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Abstract: This paper validates a novel fuzzy classification methodology using the ELENA benchmark (ftp://ftp.dice.ucl.ac.be/ 
pub/neural-net/ELENA/databases). The main advantage of this methodology is the high accuracy with which it learns the 
topological structure of the features space. The fuzzy subsets built by the classifier approximate with a very small error the areas in 
the features space corresponding to different categories. Its accuracy also manifests through handling with fine precision the 
discrimination inside overlapping areas. These two properties of the fuzzy classifier have been confirmed by the testing results 
obtained on ELENA benchmark datasets. 
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1. Introduction 

According to Duda et. al. [11], classification represents “the assignment of a physical object or event to 
one of several prespecified categories”. There are three main classes of fuzzy classifiers to be found in the 
literature, and here are some relevant works [14,15,2,3,13]. 

The most widely used fuzzy classifiers are the if-then rule based classifiers. The main advantage of using 
sets of fuzzy rules is that they make transparent the relationships between features and categories via the 
use of linguistic terms. However, notice that if the number of fuzzy rules increases, the number of 
linguistic terms used to label the fuzzy sets also increases. It follows that the linguistic informational 
burden of the user may also increase beyond reasonable limits. 

Neuro-fuzzy classifiers represent a second class. The main advantage of using neuro-fuzzy classifiers is 
that the learning, adaptation and parallelism capabilities provided by neural networks may be used to tune 
the fuzzy rules parameters. The main drawback is represented by a possible too large number of 
parameters to be tuned, i.e. fuzzy membership functions and neural network weights. 

The classifiers in the third class represent the set of categories as fuzzy subsets [10]. The performance of 
these classifiers is measured by their capability to learn the topological structure of the space. The fuzzy 
subsets used by Boudaoud and Masson [10] have been proposed within the fuzzy min-max clustering 



168    Studies in Informatics and Control, Vol.14, No.3, September 2005 

algorithm [18]. The fuzzy subsets defining the set of categories represent hyperboxes B defined by a 
minimum point m and a maximum point M. Figure 1 shows a hyperbox in R3. It is important to mention 
that the hyperboxes are not allowed to overlap [18]. This does not mean that the areas in the features 
space corresponding to different states do not overlap, but that the hyperboxes delimit the subareas where 
points have full membership in different categories. Partial membership is achieved inside transition areas 
between hyperboxes. 

It is to be noticed that an important property of the classifier in [10] is that the dimension of each 
hyperbox depends on only three constraints: its minimum point, its maximal point, and a parameter that 
controls the decreasing rate of membership to B value when the distance between a test point u and B 
increases. Thus, the main advantage of the third class of classifiers compared to the previous two classes 
is the smaller number of parameters to be tuned, i.e. 3 x number of categories considered, which leads to a 
smaller designing time for the classifier. However, the transparency of relationships between features and 
categories given by the use of linguistic terms is lost. 

minimum point 
m 

maximum point 
M 

 
A Hyperbox in R3 Defined by a Minimum Point and a Maximum. 

The fuzzy classification methodology evaluated in this paper belongs to the last class mentioned and it is 
has been proposed by Bocaniala et. al. [8,9] in a fault diagnosis application. The main advantage of this 
methodology is the large accuracy with which it learns the topological structure of the features space. The 
fuzzy subsets built by the classifier approximate with a very small error the areas in the features space 
corresponding to different categories. Its accuracy also manifests through handling with fine precision the 
discrimination inside overlapping areas. It is to be noted that the classifier depends on a very small 
number of parameters, i.e. equal to the number of categories. 

The paper is organized as follows. Section 2 presents the theoretical aspects of the fuzzy classification 
methodology. Section 3 presents the four tests used for evaluation of the performance of the classifier 
using data sets proposed by ELENA benchmark [12]. The ELENA benchmark has been built with the 
purpose of offering a collection of data sets that can be used as a test basis for newly developed 
classification methodologies. Section 4 gives a brief description of each data set in ELENA benchmark 
and details the actual results of the four tests proposed. Last section summarizes the paper contributions 
and mentions possible directions for future work. 

1.1. Theoretical Aspects 

The fuzzy classification methodology described in this section represents the set of considered categories 
using fuzzy subsets in the features space and it has been proposed by Bocaniala et. al. [8,9]. These fuzzy 
subsets are induced (built) on the basis of a point-to-set similarity measure between a point and a set of 
points in the features space [1]. The point-to-set similarity is built at its turn on the basis of a point-to-
point similarity measure between points in the features space. 

Point-to-point Similarity Measure Based on Distance Functions 

The similarity between two points u and v, s(u,v), may be expressed using a complementary function, 
d(u,v), expressing dissimilarity. Baker [1] expresses dissimilarity by using the distance function in Eq. 1. 
Notice that, in this case, the functions s and d are complementary with regard to unit value, s(u,v)=1-
d(u,v). The β parameter plays the role of a threshold value for the similarity measure. For a data point u, 
all points v residing at a distance δ(u,v) smaller than β will bear some similarity with u. As for the points 



Studies in Informatics and Control, Vol.14, No.3, September 2005  169 

residing at distances larger or equal than β, the similarity s(u,v) is null. 
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Point-to-set Similarity Measure 

The similarity measure between two data points may be extended to a similarity measure between a point 
and a set of points [1]. In this paper, if the point-to-point similarity is given by Eq. 1, the similarity 
between a given point u and a set of points S is computed as the mean value of the point-to-point 
similarity values between u and each v in S (Eq. 2, where n denotes the number of elements in S). Notice 
that the value of r(u,S) remains inside [0,1] interval, as s(u,v) also remains inside [0,1] interval, and the 
cardinal of S is n. 
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The effect of using the β parameter is that only those data points from S, whose distance to u is larger than 
β, contribute to the point-to-set similarity value. The explanation is that only these points have a non-zero 
similarity with u. It follows that the similarity value between u and S is decided within the neighborhood 
defined by β. It has been observed in practice that, if different (dedicated) β parameters are used for 
different categories to express the point-to-point similarity (Eq. 1), the performance of the classifier 
increases substantially. 

Fuzzy Subsets Induced by Single Point-to-set Similarity Measures 

Let C={Ci}i=1,…,m be the set of all points in the features space, associated with the problem to solve, where 
Ci, i=1,…,m represents the set of all points corresponding to the i-th considered category. The 
membership function μi of the fuzzy subset Fuzzi induced by Ci, computed on the basis of a given point-
to-set similarity measure, is given in Eq. 3. The n value represents the cardinal of C, and the ni value 
represents the cardinal of Ci. 
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A point u presented at the input of the classifier is assigned to the category Cz whose corresponding 
degree of assignment z(u) is the largest (Eq. 4). In case of ties, the assignment to a category cannot be 
decided and the point is rejected. 
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Fuzzy Subsets Induced by Multiple Point-to-set Similarity Measures 

The practice showed that there are problems for which classifiers designed by using only one point-to-point 
similarity measure does not provide satisfactory results [7]. When situations like these are met, the advantages 
brought by two or more similarity measures may be combined in order to improve the performance of the 
classifier [8], i.e. a hybrid approach is used. This aspect has been also noticed by Baker [1]. 

In the following, a few possible approaches, when trying to combine the use of two or more similarity 
measures, are suggested. Point-to-point similarity measures: the β parameter may be applied only to one 
of the similarity measures used; if more than one similarity measure are used, then there is a β parameter 
for each one of them. Point-to-set affinity measures: there may be only one point-to-set affinity measure 
resulted from the combination of all similarities used; or, there may be one cluster affinity measure for 
each similarity used. Fuzzy membership functions: the fuzzy membership functions represent 
combinations of cluster affinity measures, if more than one such measure exist. 

Designing and Testing the Classifier 

Let m be the number of the categories considered for the problem to be solved. The validated 
methodology first groups the set of all available data C into subsets according to the category they belong 
to, Ci, i=1,…,m. In order to design and test the classifier, each subgroup Ci is split into three 
representative and distinct subsets, Ci

ref, Ci
param, and Ci

test. On the basis of these subsets, three sets unions, 



170    Studies in Informatics and Control, Vol.14, No.3, September 2005 

REF, PARAM and TEST, are defined (Eq. 5). They are called the reference patterns set, the parameters 
tuning set, and respectively the test set. A subset is considered representative for a given set if it covers 
that set in a satisfactory manner. In the following, the semantic adopted for the expression satisfactory 
covering subset [16] is explained. Then, the role of each one of the three unions is detailed. It is to be 
noticed that the union of subsets having the satisfactory covering property for a set represents also a 
satisfactory covering subset of that set. 
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1.1.1. Satisfactory Covering Subsets 

For the work presented in this paper, a satisfactory covering subset represents a subset of data that 
preserves (with a given order of magnitude) the distribution of the data associated with the problem. 
Selecting the elements that compose a satisfactory covering subset for a given data set can be costly. 
Therefore, it is more convenient to use selection methods that provide convenient approximations for 
satisfactory covering subsets. Such a method [16] is presented in the followings. 

Let consider a given finite data set A that contains r points in a multidimensional space. First, the 
maximum distance, max, between two elements is computed. During this computation a pair of elements, 
(a,b), with maximum distance between them is memorized. Then, one of the elements, let it be a, is 
considered as the center of s hyperspheres, Si, i=1,...,s. The user must provide the s value. Each one of the 
Si hyperspheres has the radius equal to 
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s
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The next step is to consider the partition induced by next subsets, 
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The cardinal of the subset that approximates the satisfactory covering subset is set to a previous given 
percent t of elements from A. The distribution of elements from A in the partition elements P0, …, Ps-1 is 
not equal. This distribution is taken into account when distributing the percent t among the partition 
members. Each partition member Pj, j=1, …, s-1, will be allocated a number of pj elements. The 
approximation subset is composed by randomly selecting pj elements from the Pj subset, j=1, …, s-1. 

1.1.2. Reference Patterns Set (REF) 

The point-to-set similarity measures are defined for the representative subsets Ci
ref, i=1,…,m. Therefore, when 

using a single point-to-set similarity measure, the fuzzy membership functions are computed as shown in Eq. 8. 
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1.1.3. Parameters Tuning Set (PARAM) 

The shape of the membership functions i, associated to the fuzzy sets Fuzzi, depends not only on the 
representative subset Ci

ref, but also on the value of the i parameter, i=1,…,m. The algorithm for tuning 
the parameters i, i=1,…,m, of the classifier represents a search process in a m-dimensional space for the 
parameter vector (1, 2,..., m) that meets, for each category, the maximal correct classification criterion 
and the minimal misclassification criterion. In order to perform this search, different methodologies may 
be used, i.e. genetic algorithms [8], hill-climbing [5] and particle swarm optimization (PSO) [6]. In 
practice, the PSO methodology proved to be the fastest. 

The search for optimal parameters when using genetic algorithms and hill-climbing may be accelerated 
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by using an optimized initial population [16]. An optimized initial population can be obtained by 
performing an iterative search that starts with an individual whose parameters have very small values. 
Then, at each next step, the values of the parameters will be increased/decreased so that the fitness of the 
obtained individual, i.e. the classifier performance, increases. 

1.1.4. Testing Set (TEST) 

The performance of the classifier is measured according to its generalization capabilities when applied on 
the TEST set. It is to be noticed that the TEST set contains data that were not presented before at the input 
of the classifier and that is representative for the whole data set C. The practice showed that the 
performance of the classifier might improve if the testing is performed after adding the data in the 
PARAM set to the REF set. 

2. Evaluation of the Performance of the Validated Fuzzy Classification 
Methodology Using ELENA Benchmark 

The ELENA benchmark [12] has been built with the purpose of offering a collection of data sets that can be 
used as a test basis for newly developed classification methodologies. It is important to note that all data sets in 
ELENA benchmark are static sets, i.e. they do not represent series of measurements that may be ordered in 
time and whose current values depend on the outcome of past measurements, as it is the case for dynamic sets. 
For an example of how to apply the fuzzy classifier on a dynamic set see the case study in [8,9]. 

In order to evaluate the performance of the validated fuzzy classifier, four tests are performed for each data set. 
The first and the main test is the comparison between the fuzzy classifier performance and the performance of 
the kNN classifier as it has been recorded by benchmark. The second test is the steadiness of the classification 
error obtained with different initial conditions for the fuzzy classifier. The third set is checking the 
generalization capability of the classifier. The last test is the visualization of the fuzzy subsets surfaces for data 
sets with two dimensions. Each test is described in the following in a separate subsection. 

Comparison with the kNN Classifier 

The data sets in ELENA benchmark have been used to compare the performances of different classifiers 
selected by the authors of benchmark. The classifiers have been selected so that they represented well-
known techniques in the classification field, i.e. Multilayer Perceptron Neural Networks or kNN (k-
nearest neighbors) classifiers, and techniques developed by the authors of the benchmark. Out of these 
classifiers, the kNN classifier is the most similar to the validated fuzzy classification methodology. 
Indeed, as described in Section 1, the validated methodology performs classification using the points 
located inside neighborhoods delimited by the  parameter values. The kNN classifiers work in a similar 
manner, by performing classification using the neighborhood formed by the k closest points. Therefore, 
the performance of the validated methodology is evaluated by comparison with the kNN classifier 
performance indicated in benchmark. Another reason for choosing the kNN classifier is the fact that it has 
always either the best performance or the difference between its performance and the best one is minor, 
on the data sets in the benchmark. 

The performance of the kNN classifier on the data sets in the benchmark is measured using the Leave-
One-Out test. This test is carried out as follows: if N samples are available in the data set, then the 
classifier is designed using N-1 samples and it is tested on the sample leaved out. This procedure is 
repeated N times and each time a different sample is leaved out to be tested. Note that the design set has 
the maximum possible size, N-1, and that this fact increases the reliability of the classification result for 
the sample leaved out. It was proven that, if the theoretical Bayes error may be computed, then the 
classification error given by Leave-One-Out test represents an upper bound. 

Measuring the performance of the validated classifier on the data sets in the benchmark using the Leave-
One-Out test represents a very costly operation. The number of calls of the classifier needed may be 
reduced by modifying the Leave-One-Out test by putting in the TEST set more than one sample at a time. 
The elements in the TEST set are selected so that, after a number of calls of the classifier, each sample in 
the data set to turn into a member of the TEST set no more than once. Notice that the difference to the 
Leave-One-Out test, i.e. the cardinal of TEST set is larger than one, may cause the classification error 
obtained with the proposed modification to be the same or smaller than the classification error obtained 
with the Leave-One-Out test. 
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Steadiness of Classification Error Test 

The purpose of this test is to show that different initial conditions bring only minor modifications of the 
classification error obtained with the validated fuzzy methodology. Different initial conditions are 
obtained by using different distributions of data into the reference set (REF), the parameters tuning set 
(PARAM) and the test set (TEST) subsets. However, the percentages allocated to each set are kept 
constant: 30% for the REF set, 40% for the PARAM set, and 30% for the TEST set. The classifier is 
designed and tested for ten different initial conditions and the standard deviation criterion is used to 
assess the stability of the classification error value. 

Generalization Capability Test 

The generalization capability of the fuzzy classifier is assessed by checking the difference between the 
classification error obtained for the PARAM set, i.e. when tuning the parameters, and the classification 
error obtained for the TEST set. The checking is done for ten different initial conditions, i.e. different 
distributions of samples into the reference set (REF), the parameters tuning set (PARAM) and the test set 
(TEST) subsets. The percentages allocated to each set are kept constant: 30% for the REF set, 40% for the 
PARAM set, and 30% for the TEST set. The standard deviation criterion is used to assess the level of 
generalization achieved. Notice that the results of the ten experiments for the steadiness of classification 
error test may be also used for this test. 

Fuzzy Subsets Visualization Test 

The main advantage of the validated classification methodology is the high accuracy with which it learns 
the topological structure of the space associated with the problem. The fuzzy subsets built by the classifier 
approximate with a very small error the areas corresponding to different categories. Its accuracy also 
manifests through handling with fine precision the discrimination inside overlapping areas. In the case of 
data sets with two dimensions it is possible to assess visually these properties. The areas covered by the 
fuzzy subsets surfaces may be visually compared with the actual areas occupied by different categories. 

3. The Results of Evaluation of the Fuzzy Classifier Performance Using 
ELENA Benchmark 

ELENA benchmark contains three artificial data sets called CLOUDS, GAUSSIAN and CONCENTRIC. 
They have been generated so that to fulfill the next requirements: (i) heavy overlapping of the areas 
covered by different categories, (ii) high degree of non-linearity of category boundaries, and (iii) various 
dimensions of associated problem space 

The GAUSSIAN data set contains seven different subsets that differ in the dimension of the problem 
space. The dimension of the problem space goes from 2 to 8. In this paper, only the subset with 
dimension 2 is considered. 

There also are four real data sets in ELENA benchmark called IRIS, PHONEME, SATIMAGE and 
TEXTURE. They have been selected according to following requirements: (i) classical data sets in the 
classification field (IRIS), (ii) sufficient number of samples to avoid the “empty space phenomenon”, (iii) 
high number of classes (TEXTURE), and (iv) various dimensions of associated problem space 

The “empty space phenomenon” manifests in the case of data sets that contain a small number of samples. 
In this case, the areas corresponding to different categories may not be well delimited in the space 
associated with the problem. For more details, see the discussion on the IRIS data set that confronts this 
phenomenon as it contains only 150 samples. 

It is important to note that all data sets in ELENA benchmark are static sets, i.e. they do not represent 
series of measurements that may be ordered in time and whose current values depend on the outcome of 
past measurements as it is the case for dynamic sets. For an example of how to apply the fuzzy classifier 
on a dynamic set, see the case study in [8,9]. 

Results of the Tests on the CLOUDS Data Set 

The characteristics of this data set are the heavy overlapping between areas covered by different 
categories and the high degree of non-linearity of the category boundaries. There are 5000 samples 
equally distributed in 2 categories. The data set has dimension 2 and it is shown in 0. 
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The classification error given by the kNN classifier with the Leave-One-Out test is 10.94 +/- 1.2 %. The 
classification error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 10.82 %. The 
corresponding confusion matrices are shown in 0. The classification error obtained with the fuzzy 
classifier is practically equal to the one obtained with the kNN classifier. 

The standard deviation values for the classification error steadiness test and the generalization capability 
test are 0.49 % and respectively 0.53 %. These values are very small and it may be inferred that the 
classification error is steady in a small interval around the average value 10.98 %, and that the classifier 
generalizes very well on the CLOUDS data set. 

The fuzzy subsets surfaces corresponding to the two categories in CLOUDS data set are shown in 0. The 
areas covered by the two surfaces match the areas occupied by the two surfaces in 0. It is also noticeable 
the fine precision of discrimination inside overlapping areas. 

 

1 2 rejected   1 2 

95.56 4.36 0.08  1 92.8 +/- 1.0 7.2 +/- 1.0 

17.16 82.80 0.04  2 14.7 +/- 1.4 85.3 +/- 1.4 

Confusion Matrices for CLOUDS: Fuzzy Classifier (left), kNN Classifier (right) 

 

 

The Two Categories in CLOUDS Data Set 
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The Fuzzy Subsets Surfaces for the two Categories in CLOUDS Data Set 

Results of the Tests on the GAUSSIAN Data Set 

The GAUSSIAN data set contains seven different subsets that differ in the dimension of the problem 
space. The dimension of the problem space goes from 2 to 8. Here, for visualization purposes, only the 
subset with dimension 2 is considered. The characteristics of this data set are the same as for the 
CLOUDS data set, i.e. heavy overlapping between areas covered by different categories and the high 
degree of non-linearity of the category boundaries. There are 5000 samples equally distributed in 2 
categories. The data set has dimension 2 and it is shown in 0.  

The classification error given by the kNN classifier with the Leave-One-Out test is 27.3 %. The 
classification error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 27.16 %. The 
corresponding confusion matrices are shown in Error! Reference source not found.. The classification 
error obtained with the fuzzy classifier is practically equal to the one obtained with the kNN classifier. 

The standard deviation values for the classification error steadiness test and the generalization capability 
test are 0.63 % and respectively 0.89 %. These values are very small and it may be inferred that the 
classification error is steady in a small interval around the average value 26.17 %, and that the classifier 
generalizes very well on GAUSSIAN data set. 

The fuzzy subsets surfaces corresponding to the two categories in GAUSSIAN data set are shown in 0. 
The areas covered by the two surfaces match reasonably the areas occupied by the two surfaces in 0. The 
large overlapping between the two categories is reflected by the size and the shape of the surface 
corresponding to 1st category. The area occupied by the 1st category in 0 may be approximated by a circle 
with radius 2, while in 0 the corresponding surface covers the same area. This implies that all samples 
belonging to the 2nd category located inside the circle will be misclassified. 

 1 2 rejected   1 2 

1 88.08 11.92 0.00  1 84.4 15.6 

2 42.36 57.60 0.04  2 39.1 60.9 

Confusion matrices for GAUSSIAN: fuzzy classifier (left), kNN classifier (right) 
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The two categories in GAUSSIAN data set 

 

The Efuzzy Subsets Surfaces for the two Categories in GAUSSIAN Data Set 

Results of the Tests on the CONCENTRIC Data Set 

This data set contains two categories, the first one being nested into the second one (0). The main 
characteristic of this data set is the lack of overlapping between areas covered by the two categories. 
There are 2500 samples distributed as follows: 921 (36.8 %) in the 1st category and 1579 (63.2 %) in the 
2nd category. 

The classification error given by the kNN classifier with the Leave-One-Out test is 0.96 +/- 0.5 %. The 
classification error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 1.12 %. The 
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corresponding confusion matrices are shown in Error! Reference source not found.. The difference 
between the two classification errors is negligible. 

The standard deviation values for the classification error steadiness test and the generalization capability 
test are 0.67 % and respectively 0.56 %. These values are very small and it may be inferred that the 
classification error is steady in a small interval around the average value 1.91 %, and that the classifier 
generalizes very well on CONCENTRIC data set. 

 1 2   1 2 

1 98.15 1.85  1 99.1 +/- 0.6 0.9 +/- 0.6 

2 0.70 99.30  2 1.0 +/- 0.5 99.0 +/- 0.5 

Confusion Matrices for CONCENTRIC: Fuzzy Classifier (left), kNN Classifier (right) 

The fuzzy subsets surfaces corresponding to the two categories in CONCENTRIC data set are shown in 0. 
The areas covered by the two surfaces match the areas occupied by the two surfaces in 0. It is also 
noticeable the fine precision of discrimination inside overlapping area. 

Results of the Tests on the IRIS Data Set 

This data set is taken from "UCI Repository of Machine Learning Databases and Domain Theories" 
(http://www.ics.uci.edu/~mlearn/MLRepository.html). It is a very simple data set. The data set contains 
three categories corresponding to three types of iris plant. There are only 150 samples equally distributed 
among the 3 categories. Each plant is described by four measurements: sepal length, sepal width, petal 
length and petal width. 

 

The two Categories in CONCENTRIC Data Set 
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The Fuzzy Subsets Surfaces for the two Categories in CONCENTRIC Data Set 

 1 2 3   1 2 3 

1 100 0.0 0.0  1 100 0.0 0.0 

2 0.0 94.0 6.0  2 0.0 96.0 4.0 

3 0.0 6.0 94.0  3 0.0 2.0 98.0 

Confusion Matrices for IRIS: Fuzzy Classifier (left), kNN Classifier (right) 

The classification error given by the kNN classifier with the Leave-One-Out test is 3.3 %. The 
classification error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 4 %. The 
corresponding confusion matrices are shown in Error! Reference source not found.. The difference 
between the classification errors is very small. 

The standard deviation values for the classification error steadiness test and the generalization capability 
test are 3.05 % and respectively 3.70 %. The average values are 9.11 % and respectively 5.08 %. These 
large variations may be explained by the small number of samples available for this data set. This is 
called the “empty space phenomenon”. 

Results of the Tests on the PHONEME Data Set 

This data set has been built with the purpose of distinguishing between nasal and oral vowels. There are 
5404 samples distributed as follows: 3818 (70.65 %) samples for nasals vowels category and 1586 (29.35 
%) for orals vowels category. Each sample is described by five measurements. 

 1 2 rejected   1 2 

1 89.47 9.80 0.73  1 95.0 5.0 

2 18.41 81.59 0.0  2 18.5 81.5 

Confusion Matrices for PHONEME: Fuzzy Classifier (left), kNN Classifier (right) 

The classification error given by the kNN classifier with the Leave-One-Out test is 8.97 %. The classification 
error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 12.84 %. The corresponding 
confusion matrices are shown in Error! Reference source not found.. The classification error obtained with 
kNN classifier is smaller than the one obtained with the fuzzy classifier. The content of the two confusion 
matrices shows that the kNN classifier has better performance for the 1st category. The difference may appear 
due to the settings of the test used instead Leave-One-Out test (see Section 3.1). 
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The standard deviation value for the classification error steadiness test is 1.4 %. It may be inferred that 
the classification error is steady in a small interval around the average value 13.18 %. The standard 
deviation value for the generalization capability test is 3.59%, which indicates poor generalization on 
PHONEME data set. 

 No. samples Percentage 

1 1533 23.82 % 

2 703 10.92 % 

3 1358 21.10 % 

4 626 9.73 % 

5 707 10.99 % 

5 1508 23.43 % 

Distribution of Samples Into the 6 Categories from SATIMAGE Data Set 

Results of the Tests on the SATIMAGE Data Set 

This data set is taken from "UCI Repository of Machine Learning Databases and Domain Theories". The 
data set has been built with the purpose of distinguishing between 6 types of elements that may appear in 
an image taken by satellite: red soil, cotton crop, grey soil, damp grey soil, soil with vegetable stubble, 
and very damp grey soil. There are 6435 samples distributed in different categories according to 0. Each 
sample is described by 65 measurements. 

The classification error given by the kNN classifier with the Leave-One-Out test is 8.89 +/- 1.6 %. The 
classification error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 8.94 %. The 
corresponding confusion matrices are shown in Error! Reference source not found.. The difference 
between the two classification errors is negligible. 

 1 2 3 4 5 6 reje
cted 

  1 2 3 4 5 6 

1 98.17 0.07 1.17 0.0 0.46 0.0 0.13  1 98.1 0.2 1.1 0.1 0.5 0.0 

2 0.0 97.44 0.28 0.57 1.14 0.28 0.28  2 0.0 96.5 0.1 0.7 2.0 0.7 

3 0.52 0.15 97.05 1.55 0.07 0.66 0.0  3 0.5 0.1 93.04 4.6 0.0 1.4 

4 0.32 0.64 22.04 65.8
1 

0.48 10.7
0 

0.0  4 0.0 0.8 13.7 70.6 0.8 14.1 

5 5.09 0.28 0.0 1.41 87.27 5.52 0.42  5 0.0 0.1 1.9 7.3 2.0 88.7 

6 0.0 0.27 2.25 7.63 1.92 87.7
3 

0.20  6 0.0 0.27 2.25 7.63 1.92 87.73 

Confusion Matrices for SATIMAGE: Fuzzy Classifier (left), kNN Classifier (right) 

The standard deviation value for the classification error test is 0.71 % and it may be inferred that the 
classification error is steady in a small interval around the average value 11.76 %. The standard deviation 
for the generalization capability test is small, 1.28 %, around a small average, 0.69 %. This does not 
affect critically the generalization capability of the classifier on the SATIMAGE data set. 

Results of the Tests on the TEXTURE Data Set 

The characteristics of this data set are the large number of classes and the large number of measurements. 
This data set has been built with the purpose of distinguishing between11 types of textures. There are 
5500 samples equally distributed among the 11 categories. Each sample is described by 40 measurements. 

The classification error given by the kNN classifier with the Leave-One-Out test is 1.0 +/- 0.8 %. The 
corresponding confusion matrix is shown in Error! Reference source not found.. The classification 
error given by the fuzzy classifier with the test proposed in Subsection 3.1 is 2.82 %. The corresponding 
confusion matrix is shown in Error! Reference source not found.. The difference between the two 
classification errors is small. 
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 1 2 3 4 5 6 7 8 9 10 11 

1 97.0 1.0 0.4 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 

2 0.2 99.0 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 

3 1.0 0.0 98.8 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 99.4 0.0 0.0 0.0 0.6 0.0 0.0 0.0 

5 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 

6 0.0 0.0 0.0 0.0 0.0 98.6 0.0 1.4 0.0 0.0 0.0 

7 0.4 0.0 0.2 0.0 0.0 0.2 98.8 0.4 0.0 0.0 0.0 

8 0.0 0.0 0.0 0.0 0.0 1.4 0.0 98.6 0.0 0.0 0.0 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.8 0.2 

11 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.2 0.0 99.0 

Confusion Matrix for TEXTURES Obtained with the kNN Classifier 

 1 2 3 4 5 6 7 8 9 10 11 rejected 

1 96.0 1.0 0.1 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0 0.2 

2 0.2 98.6 0.0 0.0 0.0 0.0 0.2 0.4 0.0 0.0 0.4 0.2 

3 1.0 0.0 99.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4 0.0 0.0 0.0 99.0 0.0 0.0 0.2 0.8 0.0 0.0 0.0 0.0 

5 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6 0.2 0.2 0.0 0.0 0.0 90.4 0.6 6.6 0.0 0.0 0.4 1.4 

7 0.8 0.0 0.8 0.0 0.0 0.2 96.0 1.8 0.0 0.0 0.0 0.4 

8 0.0 0.2 0.0 0.8 0.0 0.8 0.4 95.2 0.0 0.0 0.0 2.6 

9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100 0.0 0.0 0.0 

10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 98.8 0.2 1.0 

11 0.0 0.2 0.0 0.0 0.0 1.8 0.0 0.8 0.2 0.4 96.0 0.6 

Confusion Matrix for TEXTURES Obtained with the Fuzzy Classifier 

The standard deviation value for the classification error test is 0.54 % and it may be inferred that the 
classification error is steady in a small interval around the average value 2.64 %. The standard deviation 
for the generalization capability test is 0.71 %, around a very small average value, 0.13 %. This fact 
proves a good generalization on the TEXTURE data set. 

4. Conclusions 
This paper evaluated the performance of a novel fuzzy classification methodology. The high accuracy with 
which it learns the topological structure of the classification space and its fine precision the discrimination 
inside overlapping areas have been validated using ELENA benchmark data sets [12]. The two properties have 
been confirmed by the results of the four tests proposed, i.e. comparison with kNN classifier performance, 
steadiness of classification error, generalization capabilities, and surfaces visualization. 

Future research on the proposed classification methodology needs to concentrate on obtaining a computational 
complexity for both the design and the test phase that is small enough to make the classifier suitable for 
application to fault diagnosis of real systems. The computational complexity of the design phase has already 
been significantly reduced by using the particle swarm optimization technique, as presented in our recent paper 
[5]. Also, it has been observed in practice that the classifier generalizes reasonably well even for small 
dimensions of the REF and PARAM sets [4]. The computational complexity of both the design phase and the 
test phase depends heavily on the size of these two sets. This leads to the conclusion that a technique should be 
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found so that the size of these two sets reduces substantially and the performance of the classifier stays at least 
the same. A solution to this might be obtained by applying kernel methods [17]. 
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