
Studies in Informatics and Control, Vol.14, No.3, September 2005 155 

 
Logic Programs with Access Modifiers.  
Adding Events for Query Management 

 

Adrian Giurca  

Institute of Informatics  

Brandenburg University of Technology at Cottbus,  

GERMANY 

 

Abstract :The aim of this paper is to propose a framework for logic programs cooperation using ALP model started in [6]. 
Following [12], the paper analyzes the communication events TELL, ASK-IF, REPLY-IF, ASK-ALL, REPLY-ALL needed in 
interactive query answering. The main section (Section 3) presents the MOF/UML model of our framework and the ALP behavior 
when a communication event (ALP change_state operation) is received. In Section 4 we provide an example of cooperation 
between two (or more) logic programs under minimal model semantics using ALP programs and event communication. 

Keywords: distributed environments, logic programming, rules, communication events 

Adrian Giurca obtained his PhD in 2004 from University of Bucharest, Romania, in Mathematics and Computer Science. During 
the period 2000-2004 he was a lecturer with the Faculty of Mathematics and Computer Science from University of Craiova, 
Romania. Presently he is a researcher in the Department of Internet Technology in the Institute of Informatics from Brandenburg 
University of Technology at Cottbus, Germany. His main research fields are: Uncertainty Representation, Semantic Web, Logic 
Programming and Multi-Agent Systems. 

1. Preliminaries 

This paper follows our previous research from [6] where we proposed a class of logic programs called 
logic programs with access modifiers (ALP) and a global cooperative knowledge architecture (ALP 
framework) based on this class of programs. Let A be an ALP. We denote PRED(A) the set of all 
predicate symbols from A.  

1. Following the principle of dominant queries the designer declares the set of public predicates from A, 
denoted by PRED(A)public. Usually, the public part of a logic program is a set of clauses which is 
constructed following the most queried predicates from the program. This part is necessary to be 
public because a participant it in order to resolve his goals. The other predicates are used by the 
program himself to solve the participant goal. See also [6] Definition 2, for details. 

2. The set of all protected predicates denoted PRED(A)protected. The protected part of a program 
which is a set of clauses concerning predicates that must use the public part of the program A, in 
order to solve queries ([6] Definition 2). 

3. The set of all private predicates from A, denoted PRED(A)private1. The corresponding set of 
private clauses is used only in internal reasoning of A. 

In [6] Proposition 1 we prove that, having declared PRED(A)public we can construct all the rest of sets 
from an ALP. An architectural design of an ALP is depicted in Figure 1. 

                                                           
1 Like in  [6], PRED(A)private = PRED(A) − (PRED(A)public  PRED(A)protected) 
 



156   Studies in Informatics and Control, Vol.14, No.3, September 2005 

 

Figure 1: ALP Structure, [6]. 

 

In this diagram there exists a separation between public, protected and private predicates to restrict 
participant access only to public predicates. Also, we have a concrete separation between the layer of 
private clauses and facts, which are obtained from a database. This corresponds of deductive databases 
point of view. At that time we proposed also a framework for using ALP’s in a distributed environment. 
The architecture of this framework is depicted in Figure 2. The main components are: 

1. Users. Can be any human users or artificial agents that can understand the communication channel. 
2. ALP. Logic programs with access modifiers (ALP’s). These logic programs are fragmented 

using access modifiers using the principle of dominant queries. 
3. KM. Knowledge Manager.  

 

The main disadvantage of this design is a too strong role assigned to the KM. In fact the responsibility of 
the communication acts is assigned to the KM so, the KM must manage almost all the conversational acts 
in the system. In order to obtain a mode flexible architecture and to enable ”free” knowledge sharing 
between entities from our framework, we investigate the possibility for the treatment of queries using 
communications acts represented as events. 

 



Studies in Informatics and Control, Vol.14, No.3, September 2005 157 

 

Figure 2: Global Knowledge Architecture [6]. 

2. Five Kind of Communication Events 

The set of possible communication acts includes telling, asking, replying, and more. This paper will 
analyze only these three kinds of events. Following [12], message types for expressing those 
communication events needed in interactive query answering include TELL, ASK-IF, REPLY-IF, ASK-
ALL, REPLY-ALL. Notice that communicative acts can be directly performed, can be planned and can 
be requested by any participant. 

TELL. We use TELL for supplying new information to the system. For example, asserting a new knowledge 
into an ALP database corresponds to sending a TELL(equity(”RRC”,”Rompetrol”,”ROTX”)) message with 
the atomic sentence equity(”RRC”, ”Rompetrol”, ”ROTX”) as content. A TELL event can be received by any 
ALP. Note that, in this paper, the message content parameter of TELL is a ground atom. 

ASK-ALL. Similarly, ASK-ALL(equity(X,Y,Z)) corresponds to the first order query 

X, Y, Z equity(X, Y, Z) 

The event delivers the collection of all answer substitutions in the form of a list. 

ASK-IF. Using ASK-IF (equity(”RRC”, ,Z)) in our system we look in the system for an answer that can 
be a variable substitution set S, or the answer “no”. If there exists a substitution for variable Z in the 
system according to the public equity predicate then the answer will be the appropriate substitution, 
otherwise will be no or unknown (see also REPLY-IF). The message content of ASK-IF is an if-query 
corresponding to the first order formula 

Z equity (”RRC”, _, Z) 

REPLY-IF. This kind of event can be fired by an ALP (or any other participant) as a response to an ASK-
IF received event. A REPLY-IF event has two parameters: the if-query from the received 
ASK-IF event and the answer of the system. There are three possible cases: 



158   Studies in Informatics and Control, Vol.14, No.3, September 2005 

 If we have equity(”RRC”, ”Rompetrol”, ”ROTX”) in the database of the ALP1 and equity is a public predicate 
and ALP1 receive an ASK-IF event like ASK-IF(equity(”RRC”, ,Z)) it can fire the event 

REPLY-IF (equity (”RRC”, _ , Z), (Z=”ROTX”)). 

 If we don’t have equity(”RRC”, ”Rompetrol”, ”ROTX”) in the database of the ALP1 and equity is a public 
predicate, then ALP1 can fire an event like 

REPLY-IF (equity (”RRC”,_ ,Z), no). 

 If equity is not a public predicate, then ALP1 can fire an event like 

REPLY-IF (equity (”RRC”,_ , Z) ,unknown). 

REPLY-ALL. Similarly, the REPLY-ALL event can be fired by system participants (ALP’s or other 
participants) as a reply to an ASK-ALL event. In the same manner it has two parameters: the query and 
the response which is the list of all corresponding instances or empty list if we not have any appropriate 
instance. So, it is possible to obtain an event like 

REPLY-IF (equity(”RRC”, _ ,Z),[(Z=”ROTX”), (Z=”BET”), (Z=”BET-C”)]) 

3. Using Communication Events to Modeling Queries 

This section is devoted to query modeling using communicative events. In order to realize this task we 
must follow two steps: first, we develop the basic constructs of the query language then we annotate the 
ALP’s with these constructs.  

The main thing is that every ALP can have his personal query constructs. In order to obtain a sound 
model it is required that the principle of “non-fail events” must hold. (see also [7] and [3]). 

That is, every fired event is accepted by some receiver who must send a response to some participant 
from the system. 

 TELL indicates that the sending participant: 

– Holds that some proposition is true, 

– Intends that the receiving participant also comes to believe that the information is true 
(the sending agent is sincere, and has (somehow) generated the intention that the 
receiver should know the proposition (perhaps it has been asked)), 

– Does not already believe that the receiver has any knowledge of the truth of the 
information. 

From the receiver’s viewpoint, receiving a TELL event entitles it to believe that: 

– The sender believes the information that is the content of the message, and 

– The sender wishes the receiver to believe that information also. 

 The informal meaning of ASK is “asking a participant about the truth of specific 
information”. A participant can perform an ASK event if: 

– Has no knowledge of the truth value of the information, and, 

– Believes that the other participant can inform the sender if it knows the truth of the 
information. 

We denote the set of all communicative events by CommEvents2 and the set of all ALP’s with ALP. 
The basic meta-predicates of our event rules are sendMsg and recvMsg. 

Definition 1 (Event Pattern) The general communication event pattern is a simple structure of the form: 
event−name(atom[,answer]) 

                                                           
2 CommEvents = {TELL, ASK−IF, ASK−ALL, REPLY−IF, REPLY−ALL} 
 



Studies in Informatics and Control, Vol.14, No.3, September 2005 159 

where atom is a first order atomic formula and answer is one of the following: a substitution, a set of 
substitutions, NO or UNKNOWN. 

The Change State of an ALP receiving Communication Events 

Below we model the ALP behavior when receive a communication event. As we already say the communication 
events can occur in our framework are TELL, ASK-IF, REPLY-IF, ASK-ALL and REPLY-ALL. All algorithms 
contain the following notations and usual functions used in list (set) management: 

A,B are ALP’s; 

p(t1,...tn) is an atom; 

pred_A   - the set of all predicates from A; 

public_A - the set of all declared public predicates from A; 

protected_A - the set of all (obtained) protected predicates; 

private_A - the set of all (obtained) private predicates; 

assert(atom) - the common assert function used to update the facts database of an ALP; 

remove(param) - the usual removal from a list (set). If the param is not in the list (set) the function call 
has no effect; 

add(param)- the usual add of an element into a list (set). If the param is already in the list (set) the 
function call has no effect; 

isEmpty() - the usual empty set test; 

calculate(public(A)) - the function which obtain the fragmentation of A (from [2], Proposition 1); 

compute(atom) - the usual atomic query computation in a logic program; 

State change when receiving a TELL event 

//The test can be changed. This version is only for illustrative 
//purposes. It does not have need to be optimal. 
change-state(recvMsg(TELL(p(t1,...,tn)),B)){ 
 if ( protected_A.contains(p) || private_A.contains(p)) { 
  // declare p public in A 
   private_A.remove(p); 
   protected_A.remove(p); 
   public_A.add(p); 
   A.calculate(public_A); 
  } else { 
   if (!public_A.contains(A)){ 
   public_A.add(p); 
   } 
 } 
 // update facts database in A 
 A.assert(p(t1,...,tn)); 
} 

State change when receiving a REPLY-IF event 

change-state(recvMsg(REPLY-IF(p(t1,...,tn),answer),B){ 
 if ( !(answer == NO || answer == UNKNOWN)) { 
   // update facts database in A 
   A.assert(p(answer(t1),...,answer(tn))); 
   if (p(answer(t1),...,answer(tn)) is ground){ 
   sendMsg(TELL(p(answer(t1),...,answer(tn))),KM); 
  } 
 } 
} 



160   Studies in Informatics and Control, Vol.14, No.3, September 2005 

State change when receiving an ASK-IF event 

change-state(recvMsg(ASK-IF(p(t1,...,tn)),B)){ 
 if ( public_A.contains(p)) { 
   if ( exists sigma such that A entail 
             p(sigma(t1),...,sigma(tn))){ 
     A.sendMsg(REPLY-IF(p(t1,...,tn),{sigma}),B); 
    } else{ 
       //q is the first atom that fails in the resolution proof 
       A.sendMsg(REPLY-IF(p(t1,...,tn),NO(q)),B); 
       A.sendMsg(ASK-IF(q),KM); 
    } 
  } else { 
     A.sendMsg(REPLY-IF(p(t1,...,tn),UNKNOWN),B); 
     A.sendMsg(ASK-IF(p(t1,...,tn)),KM); 
  } 
} 

State change when receiving a REPLY-ALL event 

change-state(recvMsg(REPLY-ALL(p(t1,...,tn),answer),B){ 
 if ( !(answer == NO || answer == UNKNOWN)) { 
  // update facts database in A 
  for all ansver_i in answer { 
   A.assert(p(answer_i(t1),...,answer_i(tn))); 
   if (p(answer_i(t1),...,answer_i(tn)) is ground){ 
     sendMsg(TELL(p(answer_i(t1),...,answer_i(tn))),KM); 
   } 
  } 
 } 
} 

State change when receiving an ASK-ALL event 

change-state(recvMsg(ASK-ALL(p(t1,...,tn)),B)){ 
 if ( public_A.contains(p)) { 
  //compute the all substitutions sigma_i such that 
  //A entail p(sigma_i(t1),...,sigma_i(tn)) 
  S = A.compute(p(t1,...,tn)); 
  if ( S.isEmpty()) { 
   //q is the first atom that fails in the resolution proof 
   A.sendMsg(REPLY-IF(p(t1,...,tn),NO(q)),B); 
   A.sendMsg(ASK-ALL(q),KM); 
  }else{ 
   A.sendMsg(REPLY-IF(p(t1,...,tn),S),B); 
  } 
  }else { 
   A.sendMsg(REPLY-ALL(p(t1,...,tn),UNKNOWN),B); 
   A.sendMsg(ASK-ALL(p(t1,...,tn)),KM); 
  } 
} 

The MOF/UML Model of the framework 

In the Figure 3 we see the MOF/UML model of our framework. Figures 4, 5 and 6 presents the sequence 
diagrams related to the corresponding event receiving. 



Studies in Informatics and Control, Vol.14, No.3, September 2005 161 

 

Figure 3: The MOF/UML Model of the System. 

 

Figure 4: State Change when Receiving TELL Events. 



162   Studies in Informatics and Control, Vol.14, No.3, September 2005 

 

Figure 5: State Change when Receiving ASK-IF or ASK-ALL Events  

Figure 6: State Change when Receiving REPLY-IF or REPLY-ALL Events 

Communication Rule Patterns in KM 

The role of the Knowledge Manager (KM) is restricted now only to manage communication events that 
cannot be solved by one of the participants in the system. In order to be able to do this KM must provide 
rules for managing communication events. In our construction the following kind of rules can be 
modeled: 

Definition 2 (Rules Pattern) The following patterns are event rules or communication rules: 

1. Inform Rule (IR): 

sendMsg(e, P) 

2. Composite Inform Rule (CIR): 

sendMsg(e, P) recvMsg(e1, P1)  …  recvMsg(en, Pm). 

3. Request Rule (RR): 

recvMsg(e, P) 

where e,eiCommEvents and P,PjALP, for all i=1,…,n and j=1,…,m. 

 



Studies in Informatics and Control, Vol.14, No.3, September 2005 163 

4. Case Study: Logic Programs Cooperation under Minimal Model 
Semantics 

In this section we provide an example of cooperation between two (or more) logic programs under 
minimal model semantics. 

Minimal Model Semantics is not Decomposable 

In our paper [5] we provide some examples proving that, unfortunately, the Herbrand semantic of Horn 
logic programs can’t be obtained by composition from the semantic of program clauses itself (actually, 
the least Herbrand model of a program cannot be obtained, in general, from the least Herbrand model of 
it’s clauses).  

We also, use a counterexample in order to prove that it is not possible to make set operations with clauses 
from P1 and P2 for obtaining a program P1  P2 such that  

MP1P2 = MP1  MP2  

and a program  P  P1P2 such that  

MP = MP1P2 − (MP1 MP2) = {p(v), r(u)} 

where MP denote the least Herbrand model of P.  

For example, if we want to construct P by collecting the clauses involved in the deduction of {p(v)}, then 
we must take the clauses p(X) q(X) and q(v)  but, in this case, p(u) MP. 

Example 1 (See [5]) Let P1, P2  P such that 









)(

)()(
1 uq

XqXp
P  and 









)(

)()(
2 vq

XqXr
P  

Then MP1 = {q(u), p(u)} and MP2 = {r(v), q(v)}. Clearly, MP1MP2 = {q(u), p(u), r(v), q(v)}. Now, if we 
consider the union of clauses from P1 and P2, we obtain the program  



















)(

)(

)()(

)()(

21

vq

uq

XqXr

XqXp

PP  

and MP1P2 = {q(u), p(u), r(v), q(v), p(v), r(u)}. 

A Scenario: Using ALP with Events to Model a Cooperative Architecture 

In this section we prove that using the ALP with events framework we can obtain some desired results in 
cooperation between logic programs. 

Scenario 1. Let P1, P2 P as in Example 1. 

We declare PRED(P1)public = {p} and PRED(P2)public = {r, q}.  

 

 

 



164   Studies in Informatics and Control, Vol.14, No.3, September 2005 

Following the algorithm described in [6] we obtain: 

PRED(P1)protected =, 

PRED(P1)private = {q}, 

PRED(P2)protected = and 

PRED(P1)private =. 

The following is a scenario of cooperation: 

 
 
 
SYSTEM at TIME=t1 
================= 
1. Participant: sendMsg(ASK-IF(p(v)),P1) 

2. P1: recvMsg(ASK-IF(p(v)),user) so, 

call: change_state(recvMsg(ASK-IF(p(v)),user)) 

2.1 sendMsg(REPLY-IF(p(v),NO(q(v))),user); 

2.2 sendMsg(ASK-IF(q(v)),KM) 

3. KM: recvMsg(ASK-IF(q(v)),KM) so, sendMsg(ASK-IF(q(v)),P2) 

// KM send query to other participants 

4. P2: recvMsg(ASK-IF(q(v)),KM) so 

call:change_state(recvMsg(ASK-IF(q(v)),KM)) 

4.1 sendMsg(REPLY-IF(q(v),[]),KM) // q(v) is true in P2 

5. KM: recvMsg(REPLY-IF(q(v),[]),P2) so, 

sendMsg(TELL(q(v)),P1) // tell all the new knowledge 

6. P1: recvMsg(TELL(q(v)),KM) so call:change_state(TELL(q(v)),KM) 

6.1 P1 declare q as a public predicate 

6.2 P1 recalculate his public, protected and private predicates 

6.3 P1 add q(v) in his facts database 

 

SYSTEM at TIME=t2 

================= 

1. Participant: sendMsg(ASK-IF(p(v)),P1) 

2. P1: recvMsg(ASK-IF(p(v)),user) so, 

call: change_state(recvMsg(ASK-IF(p(v)),user)) 

2.1 sendMsg(REPLY-IF(p(v),[],user); // p(v) is true in P1 

.... 

As a conclusion, if at the first attempt the program P1 fails to the query p(v), at the second attempt it 
obtain the answer true using cooperation started in the first attempt. 

 

 

 



Studies in Informatics and Control, Vol.14, No.3, September 2005 165 

5. Related Work and Future Research 

Schroder et. al. [8], construct an argumentation language to specify argumentation protocols for 
multiagent systems and implemented multi-agent inference by vivid agents (for a complete information 
about vivid agents see Wagner [11]). Also in [9], they use PVM-Prolog to implement Vivid Agents. 

Fischer at al. in [4] provides a large discussion about methodologies and principles of design agent based 
applications. They conclude that because there is no generally accepted and well-defined taxonomy for 
classifying agent-based applications. 

Shoham in [10], provide a pioneering paper concerning the modeling behavioral systems as agents (both 
human and artificial). 

Wagner in [11], provides the basis for vivid systems i.e. every knowledge system should be upwards 
compatible and conservatively extend, the system of relational databases. 

Alferes et. al in [1] propose a foundational framework of evolving logic programs used to express 
and reason about dynamic knowledge bases. Also in [2] is proposed LUPS, a language for 
dynamic updates. They describe how different environment-aware behaviors of agents can be 
naturally expressed in LUPS. Also, the LUPS specification provides a formal declarative 
characterization of such behaviors, that can be exploited for performing resource-bounded 
analyzes and verifications. 

As a future research, our plan is first to make an implementation model of the architecture, which will be 
useful to prove if such a  system could be used in rules cooperation on the web and secondly, if the first 
step is successful,  a formal semantics for this framework will be developed. 

REFERENCES 

1. ALFERES J.J., BROGI, A.,  LEITE, J.A. & PEREIRA, L.M., Evolving logic programs, In S. 
Flesca, S. Greco, N. Leone, and G. Ianni (editors) Logics in Artificial Intelligence, 8th European 
Conference on Logics in Artificial Intelligence (JELIA 02), Lecture Notes in Computer Science 
2424, pages 50-62. 2002. 

2. ALFERES J.J., BROGI, A., LEITE, J.A. & PEREIRA, L.M.,, Computing environment-aware 
agent behaviours with logic program updates, In A. Pettorossi (editor), ”Logic-Based Program 
Synthesis and Transformation - 11th International Workshop (LOPSTR’01), Selected Papers”, 
Lecture Notes in Computer Science 2372, pages 216-232, 2002. 

3. Cohen P. R. and Levesque H. J., Intention is Choice with Commitment, In Artificial Intelligence, 
42(2-3), pages 213-262, 1990. 

4. FISCHER M., MOLLER J., SCHROEDER M., STANIFORD G., & WAGNER G., 
Methodological Foundations of Agent-based Systems, Knowledge Engineering Review, 
12(3):323–329, 1997. 

5. GIURCA A. & SAVULEA D., An Algebra of Logic programs with Applications in Distributed 
Environments, Annales of Craiova University, Mathematics and Computer Science Series, XXVIII, 
2001, pp.147-159. 

6. GIURCA A. & SAVULEA D., Logic Programs with Access Modifiers, 4th International Conference 
on Artificial Intelligence and Digital Communication, AIDC’2004, June 2004, pp. 22-31. 

 

 



166   Studies in Informatics and Control, Vol.14, No.3, September 2005 

7. SEARLE J.R., Speech Acts, Cambridge University Press, 1969. 

8. SCHROEDER M., MORA I. & ALFERES J. J., Vivid Agents Arguing about Distributed 
Extended Logic Programs. 

9. SCHROEDER M. , MARQUES R., WAGNER G. AND CUNHA J., CAP - Concurrent Action 
and Planning: Using PVM-Prolog to implement vivid agents, In Proceedings of the 5th 
Conference on Practical Applications of Prolog, London, UK, April 1997. 

10. SHOHAM Y., Agent-oriented programming, Artificial Intelligence, 60(1):5192, 1993. 

11. WAGNER G., A logical and operational model of scalable knowledge-and perception-based 
agents, In Proceedings of MAAMAW96, LNAI 1038. Springer-Verlag, 1996. 

12. WAGNER G., Foundations of Knowledge Systems with Applications to Databases and Agents, 
Kluwer Academic Publishers, 1998. 


