robot reference as below:
22)yΔ()xΔ(r += (12)

dθ = θref - θ (13)
with :
Δx = x ref – x
Δy = y ref – y

)
xΔ

yΔ
tan(aθref =

In order to test the designed controller, different reference paths are chosen to provide several direction
changes and types of curves (continuous and discontinuous).

Figure 9: Robot Movement in the Reference Trajectory

Sinusoidal trajectory reference case (continuous curvature)

The reference trajectory is a sinusoidal-like curve presenting a continuous curvature and well-matched
with the simulated robot steering ray. The figure 10 shows the robot trajectory. The path following is
satisfactory, a small tracking error exists because of the little inverse model mismatch.

Discontinuous trapezoidal trajectory

The application of a trapezoidal trajectory composed of several segments (discontinuous curve which
does not respect the kinematic constraints of the robot) leads to the robot trajectory of the figure 11. The
path following is good, the robot tends to overlapping the trajectory by few centimeters at the first
turning; this is due to the curvature discontinuity which leads to an abrupt change of Ф at segments end.

dθ
r

xref x

Reference point yref

y

θref

R

y

x

(x,y)
(Δx,Δy) α(xref,yref)

INM
θ

r

θref

r , θref Robot
dθ

 +- + -

Figure 8: Controller Using the Inverse Model of the Robot

Studies in Informatics and Control, Vol. 14. No.4, December 2005 227

Discontinuous N shaped trajectory case

The application of an N shaped reference trajectory composed of segments and presenting two 90° attenuated
angles (not respecting the kinematic constraints of the robot and steering angle limitation) leads to the results of
the figure 12. The path following, in this case, is quite satisfactory but less good than previous cases; the
tracking error exists at the 90° angles of the trajectory, this is due to the sudden direction change and especially
to the limitation of the angle amplitude constraint : α in [-67°, 67°] interval.

6.2 Neural Internal Model Control of the Robot

In this part, the Internal Model Control (IMC) is applied in order to compare the results with those of the
direct inverse one. The same INM and the DNM previously generated are used.

This structure allows having an off set free response by canceling the noise added to the process output.
The figure 13 gives the adopted control structure.

For any output, y for example, it corresponds to the real physical system output, which is, in fact the sum
of the ideal signal y* and the noise p added to the output.

The framed block computes the INM inputs from the reference y*ref and the ideal system output y,
represented by the output of the DNM with the assumption that y* isn’t accessible.

No disturbances at the output are considered here; then :

 p =0
e=y – ŷ= y* – ŷ (14)

For a perfect DNM, we get ŷ=y* and e=0, the structure of the control is the same of the previous one.

Figure 10: Robot Response for Sinusoidal Reference Trajectory

228 Studies in Informatics and Control, Vol. 14. No.4, December 2005

Figure 11: Robot Response for Trapezoidal Reference Trajectory

Figure 12: Robot Response for N Shaped Reference Trajectory

Studies in Informatics and Control, Vol. 14. No.4, December 2005 229

Figure 14: Robot Response for Sinusoidal Reference Trajectory (DIC and IMC)

According to the used control structure analysis, the same response as the direct inverse control has to be
found, but the figure 14 shows that the result is little less satisfactory than the previous one, this is due to
the small prediction error of the DNM.

6.3 Comparing the Neural Control with a Feedback Linearising Control

A feedback linearising control performances [4] is here compared to the open loop control ones.

Feedback linearising control

The main idea of this type of control, proposed by A. Kamaga and A. Rachid [4] for a mobile robot
control for path tracking, is to make the pursuit of each line composing the reference trajectory by
imposing a steering angle command calculated in this way:

)ψcos]ψtankyk[ltan(aφ i
3

i2i1i +=

(15)
with
i : command angle allowing the robot to join the line i,
i : orientation difference between the line i-1 and the line i,
yi : y coordinate of the robot reference point in the mark composed of the line i and its perpendicular on the first of the

line i,
k1,k2: coefficients to adjust to apply the appropriate command.
 and  are in the]-90°,90°[interval.
The new command angle i+1 allowing the robot to reach the line i+1 is applied, for each line, at a
particular distance di at the end of the line i. This distance d, called security distance, is computed as the
following:

 x,y,θ

Δx , Δy α

e

θ̂

 xref , yref INM
Robot

p

 + +

 - +

++-

 - +

 ŷ,x̂

 x*ref ,y*ref

 + - + -
dθ*

 x,y θ

r
 x*,y*,θ*

r , θref

DNM

Figure 13: Proposed Internal Model Control Structure

230 Studies in Informatics and Control, Vol. 14. No.4, December 2005

1i1

2
i ψcosk

k
d

+

=
 (16)

Simulation results

The same reference trajectories as previously are chosen for the simulation in order to compare the
results.

The following values: k1=4 and k2=4, giving the best results, are chosen for simulation of the control
algorithm. The figure 15 show the robot trajectory for the sinusoidal-like reference trajectory and the N shaped
one.

For the application of this control structure, only the kinematic model is used without any driving
actuator, the command is applied to the steering angle Ф.

Figure 15: Robot Trajectories

According to the figure 15, the path following using feedback linearization gives good results for the first
reference curve but catastrophic ones for the second; this is due to the attenuated 90° angle of the trajectory. The
neural controller gives satisfactory results for both cases. This shows the robustness of the neural control, adding
the fact that it doesn’t need any analytic model of the robot that is the most time imperfect and difficult to find.

7. Sensor Referenced Control for Path Following with Obstacle
Avoidance

7.1 Basic Idea

The main idea of this part is based on the use of a neuro-fuzzy approach to realize a path following with
obstacle avoidance. The robot have to follow the reference trajectory; when encountering an obstacle, it
should avoid it and join this reference trajectory as soon as possible [1,5,7,8].

In order to take the obstacle existence into account, the robot model is endowed with a virtual sensor,
placed in the front of the robot, which computes the distance to the obstacle, figure 16.
The information issued from the sensor represents 3 distances: a distance in front of the robot d and 2
laterals ones (left d_L and right d_R) limiting the detection zone of the sensor defined by:

Studies in Informatics and Control, Vol. 14. No.4, December 2005 231

dmax=d_Lmax=d_Rmax (17)

and by the width of the detection sector β, figure 16.

If the minimal distance d to the obstacle in front of the robot is superior to dmax the sensor gives dmax ,
figure 16. Otherwise, it gives the measured frontal distance d and the lateral ones d_L and d_R, figure 17.

Figure 16: Far Obstacle Case

Figure 17: Close Obstacle Case

The obstacle avoidance is made as the following:

if d < dmax the obstacle existence is confirmed,
if d_L > d_R then the robot goes right to avoid obstacle,
otherwise, it goes left.

The path following is realized by the control of the robot heading, the program computes at each time dθ
to apply in order to join the reference trajectory.

7.2 Neuro-fuzzy Adopted Control

The chosen neuro-fuzzy approach for the control combines the advantages of both neural and fuzzy ones.

A multi-layer network whose structure describes the adopted fuzzy system is presented here.

Input/Output variables

The network inputs are dθ and the distances issued from the sensor: d and d_LR= (d_L- d_R).
The output is the steering angle .
Fuzzy sets

The fuzzy sets describing the output variables represent the first hidden layer.
The activation function of each neuron corresponds to the membership function in the fuzzy system.
The variable dθ has 7 fuzzy sets: {NegB, Neg, NegS, Nul, PosB, Pos, PosS}
The variable d has 3 fuzzy sets: {Near, Middle, Far}
The variable d_LR has 2 fuzzy sets: {Pos, Nul, Neg}

Fuzzy inference system

The inference system used is a Sugeno of zero order, is represented by the next layers which calculate the
truth degree of premises in each rule.
The rules are defined as following exa mples :

example of path following rules (weight =1)

IF (dθ is NegB) AND (d is far) THEN  =-1 ; (18)
IF (dθ is Neg) AND (d is far) THEN  =-0.75 ; (19)

Robot

β

Obstacle

d_L

d

d_R

Robot

β
dmax

d_Lmax

d_Rmax

Obstacle

232 Studies in Informatics and Control, Vol. 14. No.4, December 2005

example of avoiding obstacle rules (weight=2)

IF(d is near) AND (d_LR is Pos) THEN  =1 ; (20)
IF (d is near) AND (d_GD is Nul) THEN  =-1 ; (21)

7.3 Neuro-fuzzy System Structure

The figure 18 shows the neuro-fuzzy architecture for the rules (18) and (20) [1].

Figure 18: Neuro-fuzzy Network Architecture

The obstacle avoidance rules have priority than the path following ones, that’s why they have a superior
weight.The output is calculated with the average sum method, witch corresponds to a neuron with a
normalized sum activation function.

7.4. Simulation Results

The figure 19 presents the simulation results for a trapezoidal reference trajectory following, intercepted by a
circular obstacle.
For this aim is used the previously defined architecture without any parameters training.
We effectively note the obstacle avoiding behaviour of the robot, and the quite satisfactory response. However,
when increasing the vehicle velocity, the robot behaviour changes and the controller performance can be lost.

A solution to improve controller performances can consist in making the parameters training of the
elaborated fuzzy system. In fact, the training process could affect the output of each rule and the rules
weights, these parameters are in dashed line in figure 18. We could also extend the training process to the
membership functions of the input variables. This needs, in the case of real robot, to execute several
obstacle avoiding situations at different velocity values to serve as a base of training examples.

Figure 19: Robot Trajectory with Obstacle Avoidance

Ф

-1 1

2

and

/.

NegB PosB Near Middle Far Neg Pos

1

d

…

d_LR dθ

and
1

Studies in Informatics and Control, Vol. 14. No.4, December 2005 233

8. Conclusion

The neural controller using the direct inverse structure has given satisfactory results when applied to the
simulated car-like robot model. The use of such controller for a real robot is promising since this work
takes into account the non linearities and the mechanical constraints existing in a real vehicle.

For the sensor referenced control, the results are also satisfactory; however, a training of some of the
neuro-fuzzy network parameters could improve the controller performances and guarantee its robustness.

REFERENCES

1. E. GAUTHIER, Utilisation des réseaux de neurones artificiels pour la commande d’un véhicule
autonome, Thèse de Doctorat, Inst. Nat. Polytechnique de Grenoble, 1999.

2. I. RIVALS, Modélisation et commande de processus par réseaux de neurones; application au
pilotage d’un véhicule autonome, Thèse de Doctorat, Université de Paris 6, 1995.

3. G. DREYFUS, J. M. MARTINEZ, M. SAMUELIDES, M. B. GORDON, F.BADRAN, S. THIRIA et
L. HERAULT, Réseaux de neurones, méthodologie et applications, Paris, Editions Eyrolles, 2002.

4. A. KAMAGA and A. RACHID, A simple Path Tracking Controller for Car-Like Mobile
Robots, 1997.

5. A. SAFFIOTTI, The uses of fuzzy logic in autonomous robot navigation, Soft Computing,
1(4):180-197, 1997.

6. P. Y. GLORENNEC, Un réseau neuro-flou évolutif, In Neuro-Nimes, pp 301-314, Nimes, 1991.

7. C. LAUGIER, T. FRAICHARD, P. GARNIER, and I. PAROMTCHIK, Sensor-based control
architecture for a car-like vehicle, In Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and
Systems, Vancouver, 1998.

8. A. LABBI and E. GAUTHIER, Combining fuzzy knowledge and data for neurofuzzy modeling,
Journal of Intelligent Systems, 7(1-2):145-163, 1997.

9. J. P. LAUMOND, La robotique mobile, Collection of Articles and Researshs, Paris, Hermès
Sciences Publications, 2001.

10. M. SAMPEI, Arbitrary Path Tracking Control of Articulated Vehicles Using Nonlinear
Control Theory, IEEE Transaction, on Control Systems Technology, Vol. 3, pp 125-131, 1995.

11. Y. KANAYAMA, Y. KIMURA, F. MYAZAKI and T. NOGUCHI, A Stable Tracking Control for
an Autonomous Mobile Robot, IEEE International Workshop on Intelligent Robots and Systems,
Osaka, pp 1236-1241, 1991.

12. S. BEL HADJ ALI, Sur la commande par modèle interne de processus dynamiques, Thèse de
Doctorat, Ecole Nationale d’Ingénieurs de Tunis, Tunis, 2003.

13. A. YAICH, Sur la modélisation et la commande des systèmes en incluant les concepts des
réseaux de neurones et de la logique floue, Thèse de Doctorat, Ecole Nationale d’Ingénieurs de
Tunis, Tunis, 2002.

14. K. BEN SAAD, Modélisation et commande d’un moteur pas à pas tubulaire à réluctance
variable et à quatre phases, Approches conventionnelles, par logique floue et par réseaux de
neurones artificiels, Thèse de Doctorat, Ecole Nationale d’Ingénieurs de Tunis, Tunis, 2005.

234 Studies in Informatics and Control, Vol. 14. No.4, December 2005

15. A. ABDELKRIM, Contribution à la modélisation du processus d’écriture à la main par
approches relevant du calcul évolutif, Thèse de Doctorat, Ecole Nationale d’Ingénieurs de Tunis,
Tunis, 2005.

16. Y. KANAYAMA, Y. KIMURA, F. MYAZAKI, and T. NOGUCHI, A stable tracking control
method for a non-holonomic mobile robot, In Proc. of the IEEE-RSJ Int. Workshop on Intelligent
Robots and Systems, Vol. 2, pp 1236-241, Osaka, 1991.

17. P. REIGNIER, Pilotage réactif d'un robot mobile : étude du lien entre la perception et l'action,
Thèse de doctorat, Inst. Nat. Polytechnique de Grenoble, 1994.

18. I. RIVALS, L. PERSONNAZ, G. DREYFUS and D. CANAS, Real-time control of an
autonomous vehicle: A neural network approach to the path following problem, In Neuro-
Nimes, pp 219-229, Nimes, 1994.

