

Studies in Informatics and Control, Vol. 14, No.4, December 2005 251

Conjugate Gradient Algorithm with
Scaled Memoryless BFGS Preconditioner for

Unconstrained Optimization

Neculai Andrei1

National Institute for Research and Development in Informatics,

Center for Advanced Modeling and Optimization,

8-10, Averescu Avenue, Bucharest 1,

ROMANIA

E-mail: nandrei@ici.ro

Abstract. This work presents and analyzes a scaled memoryless BFGS preconditioned conjugate gradient algorithm, and its
implementation, for solving unconstrained optimization problems. The basic idea is to combine the scaled memoryless BFGS
method and the preconditioning technique in the frame of the conjugate gradient method. The preconditioner, which is also a scaled
memoryless BFGS matrix, is reset when a restart criterion holds. The computational scheme is embedded into the restart philosophy
of Beale-Powell. The parameter scaling the gradient is selected as spectral gradient or in an anticipative manner by means of a
formula using the function values in two successive points. In very mild conditions it is shown that, for strongly convex functions,
the algorithm is globally convergent. Computational results and performance profiles, for a test set consisting of over 500
unconstrained optimization problems, show that this new scaled conjugate gradient algorithm substantially outperforms known
conjugate gradient methods including: the spectral conjugate gradient by Birgin and Martínez [4], the conjugate gradient by Fletcher
and Reeves [10], Polak and Ribière [17], and by Hestenes and Stiefel [13], as well as the most recent CG_DESCENT conjugate
gradient method with guaranteed descent by Hager and Zhang [11,12].

Keywords: Unconstrained optimization, conjugate gradient method, spectral gradient method

AMS Subject Classification: 49M07, 49M10, 90C06, 65K

1. Introduction

In this paper we consider the following unconstrained optimization problem:

min f x() (1)

where f R Rn: is continuously differentiable and its gradient is available. We are interested in

elaborating an algorithm for solving large-scale cases for which the Hessian of f is either not available

or requires a large amount of storage and computational costs.

The paper presents and analyzes a conjugate gradient algorithm based on a combination of the scaled
memoryless BFGS method and the preconditioning technique. For general nonlinear functions a good

preconditioner is any matrix that approximates 2 1f x() .* In this algorithm the preconditioner is a

scaled memoryless BFGS matrix which is reset when a restart criterion holds. The scaling factor in the
preconditioner is selected as spectral gradient or in an anticipative manner by means of a formula using
the function values in two successive points.

The algorithm uses the conjugate gradient direction where the famous parameter k is obtained by

equalizing the conjugate gradient direction with the direction corresponding to the Newton method. Thus,
we get a general formula for the direction computation, which could be particularized to include the
Polak and Ribiére [17] and the Fletcher and Reeves [10] conjugate gradient algorithms, the spectral
conjugate gradient (SCG) by Birgin and Martínez [4] or the algorithm of Dai and Liao [6] for
().t 1 This direction is then modified into a canonical manner as it was considered earlier by Oren and

Luenberger [14], Oren and Spedicato [15], Perry [16] and Shanno [21,22], by means of a scaled,
memoryless BFGS preconditioner placed into the Beale-Powell restart thechnology. The scaling factor is
computed in a spectral manner based on the inverse Rayleigh quotient, as suggested by Raydan [20], or
into an anticipative one using only the function values Andrei [1].

1The author was awarded the Romanian Academy Grant 168/2003.

252 Studies in Informatics and Control, Vol. 14, No.4, December 2005

The method is an extension of the spectral conjugate gradient (SCG) by Birgin and Martínez [4] or of a
variant of the conjugate gradient algorithm by Dai and Liao [6] (for t 1) to overcome the lack of

positive definiteness of the matrix defining their search direction.

The paper is organized as follows: In section 2 we present the method. Section 3 is dedicated to the
SCALCG algorithm. The algorithm performs two types of steps: a normal one in which a double quasi-
Newton updating scheme is used and a restart one where the current information is used to define the
search direction. The convergence of the algorithm for strongly convex functions is proved in section 4.
Finally, in section 5 we present detailed computational results on a set of 500 unconstrained optimization
problems and compare the Dolan and Moré [9] performance profiles of the new algorithm to profiles for
SCG conjugate gradient method by Birgin and Martínez [4], CG_DESCENT by Hager and Zhang
[11,12], as well as the scaled Polak and Ribiére conjugate gradient algorithm. At the same time we
present the performances of these algorithms on some applications from MINPACK-2 collection [2].

2. The Method

The algorithm generates a sequence xk of approximations to the minimum x* of f , in which

x x dk k k k 1 , (2)

d g sk k k k k 1 1 1 , (3)

where g f xk k (), k is selected to minimize f x() along the search direction dk , k is a scalar

parameter and k1 is a parameter to be determined. The iterative process is initialized with an initial

point x0 and d g0 0 .

Observe that if k 1 1, then we get the classical conjugate gradient algorithms according to the value

of the scalar parameter k . On the other hand, if k 0, then we get another class of algorithms

according to the selection of the parameter k1 . There are two possibilities for k1 : a positive scalar

or a positive definite matrix. If k 1 1 we have the steepest descent algorithm. If

 k kf x
 1

2
1

1() , or an approximation of it, then we get the Newton or the quasi-Newton

algorithms, respectively. Therefore, we see that in the general case, when k 1 0 is selected in a quasi-

Newton manner, and k 0, (3) represents a combination between the quasi-Newton and the

conjugate gradient methods.

To determine k consider the following procedure. As we know, the Newton direction for solving (1)

is given by d f x gk k k

 1
2

1
1

1() . Therefore, from the equality

2

1
1

1 1 1f x g g sk k k k k k() ,
we get:

k
k k

T
k k k

T
k

k
T

k k

s f x g s g

s f x s

1
2

1 1 1
2

1

()

()
. (4)

Using the Taylor development, after some algebra we obtain:

k
k k k

T
k

k
T

k

y s g

y s

 ()
,1 1

 (5)

where s x xk k k 1 and y g gk k k 1 . Birgin and Martínez [4] arived at the same formula for

 k , but using a geometric interpretatioin for quadratic function minimization. The direction

corresponding to k given in (5) is as follows:

d g
y s g

y s
sk k k

k k k
T

k

k
T

k
k

1 1 1
1 1

()
. (6)

Studies in Informatics and Control, Vol. 14, No.4, December 2005 253

This direction is used by Birgin and Martínez [4] in their SCG (spectral conjugate gradient) package for
unconstrained optimization, where k1 is selected in a spectral manner, as suggested by Raydan [20].

The following particularizations are obvious. If k 1 1, then (6) is the direction considered by Perry

[16]. At the same time we see that (6) is the direction given by Dai and Liao [6] for t 1, obtained this

time by an interpretation of the conjugacy condition. Additionally, if s gj
T

j 1 0, j k 0 1, , , , then

from (6) we get:

d g
y g

g g
sk k k

k k
T

k

k k k
T

k
k

 1 1 1
1 1

, (7)

which is the direction corresponding to a generalization of the Polak and Ribière formula. Of course, if

 k k 1 1 in (7), we get the classical Polak and Ribière formula [17]. If s gj
T

j 1 0,

j k 0 1, , , , and additionally the successive gradients are orthogonal, then from (6)

d g
g g

g g
sk k k

k k
T

k

k k k
T

k
k

 1 1 1
1 1 1

, (8)

which is the direction corresponding to a generalization of the Fletcher and Reeves formula [10].
Therefore, (6) is a general formula for direction computation in a conjugate gradient manner including
the classical Fletcher and Reeves [10], and Polak and Ribière [17] formulas.

There is a result of Shanno [21,22] that says that the conjugate gradient method is the BFGS quasi-
Newton method for which the approximation to the inverse of the Hessian is taken as the identity matrix
at every iteration. The extension to the scaled conjugate gradient is very simple. Using the same
methodology as considered by Shanno [21] we get the following direction dk1 :

d g
g s

y s
y

y y

y s

g s

y s

g y

y s
sk k k k

k
T

k

k
T

k
k k

k
T

k

k
T

k

k
T

k

k
T

k
k

k
T

k

k
T

k
k

1 1 1 1

1
1

1
1

11 , (9)

involving only 4 scalar products. Again observe that if g sk
T

k 1 0, then (9) reduces to:

d g
g y

y s
sk k k k

k
T

k

k
T

k
k

 1 1 1 1
1 . (10)

Thus, in this case, the effect is simply one of multiplying the Hestenes and Stiefel [13] search direction
by a positive scalar.

In order to ensure the convergence of the algorithm (2), with dk1 given by (9), we need to constrain the

choice of k . We consider line searches that satisfy the Wolfe conditions [24,25]:

f x d f x g dk k k k k k
T

k() () , 1 (11)

 f x d d g dk k k
T

k k
T

k() , 2 (12)

where 0 11 2 .

Theorem 1. Suppose that k in (2) satisfies the Wolfe conditions (11) and (12), then the direction

dk1 given by (9) is a descent direction.

Proof: Since d g0 0 , we have g d gT
0 0 0

2
0 . Multiplying (9) by gk

T
1 , we have

g d
y s

g y s g y g s y sk
T

k
k
T

k
k k k

T
k k k

T
k k

T
k k

T
k 1 1 2 1 1

2 2
1 1 1

1
2

()
() ()()()

 () () ()() .g s y s y y g sk
T

k k
T

k k k
T

k k
T

k1
2

1 1
2

254 Studies in Informatics and Control, Vol. 14, No.4, December 2005

Applying the inequality u v u vT
1

2
2 2() to the second term of the right hand side of the above

equality, with u s y gk
T

k k () 1 and v g s yk
T

k k ()1 we get:

g d
g s

y sk
T

k
k
T

k

k
T

k

 1 1
1

2()
. (13)

But, by Wolfe condition (12), y sk
T

k 0. Therefore, g dk
T

k 1 1 0 for every k 0 1, ,

Observe that the second Wolfe condition (12) is crucial for the descent character of direction (9).
Besides, we see that the estimation (13) is independent of the parameter k1 .

Usually, all conjugate gradient algorithms are periodically restarted. The standard restarting point occurs
when the number of iterations is equal to the number of variables, but some other restarting methods can
be considered. The Powell restarting procedure [18,19] is to test if there is very little orthogonality left
between the current gradient and the previous one. At step r when:

g g gr
T

r r 1 1

2
0 2. , (14)

we restart the algorithm using the direction given by (9). Another restarting procedure, considered by
Birgin and Martínez [4], consists of testing if the angle between the current direction and gk 1 is not

acute enough. Therefore, at step r when:

d g d gr
T

r r r

 1
3

2 1 2
10 , (15)

the algorithm is restarted using the direction given by (9).

At step r when one of the two criteria (14) or (15) is satisfied the direction is computed as in (9). For

k r 1, we consider the same philosophy used by Shanno [21,22], i.e. that of modifying the gradient

gk1 with a positive definite matrix which best estimates the inverse Hessian without any additional storage

requirements. Therefore, the direction dk1 , for k r 1, is computed using a double update scheme as:

v H g g
g s

y s
yr k r k r

k
T

r

r
T

r
r

1 1 1 1 1

1

1 1
1

1
1 r

r
T

r

r
T

r

k
T

r

r
T

r
r

k
T

r

r
T

r
r

y y

y s

g s

y s

g y

y s
s , (16)

and

w H y y
y s

y s
yr k r k r

k
T

r

r
T

r
r

 1 1 1

 1 1 1 r

r
T

r

r
T

r

k
T

r

r
T

r
r

k
T

r

r
T

r
r

y y

y s

y s

y s

y y

y s
s , (17)

involving 6 scalar products. With these the direction dk1 , at any nonrestart step, can be computed as:

d v
g s w g w s

y s

y w

y s

g s

y s
sk

k
T

k k
T

k

k
T

k

k
T

k
T

k

k
T

k

k
T

k
k

1

1 1 11
() ()

, (18)

involving only 4 scalar products. It is useful to note that y sk
T

k 0 is sufficient to ensure that the

direction dk1 given by (18) is well defined and it is always a descent direction.

We shall now consider some formulas for computation of k1 . As we have already seen, in our

algorithm k1 is defined as a scalar approximation to the inverse Hessian. According to the procedures

for a scalar estimation to the inverse Hessian we get a family of scaled conjugate gradient algorithms.
The following procedures can be considered.

Studies in Informatics and Control, Vol. 14, No.4, December 2005 255

 k1 spectral. This is given as the inverse of the Rayleigh quotient:

 k
k
T

k

k
T

k

s s

y s 1 . (19)

Observe that in point x x sk k k 1 we can write:

f x f x g s s f z sk k k
T

k k
T

k() () () , 1
21

2

where z is on the line segment connecting xk and xk1 . Now, considering the local character of

searching we can take z xk 1 . On the other hand, in point x x sk k k 1 we have:

f x f x g s s f x sk k k
T

k k
T

k k() () () . 1 1
2

1

1

2

With these, considering k1 as a scalar approximation of
2

1f xk() , and adding these two equalities

we get exactly the Rayleigh quotient. The inverse of Rayleigh quotient is the spectral value of the scaling

parameter. Again we notice that y sk
T

k 0 is sufficient to ensure that k1 in (19) is well defined.

 k1 anticipative. Recently, Andrei [1], using the information in two successive points of the iterative

process, generated another scalar approximation to Hessian of function f obtaining an algorithm which

compares favorably with Barzilai and Borwein's [3]. This is only half a step from the spectral procedure
presented above. Indeed, in point x x dk k k k 1 we can write

f x f x g d d f z dk k k k
T

k k k
T

k() () () , 1
2 21

2
 (20)

where z is on the line segment connecting xk and xk1 . As above, having in view the local character

of the searching procedure and that the distance between xk and xk1 is small enough we can choose

z xk 1 and consider k1 as a scalar approximation of the
2

1f xk(), where k R 1 . This is

an anticipative view point, in which a scalar approximation of the Hessian at point xk1 is computed

using only the local information from two successive points: xk and xk1 . Therefore, we can write:

k
k
T

k k
k k k k

T
kd d

f x f x g d 1 2 1

2 1
() () . (21)

Observe that for convex functions k 1 0. If f x f x g dk k k k
T

k() () , 1 0 then the

reduction f x f xk k() () 1 in the function value is smaller than k k
T

kg d . In these cases the idea is

to change a little the stepsize k as k k , maintaining the other quantities at their values, in such a

manner so that k1 to be positive. To get a value for k let us select a real 0, ”small enough”, but

comparable with the value of the function, and consider

 k
k
T

k
k k k k

T
kg d

f x f x g d

1
1() () , (22)

with which a new value for k1 can be computed as:

 k
k
T

k k k
k k k k k

T
kd d

f x f x g d

 1 2 1

2 1

()
() () () . (23)

With these, the value for parameter k1 is selected as:

k

k

1
1

1
, (24)

where k1 is given by (21) or (23).

Proposition 1. Assume that f x() is continuously differentiable and f x() is Lipschitz continuous,

with a positive constant L. Then at point xk1 ,

256 Studies in Informatics and Control, Vol. 14, No.4, December 2005

 k L 1 2 . (25)

Proof: From (21) we have:

k

k k k
T

k k k k
T

k

k k

f x f d f x f x d

d

1 2 2

2 () () () ()
,

where k is on the line segment connecting xk and xk1 . Therefore

k

k k

T

k

k k

f f x d

d

1 2

2 () ()
.

Using the inequality of Cauchy and the Lipschitz continuity it follows that

.2
22)()(2 1

1 L
d

xxL

d

xL

d

xff

kk

kk

kk

kk

kk

kk
k

Therefore, from (24) we get a lower bound for k1 as:

 k L 1

1

2
,

i.e. it is bounded away from zero. It is worth saying that in the two-point stepsize gradient
method, Dai, Yuan and Yuan [8] interpret the choice for the stepsize from the angle
interpolation and arrive at the same formula as given in (21).

3. SCALCG Algorithm

Having in view the above developments and the definitions of gk , sk and yk , as well as the selection

procedures for k1 computation, the following family of scaled conjugate gradient algorithms can be

presented.

Step 1. Initialization. Select x R n
0 , and the parameters 0 11 2 . Compute f x()0 and

g f x0 0 (). Set d g0 0 and 0 01 / .g Set k 0.

Step 2. Line search. Compute k satisfying the Wolfe conditions (11) and (12). Update the variables

x x dk k k k 1 . Compute f x gk k(), 1 1 and s x xk k k 1 , y g gk k k 1 .

Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped, else set
k k 1.

Step 4. Scaling factor computation. Compute k using a spectral (19) or an anticipative (24) approach.

Step 5. Restart direction. Compute the (restart) direction dk as in (9).

Step 6. Line search. Compute the initial guess: k k k kd d 1 1 2 2
/ . Using this initialization

compute k satisfying the Wolfe conditions. Update the variables x x dk k k k 1 . Compute

f xk(),1 gk1 and s x xk k k 1 , y g gk k k 1 .

Step 7. Store: k , s sk and y yk .

Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped, else set
k k 1.

Studies in Informatics and Control, Vol. 14, No.4, December 2005 257

Step 9. Restart. If the Powell restart criterion (14) or the angle restart criterion (15) is satisfied, then go to
step 4 (a restart step); otherwise continue with step 10 (a normal step).

Step 10. Normal direction. Compute the direction dk as in (18), where v and w are computed as in

(16) and (17) with saved values , s and y.

Step 11. Line search. Compute the initial guess: k k k kd d 1 1 2 2
/ . Using this initialization

compute k satisfying the Wolfe conditions. Update the variables x x dk k k k 1 . Compute

f xk(),1 gk1 and s x xk k k 1 , y g gk k k 1 .

Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped, else set
k k 1 and go to step 9.

It is well known that if f is bounded below along the direction dk , then there exists a step length

 k satisfying the Wolfe conditions. The initial selection of the step length crucially affects the practical

behavior of the algorithm. At every iteration k 1 the starting guess for the step k in line search is

computed as k k kd d 1 1 2 2
/ . This selection was considered for the first time by Shanno and Phua

in CONMIN [23]. The same selection is taken by Birgin and Martínez in SCG [4].

Concerning the stopping criterion to be used in steps 3, 8 and 12 we have:

gk g
 or k k

T
k f kg d f x () ,1 (26)

where f and g are tolerances specified by the user. f specifies the desired accuracy of the

computed solution, g specifies the desired accuracy for the gradient norm. The second criterion in (26)

says that the estimated change in the function value is insignificant compared to the function value itself.

4. Convergence Analysis for Strongly Convex Functions

Throughout this section we assume that f is strongly convex and Lipschitz continuous on the level set

 L x R f x f xn
0 0 : () () . (27)

That is, there exists constants 0 and L such that

(() ()) () f x f y x y x yT
2

 (28)
and

 f x f y L x y() () , (29)

for all x and y from L0 . For the convenience of the reader we include here the following lemma (see [11]).

Lemma 1. Assume that dk is a descent direction and f satisfies the Lipschitz condition

 f x f x L x xk k() () , (30)

for every x on the line segment connecting xk and xk1 , where L is a constant. If the line search

satisfies the second Wolfe condition (12), then

k

k
T

k

k
L

g d

d

1 2
2 . (31)

Proof: Subtracting g dk
T

k from both sides of (12) and using the Lipschitz condition we have

() () . 2 1

2
1 g d g g d L dk

T
k k k

T
k k k (32)

258 Studies in Informatics and Control, Vol. 14, No.4, December 2005

Since dk is a descent direction and 2 1 , (31) follows immediately from (32).

Lemma 2. Assume that f is strongly convex and Lipschitz continuous on L0 . If k1 is selected by

spectral gradient, then the direction dk1 given by (9) satisfies:

d
L L

gk k

1 2

2

3 1

2 2

. (33)

Proof: By Lipschitz continuity (29) we have

y g g f x d f x L d L sk k k k k k k k k k 1 () () . (34)

On the other hand, by strong convexity (28)

y s sk
T

k k
2
. (35)

Selecting k1 as in (19), it follows that

 k

k
T

k

k
T

k

k

k

s s

y s

s

s
 1

2

2

1
. (36)

Now, using the triangle inequality and the above estimates (34)-(36), after some algebra on

dk1 , where dk1 is given by (9), we get (33).

Lemma 3. Assume that f is strongly convex and Lipschitz continuous on L0 . If k1 is selected by

the anticipative procedure, then the direction dk1 given by (9) satisfies:

d
m

L

m

L

m
gk k

1

2

2 1

1 2 1

. (37)

Proof: By strong convexity on L0 , there exists the constant m 0 , so that 2 f x mI() , for all

x L 0 . Therefore, for every k , k m 1 . Now, from (24) we see that, for all k ,

 k m 1

1
. (38)

With this, like in lemma 2, we get (37).

The convergence of the scaled conjugate gradient algorithm (SCALCG) when f is strongly convex is given

by

Theorem 2. Assume that f is strongly convex and Lipschitz continuous on the level set L0 . If at every

step of the conjugate gradient (2) with dk1 given by (9) and the step length k selected to satisfy the

Wolfe conditions (11) and (12), then either gk 0 for some k, or lim .
k

gk
 0

Proof: Suppose gk 0 for all k . By strong convexity we have

y d g g d dk
T

k k k
T

k k k () .1

2
 (39)

By theorem 1, g dk
T

k 0. Therefore, the assumption gk 0 implies dk 0. Since k 0, from

(39) it follows that y dk
T

k 0. But f is strongly convex over L0 , therefore f is bounded from

below. Now, summing over k the first Wolfe condition (11) we have

Studies in Informatics and Control, Vol. 14, No.4, December 2005 259

 k k
T

k
k

g d

0

.

Considering the lower bound for k given by (31) in lemma 1 and having in view that dk is a descent

direction it follows that

g d

d

k
T

k

k
k

2

2
1

 . (40)

Now, from (13), using the inequality of Cauchy and (35) we get

g d
g s

y s

g s

s

g
k
T

k
k
T

k

k
T

k

k k

k

k

 1 1

1
2

1

2 2

2
1

2
()

.

Therefore, from (40) it follows that

g

d

k

k
k

4

2
0

 . (41)

Now, inserting the upperbound (33), or (37), for dk in (41) yields

gk
k

2

0

 ,

which completes the proof.

For general functions the convergence of the algorithm is coming from theorem 1 and the restart
procedure. Therefore, for strongly convex functions and under inexact line search it is global convergent.
To a great extent, however, the SCALCG algorithm is very close to the Perry/Shanno computational
scheme [21,22]. SCALCG is a scaled memoryless BFGS preconditioned algorithm where the scaling
factor is the inverse of a scalar approximation of the Hessian. If the Powell restart criterion (14) is used,
for general functions f bounded from below with bounded second partial derivatives and bounded level

set, using the same arguments considered by Shanno in [22] it is possible to prove that the iterates either

converge to a point x* satisfying g x() ,* 0 or the iterates cycle. It remains for further study to

determine a complete global convergence result and whether cycling can occur for general functions with
bounded second partial derivatives and bounded level set.

More sophisticated reasons for restarting the algorithms have been proposed in the literature, but we are
interested in the performance of an algorithm that uses the Powell restart criterion, asociated with the
scaled memoryless BFGS preconditioned direction choice for restart. Additionally, some convergence
analysis with Powell restart criterion was given by Dai and Yuan [7] and can be used in this context of
the preconditioned and scaled memoryless BFGS algorithm.

5. Computational Results and Comparisons

In this section we present the performance of a Fortran implementation of the SCALCG - scaled
conjugate gradient algorithm on a number of 500 test unconstrained optimization problems. At the same
time, we compare the performance of SCALCG with the best spectral conjugate gradient algorithm,
SCG (betatype=1,Perry-M1), by Birgin and Martínez [4], with the CG_DESCENT - a conjugate gradient
method with guaranteed descent by Hager and Zhang [11,12] and with the scaled Polak-Ribière
algorithm (7).

The SCALCG code is authored by Andrei, while the SCG and Polak-Ribière are co-authored by Birgin
and Martínez and CG_DESCENT is co-authored by Hager and Zhang. All codes are written in Fortran
and compiled with f77 (default compiler settings) on an Intel Pentium 4, 1.5Ghz. The SCALCG code

260 Studies in Informatics and Control, Vol. 14, No.4, December 2005

implements both the scaled conjugate gradient with the spectral choice of scaling parameter k1 , as

well as with the anticipative choice of this parameter. In order to compare SCALCG with SCG and
Polak-Ribière we manufactured a new SCG code of Birgin and Martínez by introducing a sequence of
code to compute the k1 anticipative according to (24). The CG_DESCENT code contains the variant

implementing the Wolfe line search (W) and the variant corresponding to the approximate Wolfe
conditions (aW) [11,12].

The test problems are the unconstrained problems in the CUTE [5] library, along with other large-scale
optimization test problems. We selected 50 large-scale unconstrained optimization test problems (11 from
CUTE library) in extended or generalized form. For each test function we have considered 10 numerical
experiments with number of variables n 1000 2000 10000, , , .

The numerical results concerning the number of iterations, the number of restart iterations, the number of
function and gradient evaluations, cpu time in seconds, for each of the methods are posted at the
following web site: http://www.ici.ro/camo/neculai/ansoft.htm/ (please see scalcg).

In the following we present the numerical performances of all these codes, including the performance
profiles of Dolan and Moré [9] subject to the number of iterations, the number of function evaluations
and cpu time metrics, respectively. For these algorithms we present their performances on 10 applications
from MINPACK-2 library [2].

5.1. SCALCG with s (theta spectral) versus SCALCG with a (theta anticipative).

In the SCALCG code the computations are terminated as soon as the criteria (26) are satisfied, where

 g
10 6 and f

10 20 . The Wolfe line search conditions are implemented with the following

values of parameters 1 and 2 : 1 0 0001 . and 2 0 9 . .

Concerning the restart criterion, we implemented both the Powell and the angle criteria. Both these
criteria have a crucial role on the practical efficiency of the conjugate gradient algorithms. However, we
observed that for SCALCG the Powell criterion is more performant than the angle criterion. As the
numerical experiments prove, a large percentage of the SCALCG’s iterations are restart iterations.
Therefore we compare SCALCG algorithms with the Powell restart criterion where k1 is selected in a

spectral or in an anticipative manner.

Table 1 shows the global characteristics corresponding to these 500 test problems, refering to the total
number of iterations, the total number of function evaluations and the total cpu time for these algorithms.

Table 1. Global characteristics of SCALCG with s versus SCALCG with a .

Powell restart. 500 problems.

Global characteristics s a

Total number of iterations 123263 121352
Total number of function evaluations 229887 182643
Total cpu time (seconds) 4276.73 3669.51

Out of 500 problems solved in this set of experiments the criterion gk g
 stopped the iterations

for 428 problems, i.e. 85.6%, in case of SCALCG with s , and for 412 problems, i.e. 82.4%, in case of

SCALCG with a . Table 2 shows the number of problems, out of 500, for which SCALCG with s

and SCALCG with a achieved the minimum number of iterations, the minimum number of function

evaluations and the minimum cpu time, respectively.

Studies in Informatics and Control, Vol. 14, No.4, December 2005 261

Table 2. Performance of SCALCG algorithms.
Powell restart. 500 problems.

Performance criterion # of problems

SCALCG with s achieved minimum # of iterations in 332

SCALCG with a achieved minimum # of iterations in 307

SCALCG with s and SCALCG with a achieved the same # of

iterations in

139

SCALCG with s achieved minimum # of function evaluations in 307

SCALCG with a achieved minimum # of function evaluations in 322

SCALCG with s and SCALCG with a achieved the same # of

function evaluations in

129

SCALCG with s achieved minimum cpu time in 273

SCALCG with a achieved minimum cpu time in 303

SCALCG with s and SCALCG with a achieved the same cpu time in 76

Observe that the total number in Table 2 exceeds 500 due to ties for some problems. The performance of these
algorithms have been evaluated using the profiles of Dolan and Moré [9]. That is, for each algorithm, we plot
the fraction of problems for which the algorithm is within a factor of the best number of iterations and cpu
time, respectively. The left side of these Figures gives the percentage of the test problems, out of 500, for
which an algorithm is more performant; the right side gives the percentage of the test problems that were
succesfully solved by each of the algorithms. Mainly, the right side represents a measure of an algorithm’s

robustness. In Figures 1 and 2 we compare the performance profiles of SCALCG with s and SCALCG with

 a refering to the number of function evaluations and cpu time, respectively.

Figure 1: Function evaluations performance profile of SCALCG.

Powell restart. s versus a .

262 Studies in Informatics and Control, Vol. 14, No.4, December 2005

Figure 2: CPU time performance profile of SCALCG.

Powell restart. s versus a .

The top curve corresponds to the algorithm that solved the most problems in a number of function
evaluations (Figure 1) or in a cpu time (Figure 2) that was within a given factor of the best number of

function evaluations or cpu time, respectively. Since the top curve in Figures 1 and 2 corresponds to

SCALCG with a , this algorithm is clearly better than SCALCG with s . However, both codes have

similar performances for the value of near 1. Therefore, we see that the anticiaptive selection of the

scaling parameter which uses the function values compares favourable with the spectral approach.

5.2. SCG with s versus SCG with a .

The direction in SCG code by Birgin and Martínez [4] is computed according to (6), where k1 is determined

in a spectral manner as in (19), or in an anticipative one like in (24). The Wolfe line search conditions are
implemented like in SCALCG with 1 0 0001 . and 2 0 9 . . In SCG the iterations are stopped

whenever:

gk g2
 or k k

T
k f kg d f x () ,1 (42)

where g 10 6 and f
10 20 . The original stopping criterion used in SCG was:

 f x max f xk g k() , (.
2 11 However, except for the cases in which f vanishes at an

optimum, this criterion often leads to a premature termination. In fact, for some problems, when f is

large at the starting point, SCG stops the iterations almost immediately, far from the optimum. Therefore,
we changed the stopping criteria as in (42). Our numerical experiments show that the Powell restart
criterion in the SCG package is not profitable. Therefore we present the numerical results of the SCG
algorithms with angle restart criterion. Like in SCALCG the initial guess of the step length at the first

iteration is selected as: 1 0/ .g At the following iterations the starting guess for the step k is

computed as k k kd d 1 1 2 2
/ . Table 3 shows the global characteristics corresponding to these 500

test problems.

Table 3. Global characteristics of SCG with s versus SCG with a .

Angle restart. 500 problems.

Global characteristics s a

Total number of iterations 227435 231854

Studies in Informatics and Control, Vol. 14, No.4, December 2005 263

Total number of function evaluations 362557 381055
Total cpu time (seconds) 9634.70 9878.53

Observe that both codes have similar performances. Since the codes only differ in the procedure for
 k1 computation we see that k1 computed in an anticipative manner, which is based only on the

function values in two successive points, is competitive with the spectral formula which considers the
Hessian average between two successive iterations. It is worth saying that out of 500 problems solved by

SCG with a in this numerical experiment only for 150 (i.e. 30%) k1 in (21) was negative.

5.3. Polak-Ribière with s versus Polak-Ribière with a .

The search direction in the Polak-Ribière algorithm is computed as in (7), where the scaling parameter
 k1 is selected in a spectral or in an anticipative manner. The iterations are stopped whenever (42) is

satisfied. Like in SCALCG, the same initial guess of the step length is considered. Table 4 shows the
global characteristics corresponding to these 500 test problems.

Table 4. Global characteristics of Polak-Ribière.
Angle restart. 500 problems.

Global characteristics s a

Total number of iterations 210208 209014
Total number of function evaluations 361709 359300
Total cpu time (seconds) 9299.45 9251.54

We see that the scaled Polak and Ribiére algorithm with a is better than its variant using s .

5.4. SCALCG versus SCG and CG_DESCENT

In [11,12] Hager and Zhang present a new conjugate gradient algorithm and the performance of the
Fortran 77 package CG_DESCENT which implements it, for solving (1). In CG_DESCENT the

iterations are stopped whenever gk g
 , where g 10 6 . The Wolfe line search is implemented

in two manners: the classical Wolfe line search (W) and the approximate Wolfe line search (aW), which
is based on a very fine interpretation of the numerical issue concerning the first Wolfe condition. In both
these aproaches 1 01 . and 2 0 9 . . These values represent a compromise between the desire for a

rapid termination of the line search with a semnificative improvement in the function value. The line
search implementing the aproximate Wolfe conditions is very sophisticated, with a lot of parameters
which can be specified by the user. In our numerical experiments we considered the values of these
parameters given by default. The algorithm is restarted at every multiple of n. In the following we

compare the SCALCG (a) with SCG (s) and CG_DESCENT (aW). Table 5 shows the global

characteristics, corresponding to these 500 test problems, refering to the total number of iterations, the
total number of function evaluations and the total cpu time for these algorithms.

Table 5. Global characteristics of SCALCG (a), SCG (s) and CG_DESCENT (aW).

500 problems.

Global characteristics SCALCG SCG CG_DESCENT

Total number of iterations 121352 227435 153116
Total number of function evaluations 182643 362557 298140
Total cpu time (seconds) 3669.51 9634.70 8411.52

Table 6 illustrates the number of problems, out of 500, for which the above algorithms achieved the
minimum number of iterations, the minimum number of function evaluations and the minimum cpu time,
respectively.

264 Studies in Informatics and Control, Vol. 14, No.4, December 2005

Table 6. Performance of SCALCG (a), SCG (s) and CG_DESCENT (aW) algorithms.

500 problems.

Performance criterion # of problems

SCALCG (a) achieved minimum # of iterations in 308

SCG (s) achieved minimum # of iterations in 54

CG_DESCENT (aW) achieved minimum # of iterations in 175

SCALCG (a) achieved minimum # of function evaluations in 314

SCG (s)achieved minimum # of function evaluations in 40

CG_DESCENT (aW) achieved minimum # of function
evaluations in

167

SCALCG (a) achieved minimum cpu time in 375

SCG (s) achieved minimum cpu time in 36

CG_DESCENT (aW) achieved minimum cpu time in 129

In Figures 3 and 4 we compare the performance profiles of all these three algorithms subject to function
evaluations and cpu time metrics, respectively.

Figure 3: Performance based on number of function evaluations.

SCALCG (a) versus SCG (s) and CG_DESCENT (aW).

Figure 4: Performance based on cpu time.

Studies in Informatics and Control, Vol. 14, No.4, December 2005 265

SCALCG (a) versus SCG (s) and CG_DESCENT (aW).

Notice that relative to the function evaluations and cpu time metrics from Figures 3 and 4 it follows that

SCALCG (a) is the top performer for all values of . The Figures indicate that relative to these metrics

SCALCG (a) appears to be the best, followed by CG_DESCENT (aW), and followed by SCG(s).

Now, since the SCALCG and SCG codes use the same line search (with the same values for 1 and

2 parameters), these codes only differ in their choice of the search direction. Therefore, on average,

SCALCG appears to generate a better search direction than SCG. From Table 6 we see that refering to
the number of iterations SCALCG is about 5.7 times more performant than SCG. Considering the number
of function evaluations it is about 7.85 times more performant and about 10.4 times faster than SCG.

In the function evaluation metric, from Figure 3, we see that for near 1, SCALCG is almost twice

more performant than CG_DESCENT. Figure 4 gives computational evidence that at least for this set of

500 problems, with dimensions ranging from 103 to 104 , in the cpu time metric SCALCG is about

three times faster than CG_DESCENT, i.e. the fraction of problems for which SCALCG achieved the
best time is about three times greater than that corresponding to CG_DESCENT. The salient point
computationally is that, even the CG_DESCENT uses the loop unrolling to a depth of 5, however
SCALCG is faster.

In the line search, more function evaluations are needed by CG_DESCENT with approximate Wolfe to
achieve the stopping criterion, while in SCALCG the number of calls of the Wolfe line search subroutine
is substantially smaller than the number of iterations, i.e. the initial guess of the step length is accepted as
satisfying the Wolfe conditions at the very first iteration of the subroutine. This has a great influence on
the cpu time. Concerning the total cpu time for solving this set of 500 problems, from Table 5 we see that
SCALCG is almost 2.3 times faster than CG_DESCENT.

The SCALCG and CG_DESCENT algorithms (and codes) differ in many respects. Since both of them
use the Wolfe line search (however, implemented in different manners), mainly these codes differ in their
choice of the search direction. SCALCG appears to generate a better search direction, on average. The
direction dk1 used in SCALCG is more elaborate, it satisfies the quasi-Newton equation in a restart

environment. Although the update formulas (9) and (16)-(18) are more complicated, this scheme proved
to be more efficient and more robust in numerical experiments. However, since each of these codes are
different in the amount of linear algebra required in each iteration and in the relative number of function
and its gradient evaluations, it is quite clear that different codes will be superior in different problem sets.

5.5. SCALCG versus SCG, CG_DESCENT and Polak-Ribière

In the following we compare SCALCG (a) with SCG (s), CG_DESCENT (aW) and Polak-Ribière

with the spectral selection of the scaling parameter k . Table 7 shows the global characteristics

corresponding to these 500 test problems, refering to the total number of iterations, the total number of
function evaluations and the total cpu time for these algorithms.

Table 7. Global characteristics of SCALCG (a), SCG (s), CG_DESCENT (aW)

and Polak-Ribière (s). 500 problems.

Global characteristics SCALCG SCG CG_DESCEN
T

Polak-Ribière

Total number of iterations 121352 227435 153116 210208
Total number of function evaluations 182643 362557 298140 361709
Total cpu time (seconds) 3669.51 9634.70 8411.52 9299.45

Table 8 presents the number of problems, out of 500, for which these algorithms achieved the minimum
number of iterations, function evaluations and cpu time, respectively.

Table 8. Performance of algorithms. 500 problems.

 Number of problems

Minimum number of: SCALCG CG_DESCENT SCG Polak-Ribiere

266 Studies in Informatics and Control, Vol. 14, No.4, December 2005

iterations 303 173 52 8
function evaluations 309 165 39 10
cpu time 371 125 34 18

In Figures 5-7 we compare the performance profiles of these algorithms subject to the number of
iterations, the number of function evaluations and cpu time, respectively.

Figure 5: Performance based on thenumber of iterations.

Figure 6: Performance based on the number of function evaluations.

Studies in Informatics and Control, Vol. 14, No.4, December 2005 267

Figure 7: Performance based on the cpu time.

The top curve corresponds to the algorithm that solved the most problems in a number of iterations
(Figure 5) or in a number of function evaluations (Figure 6) or in a cpu time (Figure 7) that was within a
given factor of the best number of iterations, function evaluations and cpu time, respectively. Since the
top curve in Figures 5, 6 and 7 corrersponds to SCALCG, this algorithm is clearly the best among the
algorithms considered in this study.

5.6. Accuracy Comparisons

In the next series of experiments we explore the ability of the algorithms to accurately solve the
problems. We compare SCALCG and CG_DESCENT and consider the following two problems:

f x x x x x x xi i i i i
i

n

n1
2 2

1
2

2
2

3
2

1

4
2 24 3 2 3 4 5() () () ,

 (BDQRTIC - CUTE)

f x x xi
i

n

n2 1
2

1

1
21

1

2

sin() sin(), (EG2 - CUTE)

with the initial point x0 1 1 [, ,]. Tables 9a,b and 10a,b contain the number of iterations, cpu time

(seconds) and the value of function in optimal point for all these problems, subject to five values of

tolerance g on gk
.

Table 9a. Iteration and solution time versus tolerance g ,

SCALCG, f x1 (), n 10000.

 s a

 g #iter time f x()* #iter time f x()*

10 3 335 32.07 40034.30553831 545 86.73 40034.30553838

10 5 361 50.26 40034.30553829 545 86.67 40034.30553838

10 7 361 50.26 40034.30553829 545 86.67 40034.30553838

10 9 361 50.26 40034.30553829 545 86.67 40034.30553838

10 11 361 50.25 40034.30553829 545 86.62 40034.30553838

Table 9b. Iteration and solution time versus tolerance g ,

CG_DESCENT, f x1 (), n 10000.

 W aW
 g #iter time f x()* #iter time f x()*

10 3 815* 159.01 40034.30554037 2005 412.22 40034.30553834

10 5 815* 159.01 40034.30554037 5259 1097.08 40034.30553825

10 7 815* 159.01 40034.30554037 8932 1897.67 40034.30553825

10 9 815* 159.01 40034.30554037 10020 2140.18 40034.30553825

10 11 815* 158.46 40034.30554037 10048 2136.65 40034.30553825

* Line search fails, too many secant steps. - your tolerance is too strict.

268 Studies in Informatics and Control, Vol. 14, No.4, December 2005

Table 10a. Iteration and solution time versus tolerance g ,

SCALCG, f x2 (), n 10000.

 s a

 g #iter time f x()* #iter time f x()*

10 3 111 4.95 -9998.947391877 107 4.88 -9998.947382045

10 5 123 8.57 -9998.947392267 111 7.36 -9998.947382099

10 7 204 81.01 -9998.947392269 111 7.42 -9998.947382099

10 9 204 81.07 -9998.947392269 111 7.42 -9998.947382099

10 11 204 81.18 -9998.947392269 111 7.42 -9998.947382099

Table 10b. Iteration and solution time versus tolerance g ,

CG_DESCENT, f x2 (), n 10000.

 W aW
 g #iter time f x()* #iter time f x()*

10 3 114 6.92 -9998.999975574 114 6.92 -9998.999975574

10 5 125 8.90 -9998.999985862 161 10.43 -9999.

10 7 125 8.84 -9998.999985862 179 11.59 -9999.

10 9 125 8.90 -9998.999985862 199 12.96 -9999.

10 11 125* 8.73 -9998.999985862 267 16.86 -9999.

* Line search fails, too many secant steps. - your tolerance is too strict.

Some comments are in order.

 These two problems were selected since they illustrate the typical behaviour noticed in the test
problems. Observe that both of them have a nonzero optimal function value. When the optimal

function value is zero, while the minimizer is not zero, then the estimate f kf x()1 for the error

in function value used in the second stopping criterion in (26) can be very poor as the iterates
approach the minimizer (where f vanishes).

 Both SCALCG and CG_DESCENT are able to solve these problems subject to different values of
tolerance g . However, the results obtained by CG_DESCENT are more accurate. This is due to the

line search procedure implementing the Wolfe conditions. The approximate Wolfe conditions are
more accurate. In fact, a line search implementing the Wolfe conditions can compute a solution with
accuracy on the order of the square root of the machine epsilon. On the other hand, a line search
based on the approximate Wolfe conditions can compute a solution with accuracy on the order of the
machine epsilon [11].

 Observe that in terms of number of iterations or cpu time, SCALCG is more robust than

CG_DESCENT with approximate Wolfe line search. Tolerances lower than 10 5 do not change

significantly the number of iterations or cpu time of SCALCG. On the other hand, CG_DESCENT is
more sensitive to g modification. Reducing g we see that CG_DESCENT requires more

iterations, and obviously more cpu time, to get the corresponding accuracy.

Studies in Informatics and Control, Vol. 14, No.4, December 2005 269

 Generally, we see that the number of iterations and cpu time corresponding to SCALCG are lower
than the same elements required by CG_DESCENT. This once again illustrates that the crucial
element of any unconstrained optimization algorithm is given by the search direction procedure.

5.7. Performance of SCALCG on MINPACK-2 applications

In Tables 11-16 we show the performance of SCALCG, SCG and scaled Polak-Ribière (sPR) algorithms
for 6 unconstrained optimization applications from MINPACK-2 collection [2]. In all these numerical
experiments we have considered the standard initial point, as it is recommended in MINPACK-2.
SCALCG uses the Powell restart criterion and the iterations are stopped according to (26) criteria. SCG
and sPR use the angle restart criterion and the iterations are stopped when (42) is satisfied. All these
algorithms use the same implementation of the Wolfe line search procedure with the same values of
parameters 1 and 2 .

Table 11. Performance of SCALCG, SCG, sPR.
Elastic-Plastic Torsion Problem.

nx ny 100 100, , c 5. , n 10000 .

 # iter # fg cpu (s)
Algorithm s a s a s a f x()*

SCALCG 217 255 284 338 12.20 14.45 -0.439163196
SCG 282 261 438 396 25.27 23.01 -0.439163173
sPR 265 235 420 375 24.06 21.42 -0.439162989

nx ny 200 200, , c 5. , n 40000 .

SCALCG 398 473 511 614 87.39 104.80 -0.439267742
SCG 472 425 746 668 170.92 153.18 -0.439265832
sPR 516 391 828 621 188.83 141.76 -0.439264713

Table 12. Performance of SCALCG, SCG, sPR.

Pressure Distribution in a Journal Bearing.

nx ny 100 100, , ecc 0 1. , b 10, n 10000 .

 # iter # fg cpu (s)
Algorithm s a s a s a f x()*

SCALCG 433 461 567 620 23.51 25.71 -0.282840004
SCG 617 483 956 752 53.11 41.69 -0.282839980
sPR 523 454 838 705 45.86 38.94 -0.282840004

nx ny 200 200, , ecc 0 1. , b 10, n 40000 .

SCALCG 876 900 1143 1157 189.11 191.14 -0.282892918
SCG 1117 1133 1746 1779 384.21 390.96 -0.282892622
sPR 980 961 1556 1530 339.82 333.56 -0.282892453

Table 13. Performance of SCALCG, SCG, sPR.

Optimal Design with Composite Materials.

nx ny 100 100, , 0 008. , , n 10000 .

 # iter # fg cpu (s)
Algorithm s a s a s a f x()*

SCALCG 628 644 801 815 49.49 50.31 -0.011377244
SCG 1519 1249 2309 1907 168.62 139.19 -0.011377230
sPR 1319 1439 2064 2245 149.62 162.80 -0.011377226

nx ny 200 200, , 0 008. , n 40000 .

270 Studies in Informatics and Control, Vol. 14, No.4, December 2005

SCALCG 1413 939 1753 1157 431.82 285.06 -0.011381240
SCG 3952 3184 6003 4828 1749.27 1407.30 -0.011380973
sPR 3628 4372 5680 6847 1644.47 1979.79 -0.011381028

Table 14. Performance of SCALCG, SCG, sPR.
Inhomogeneous Superconductors.

1-dimensional Ginzburg-Landau problem.

t 7, n 1000 .

 # iter # fg cpu (s)
Algorithm s a s a s a f x()*

SCALCG 7422 5560 9499 7107 141.32 108.04 0.797584e-05
SCG 10001 10001 15724 15664 230.02 229.92 0.218839e-04
sPR 10001 10001 15948 15922 234.81 237.72 0.646897e-04

Table 15. Performance of SCALCG, SCG, sPR.

Leonard-Jones Cluster Problem.

ndim=3, natoms =1000, n 3000 .

 # iter # fg cpu (s)
Algorithm s a s a s a f x()*

SCALCG 1252 1583 2002 2007 383.16 384.37 -6622.567428
SCG 4552 4656 7103 7229 1117.24 1137.89 -6634.532271
sPR 2553 2917 4058 4591 637.91 721.99 -6621.582203

Table 16. Performance of SCALCG, SCG, sPR.

Steady State Combustion. Solid fuel ignition.

nx ny 100 100, , 0 07. , n 10000 .

 # iter # fg cpu (s)
Algorithm s a s a s a f x()*

SCALCG 312 266 408 348 33.28 28.40 -0.070086367
SCG 340 288 527 445 50.75 42.85 -0.070086356
sPR 388 360 611 570 58.60 54.60 -0.070086368

nx ny 200 200, , 0 07. , n 40000 .

SCALCG 546 460 720 586 233.65 190.05 -0.070086331
SCG 589 503 927 787 354.21 300.88 -0.070085961
sPR 664 555 1061 875 404.47 334.17 -0.070085849

From Tables 11-16 we see that for solving these 10 MINPACK-2 applications the top performer is

SCALCG (a).

6. Conclusion

We have presented a scaled memoryless BFGS preconditioned conjugate gradient algorithm, SCALCG -
scaled conjugate gradient algorithm, for solving large-scale unconstrained optimization problems.
SCALCG can be considered as a modification of the best algorithm by Birgin and Martínez [4], which is
mainly a scaled variant of Perry’s [16], and of the Dai and Liao [6] (),t 1 in order to overcome the lack

of positive definiteness of the matrix defining the search direction. This modification takes the advantage
of the quasi-Newton BFGS updating formula. Using the restart technology of Beale-Powell, we get a
scaled conjugate gradient algorithm in which the parameter scaling the gradient is selected as spectral
gradient or in an anticipative manner by means of a formula using the function values in two successive
points. Although the update formulas (9) and (16)-(18) are more complicated the scheme proved to be

Studies in Informatics and Control, Vol. 14, No.4, December 2005 271

efficient and robust in numerical experiments. The algorithm implements the Wolfe conditions and we
have proved that the steps are along the descent directions.

The performance profiles for our scaled conjugate gradient algorithm were higher than those of SCG -
spectral conjugate gradient method by Birgin and Martínez, CG_DESCENT - conjugate gradient with
guaranteed descent by Hager and Zhang and scaled Polak-Ribière for a test set consisting of 500
unconstrained optimization problems (some of them form CUTE) with dimensions ranging between

103 and 104 . Relative to the function evaluations and cpu time metrics, SCALCG is the top performer.

In the function evaluations metric SCALCG performs almost twice better than CG_DESCENT. Refering
to the cpu time metric SCALCG is about three times faster than CG_DESCENT. The better performance
of SCALCG, relative to SCG and CG_DESCENT, in the time and function evaluation metrics, is
connected with the search direction procedure of selection. The direction dk1 used in SCALCG is

highly elaborate, it satisfies the quasi-Newton equation in a restart environment. However,
CG_DESCENT with approximate Wolfe line search is more accurate than SCALCG. Using a line search
based on the approximate Wolfe conditions, CG_DESCENT computes a solution with accuracy of the
order of the machine epsilon. On the other hand, SCALCG, implementing the Wolfe line search,
computes a solution with accuracy on the order of the square root of the machine epsilon.

Finally, as each of these four codes considered here are different in many respects, mainly in the amount
of linear algebra required in each iteration, in the Wolfe line search parameters 1 and 2 , in the

stopping criteria and in the relative number of function and its gradient evaluations, it is quite clear that
different codes will be superior in different problem sets. Generally, one needs to solve thousands
different problems before trends begin to emerge. For any particular problem almost any method can win.
However, we have a strong computational evidence that our SCALCG algorithm is the top performer
among these conjugate gradient algorithms.

REFERENCES

1. N. ANDREI, A new gradient descent method for unconstrained optimization, ICI Technical
Report, March 2004.

2. B.M.AVERICK, R.G. CARTER, J.J. MORÉ and G.L. XUE, The MINPACK-2 test problem
collection, Argonne National Laboratory, Preprint MCS-P153-0692, June 1992.

3. J. BARZILAI and J.M. BORWEIN, Two point step size gradient method, IMA J. Numer. Anal.,
8, pp.141-148, 1988.

4. E. BIRGIN and J.M. MARTÍNEZ, A spectral conjugate gradient method for unconstrained
optimization, Applied Math. and Optimization, 43, pp.117-128, 2001

5. I. Bongartz, A.R. Conn, N.I.M. Gould and P.L. Toint, “CUTE: constrained and unconstrained
testing environments”, ACM Trans. Math. Software, 21, pp.123-160, 1995.

6. Y.H. DAI and L.Z. LIAO, New conjugate conditions and related nonlinear conjugate gradient
methods, Appl. Math. Optim., vol. 43 pp.87-101, 2001.

7. Y.H. DAI and Y. YUAN, Convergence properties of the Beale-Powell restart algorithm,
Science in China (series A) 41, (11), 1142-1150, 1998.

8. Y.H. DAI, J.Y. YUAN and Y-X. YUAN, Modified two-point stepsize gradient methods for
unconstrained optimization, Computational Optimization and Applications, 22, pp.103-109, 2002.

9. E.D. DOLAN and J.J.MORÉ, Benchmarking optimization software with performance profiles,
Math. Programming, 91, pp. 201-213, 2002.

10. R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients, Comput. J. 7, pp.
149-154, 1964.

272 Studies in Informatics and Control, Vol. 14, No.4, December 2005

11. W.W. HAGER and H. ZHANG, A new conjugate gradient method with guaranteed descent and
an efficient line search, University of Florida, Department of Mathematics, November 17, 2003
(theory and comparisons), revised July 3, 2004.

12. W.W. HAGER and H. ZHANG, CG-DESCENT, A conjugate gradient method with guaranteed
descent (algorithm details and comparisons), University of Florida, Department of Mathematics,
January 15, 2004.

13. M.R. HESTENES and E. STIEFEL, Methods of conjugate gradients for solving linear systems,
J. Research Nat. Bur. Standards Sec. B. 48, pp. 409-436, 1952.

14. S.S. OREN and D.G. LUENBERGER, Self-scaling variable metric algorithm. Part I,
Management Sci., 20, pp.845-862, 1976.

15. S.S. OREN and E. SPEDICATO, Optimal conditioning of self-scaling variable metric
algorithms, Math. Programming, 10, pp.70-90, 1976.

16. J.M. PERRY, A class of conjugate gradient algorithms with a two step variable metric
memory, Discussion paper 269, Center for Mathematical Studies in Economics and Management
Science, Northwestern University, 1977.

17. E. POLAK and G. RIBIÈRE, Note sur la convergence de methods de directions conjugres,
Revue Francaise Informat. Reserche Opérationnelle 16, pp. 35-43, 1969.

18. M.J.D. Powell, Some convergence properties of the conjugate gradient method. Math.
Programming, 11, pp.42-49, 1976.

19. M.J.D. POWELL, Restart procedures for the conjugate gradient method, Math. Programming,
12, pp.241-254, 1977.

20. M. RAYDAN, The Barzilai and Borwein gradient method for the large scale unconstrained
minimization problem, SIAM J. Optim., 7, 26-33, 1997.

21. D.F. SHANNO, Conjugate gradient methods with inexact searches, Mathematics of Operations
Research, vol. 3, pp.244-256, 1978.

22. D.F. SHANNO, On the convergence of a new conjugate gradient algorithm, SIAM J. Numer.
Anal. vol. 15, pp.1247-1257, 1978.

23. D.F. SHANNO and K.H. PHUA, Algorithm 500, Minimization of unconstrained multivariate
functions [E4], ACM Trans. on Math. Soft., 2, pp.87-94, 1976.

24. P. WOLFE, Convergence conditions for ascent methods, SIAM Rev., 11, pp.226-235, 1969.

25. P. WOLFE, Convergence conditions for ascent methods II: some corrections, SIAM Rev. 13,
pp.185-188, 1971.

