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Abstract: In this paper a state feedback controller is designed to stabilize a discrete-time nonlinear and uncertain system. The 
Takagi Sugeno (TS) fuzzy model with norm-bounded uncertainties is considered for modelling the nonlinear system. Beyond 
stability, a mixed (LQ/H) index is also considered, which simultaneously guarantees an upper bound of LQ cost and is robust for 
unknown external disturbance in the sense of induced H∞ norm. Sufficient conditions for existence of fuzzy state feedback controller 
are derived in terms of linear matrix inequalities. Finally the effectiveness of the proposed controller design methodology is 
illustrated through numerical simulations. 
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1. Introduction 
Most industrial plants have sever nonlinearities and parametric uncertainties for which the design of 
suitable controls presents many difficulties. To overcome these difficulties, the fuzzy logic control has 
been found an effective approach.  

Recently, a great amount of efforts has been developed in an attempt to describe nonlinear systems using 
the Takagi-Sugeno (TS) fuzzy model [18]. 

The TS fuzzy model represents a nonlinear system by a set of local linear models, which are smoothly 
blended together trough membership functions. This representation allows the designers to take advantage 
of conventional linear system to analyse and design the fuzzy model control. [6,9,15,21,23] 

The control design is carried out based on the fuzzy models via the so-called parallel-distributed 
compensation PDC scheme [5,7,15,16,19]. 

Since uncertainties often degrade system performance and may even lead to instability, a number of 
results have appeared on stability analysis and control synthesis for uncertain fuzzy systems 
[3,4,5,7,9,15,16,19,25,26]. 

In the last two decades, many researchers have worked on robust linear quadratic problem in attempt to 
guarantee robust stability and robust performance in the presence of plant uncertainties. 

The H∞ control, against unknown disturbance, has also been studied by a number of researchers 
[8,11,13,17,27]. 

Recently many works on TS fuzzy model-based control for nonlinear system were developed with adequate 
performance [4,12,19,21,22,23,24,25]. Y Cao et al [3] presented robust H∞ controller design for a class of 
uncertain discrete time fuzzy dynamic systems with norm bounded uncertainties. H.N. Wu et al in [25] develop 
an LMI-based control method for uncertain nonlinear systems with H2 performance. B.S. Chen et al. [9] 
presented mixed H2/H∞ controllers for a nonlinear system via observer-based output feedback. 

The aim of this paper is to design a state feedback controller for a class of fuzzy uncertain system that 
guarantees the mixed (LQ/H) index. This study implies that LQ cost has an upper bound and that the induced 
H∞ norm, from external disturbance to LQ cost, is less than a prescribed level. Based on Lyapunov stability and 
an LMI approach, sufficient conditions for stabilization of the uncertain TS fuzzy model with mixed (LQ/H) 
performance are derived in terms of a family of linear matrix inequalities [1,9,15,21]. 
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The paper is organized as follows. Problem formulation is presented in Section II. The robust stabilization 
with mixed (LQ/H) performance is given in Section III. The synthesis of the controller, which is based 
on the feasibility of certain LMIs, is formulated in Section IV. Section V provides some controller design 
examples and simulation results. Finally the conclusion is given in Section VI. 

2. Problem Formulation  
A fuzzy dynamic model has been proposed by Takagi and Sugeno (TS) to represent a non linear and an 
uncertain system. The TS model is a piecewise interpolation of several linear models through membership 
functions. The fuzzy model is described by fuzzy If/Then rules and will be employed here to deal with 
control design problem for a nonlinear system [18]. 

The ith rule of the fuzzy linear model for the nonlinear discrete-time system has the following form [3,15] 

Plant rule i: 

   
                
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where ijM  is the fuzzy set with 1 2j , ,..., p , r is the number of rules,   nx k   is the state, 

  mu k   is the control input,   2 0w k L ,   is the external disturbance and 

      and i ui wiA k , B k B k    are time-varying but norm bounded uncertainties with the following 

form 

       
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               (2) 

where i i ui wiH ,E ,E ,E are known constant matrices of appropriate dimensions and  F k is an unknown 

real time varying matrix with Lebesgue-measurable elements satisfying    TF k F k I , in which I is 

the identity matrix of appropriate dimension. 

The dynamic fuzzy model can be represented by the following overall model, which combines all the 
local models through membership functions. 
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and   ijM x k  is the grade of member of  x k  in Mij and   ih x k  is the normalised membership 

function of the inferred fuzzy set   i x k . 

Assume for all time k,  

     
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r

i i
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x k h x k i , ,...,r
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Conformably to this description, it is quite natural to seek a state feedback parallel-distributed 
compensation (PDC) for (1) in the form of 

Control Rule j: 

   
   
1 1if              is  and... and  is 

then       1

for         1 2

j p jp

j

x k M x k M

u k K x k

j , ,...,r

 



                 (7) 

Hence, the final overall fuzzy controller is given by 

     
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1
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j

u k h x K x k
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                           (8) 

Then, the resulting closed-loop system is described by 

         
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where          wiij i i ui ui j wi wiG A A k B B k K , B B B k          

Associated with the closed-loop system (9), the linear quadratic LQ is defined as [10,12,15,17] 

       
0

T T

k

J x k Qx k u k Ru k

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where 0TQ Q  , 0TR R   are given weighting matrices of state and control input respectively. 

If we consider that 
1 1
2 20 and  0

T T

C Q D R        , the LQ cost function (10) can be rewritten as 

    2

2
1

T

k

J z k z k z




                            (11) 

Since H∞ control is popular with its efficiency to eliminate the effect of the disturbance on the control 
system, it will be employed to deal with the robust performance control in (9). Let us consider the 
following H∞ control performance [3,15] 

       2

1 1

T T

k k

J z k z k w k w k
 

 

                      (12) 

where   characterizes the impact of external disturbance w  on LQ cost J . 

Since there exist uncertainties in the parameter of the fuzzy model, it is very difficult to get an optimal LQ 
cost. In this situation, a sub-optimal LQ control design is proposed to solve this problem by minimizing 
the upper bound of the LQ cost, i.e. J   

Definition [15]: Associated with the closed-loop system (9), the mixed (LQ/H) performance is defined as 
22

2
J w                                (13) 

where 0   is upper bound on LQ and   is an attenuation level of disturbance. 

Problem formulation: Find a suitable set of controller  jK  such as the closed-loop system (9) turns to 

be stable and satisfies the mixed (LQ/H∞) index (13). 

3. Robust Stabilization and Guaranteed Cost of the TS Fuzzy Model 

In this section we develop the PDC controller for uncertain fuzzy model (2) with taking account of the 
problem formulated in the previous section. 

The following theorem investigates the existence condition of (LQ/H) controller and indicates that the 
closed-loop system satisfying the (LQ/H) performance is always robustly stable. 
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Theorem 1: For the fuzzy system (3), there exists a state feedback fuzzy control law (8) such that the 
closed-loop system (9) is stable and the (LQ/H) performance in (13) is guaranteed, if there exists a 
positive-definite matrix P which is the common solution of the following matrix inequalities 

   0ii iiA PA P                              (14) 

    
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From (11), we obtain 
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Substituting (8) in the auxiliary output yields 
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If we substitute (18) and (19) in (16), we obtain 
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By the property of   ih x k  in (6) and conditions (14)-(15), we obtain 

    22

2
0 0TJ x Px w   

It is easy to get 
   0 0Tx Px 

, consequently we have 

22

2
J w  

. This completes the proof.  

To prove the closed-loop system (9) is locally quadratically stable at the equilibrium 0x  , let us define 
a Lyapunov function as 
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Considering conditions (14) and (15), the previous inequalities implies that 

       2TT TV x k C Cx k w k w k     

       2T TV z k z k w k w k                        (17) 

Summing (17) from k=0 to k    yields 
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If we assume that   0
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lim x k
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By keeping a cost upper bound   on    0 0Tx Px , obviously, the resulting closed-loop system (9) 

satisfies the (LQ/H) index. 

4. Fuzzy Controller Synthesis 

This section is devoted to the design of the robust fuzzy (LQ/H) controller defined in the previous 
section. Using inequality manipulations and parallel distributed compensation (PDC) techniques, 
conditions (14) and (15) in theorem 1 are reduced to a set of coupled LMIs. The local state feedback 
controllers are then derived by the numerical solutions of the coupled LMIs. The overall robust fuzzy 
(LQ/H) controller is made up of fuzzy controller blending of the local linear controllers. 

The following theorem presents a solution to (LQ/H) fuzzy state feedback control problem for TS model 
with parametric uncertainties in terms of LMIs 

Theorem 2: Consider system (3), if there exists a common positive-definite matrix X, some matrices Yi, 

and some positives scalars ij (i<j=1,…,r) satisfying the following LMIs: 

(a) 

2

1

0

0
0 0

0 0

0 0 0 0

i ui i wi

i

i ui i wi ii
T
i ii

X * * * * *

I * * * *

A X B Y B X * * *

CX DY I * *

E X E Y E I *

H I




 

 
  
  

 
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             (18) 
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 (19) 

 

then there exists a (LQ/H) fuzzy state feedback controller (8) such that the resulting closed-loop overall 
fuzzy system (9) is asymptotically stable and the cost (13) is satisfied. 

Where 1 1, i iX P Y K P    and where * denotes the transposed elements in the symmetric positions 

for 1, 2,...,i j r  . 
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Proof: 

Before proving the theorem we recall the following lemma. 

Lemma 2 [26]: Given constant matrices D and E and a symmetric constant matrix P of appropriate 
dimensions and a scalar 0  , the following inequality holds 

0T T TP DFE E F D    

where F satisfies TF F R  , if and only if 

1
1 0

0
0

T

T

R E
P E D

I D


 




            

 

We prove the second condition and the first can be established in the same manner. 

From (15) and by applying the Schur complement we get 
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                   

     
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  (20) 

where
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 

  

 

Substituting (2) into (20), we obtain the following inequality 

0 00 0
0 0 0 00 00 0

0
0 0 0 0

0 00 0

T

T
i ui j wi i ui j wi T

ij
j ji j uj i j uj i i

E E K E E E K E
F F

H HH E E K Ej E E K Ej H

   
                             
      

 
.                                   (21) 

According to lemma 2, matrix inequality (21) holds for all TF F I , if and only if there exists a 

constants 1/ 2
ii  such that 
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







     
    
           
        
            

 
                                   (22) 

Applying the Schur complement to (22), we get 
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 
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 
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 
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  
 

 
   

   (23) 

Pre- and post-multiplying both sides of last matrix by  1, , , , , , ,diag P I I I I I I I  and denoting 

1 1and  j jX P Y K P   ,  matrix inequality (19) is satisfied. 

Then we complete the proof.  

Therefore, we can minimize the upper bound on LQ cost to obtain a sub-optimal mixed (LQ/H) control 
design based on the minimization problem given by the following corollary: 

Corollary: To obtain the better (LQ/H) performance, the control problem can be formulated taking into 
account the following minimization problem 

 

min and 

subject LMIs (18)-(19) and 

- *
0                                                                                                            (24)

0 -x X

 

 
 

 

 

It is easy to get LMI (24) if we consider that    0 0Tx Px   and applying the Schur complement. 

4. Numerical Examples 
Example 1: 

To illustrate the effectiveness of the proposed controller design strategy, we consider the backing-up of a 
computer simulated truck trailer. We use the following truck-trailer model formulated as [3] [20] 

 

     

     

       

1 1

2 2 1

3 3 2 1

1 1

1

1
2

vt vt
x k x k u k

L l

vt
x k x k x k

L
vt

x k x k vtsin x k x k
L

        


  

        

 

The model parameters are given by 2.8,  5.5,  1.0 and 2.0l L v t     . 

We assume that the fuzzy model with disturbance is given by: 
Plant rule 1: 

   

                

2 1

1 1 1 1 1 1

if     is about 0
2

then    1 + +u u w w

vt
x k x k

L

x k A A k x k B B k u k B B k w k

  
 

       
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Plant rule 2: 

   

                
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vt dvt

L L

           
      
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Based on assumption (2), we define 

 1 2 0 0 0.0023 TH H   

1 2 1 2 1 21 0 ,      0,       0
2 u u w w
vt

E E E E E E
L
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We set 
0.01

d


  and the membership functions as follows 

           1 2 1 2 1
sin

,   1  where  
2

k
k k k k
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vt
h h h x k x k
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
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Considering theorem 2, with 3 3
3

1
10 , 10

2
Q I R   , starting point 0

3
[   10]

2 4
Tx

 
   and w(k) is 

stochastic disturbance which is generated by MATLAB function (rand(.)-0.5)/(1+0.01k), we get the local state 

feedback gains given by  1  2.881      -3.5       0.405K   and  2 2.736      -2.70    0.0095K  , 

the LQ upper bound 1.077   and the attenuation level 1.6  . 

The simulation result is shown in figure 1. 
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Figure 1: State trajectories of closed-loop track-trailer system 

Example 2 

In this example, we considered the following discrete-time Lorenz system, which is based on the example 
given in [4] [5] with the sampling time Ts=0.002 s. 
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Plant rule 1: 
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and the membership functions are 
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The nominal values of  , ,r b  are (10,28,8/3) for chaos to emerge. We assume that all system 

parameters are uncertain but bounded within 30% of their nominal values. 

Based on assumption as (2), we define 
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Q I R   , starting point 0 [10 -10 10]Tx    and 

  0.005sin(0.0125 )w k k , we get the local state feedback gains given by 

 1  -0.303     -0.135   -0.0024K   and  2 -0.315     -0.129    0.0075K  , the LQ upper 

bound 14.337   and the attenuation level 1.0901  . 

The simulation result is shown in figure 2 with 1 220 and 30M M   . 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-20

-15

-10

-5

0

5

10

15

20

x1

x2

x3

 

Figure 2: State trajectories of closed-loop Lorenz chaotic system 
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5. Conclusion 

In this paper, we have studied the H guaranteed cost control problem of uncertain nonlinear system. The 
TS fuzzy model is used to represent a nonlinear system with uncertainties. The controller is designed by 
solving the minimization problem that minimizes the upper bound of a (LQ/H) performance index. 

The resulting fuzzy controllers guarantee that the close-loop overall fuzzy system is asymptotically stable 
on one hand, and provides an optimised bound on the value of the cost for all admissible parametric 
uncertainties on the other hand. 

This technique has been applied to a nonlinear system. It has been shown that this approach is both simple 
and effective. 
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