
Studies in Informatics and Control, Vol.14, No.3, September 2005 181

Computer-Aided Software Artifacts Generation
at Different Stages within

the Software Development Process
Fawzi Albalooshi

Assistant Professor

Department of Computer Science

College of Information Technology

University of Bahrain

PO Box 32038, Isa Town, Kingdom of Bahrain

fawzi@itc.uob.bh

fawzii@batelco.com.bh
Abstract: The process of developing software has undergone major improvements over the years and continues to do so. Many
attempts have been made to automate or partially automate the development process to reduce the time, effort, and cost associated
with it. This paper presents an approach to maintain and partially automate the development process. Automatic transitions from one
development stage to the next with the generation of development information for the new stage is achieved as a result and, at the
same time, consistency of information is ensured since every software artifact is stored as a single instance. Software artifacts of the
system under development are stored in a common repository that can be shared by the development tools for the different
development stages as well as by other case tools that are enabled access to the repository. The results of the experiments suggest
that partial automation between each of the development stages can be impeded within the unified development process and major
advantages can be obtained.

Keywords: Rational Software Development Process, Forward Engineering, Automation, UML, CASE Tools.

Dr Fawzi Albalooshi is an Assistant Professor at the Department of Computer Science at the University of Bahrain since 1996.
Completed his graduate studies at the University of Wales were he was awarded his Masters in Computer Science and Ph. D. in the
field of Software Engineering. He developed research interest in the area of Object Orientation since his research for his Ph. D. and
continued to work in this area up to now. He joined the department of Computer Science as one its faculty members and continued
to research and teach in Software Engineering. Other areas of research he is interested in include the use of computers in
teaching/learning and educational technologies.

1. Introduction

The set of tools used in a software development effort has a major impact on the development time and the
quality of the product. There are many commercially available tools that provide the user with modeling
support for the different development stages using a variety of notations, code generation, and so on. Some of
the tools that we reviewed include Software through Pictures [1], Rational Rose [21, 20], and Visio Enterprise
[24]. The first tool supports automatic code generation and test case derivation from requirements. The other
two support forward and reverse engineering between design and coding in addition to semantic and syntax
checking the models during an editing session. A study on CASE (Computer-Aided Software Engineering)
tools carried out by Grundy, Hosking, and Mugridge [11] showed dissatisfaction with the approach followed in
maintaining consistency of design information. They found that CASE environments use the notion of a
repository with a database view mechanism to keep multiple views consistent. Software through Pictures [1]
uses Sybase, and according to Meyers [16], this approach is good to maintain consistency but poor in writing
and adding new tools, and presenting simultaneous views. CASE tools that use files such as Rational Rose and
Visio Enterprise can be good for incorporating and/or adding new tools, but poor in presenting simultaneous
views, maintaining consistency, and avoiding redundancy. The automated services they offer are limited to
design and coding, though key researchers in the field such as Booch [3] and Pressman [19] emphasis the
importance of the analysis and design stages and their impact on a successful implementation, and the role of
testing in the reduction of errors.

The unified development process [13] is a use-case driven, architecture-centric, iterative and incremental
process. It repeats over a series of cycles making-up the life of a system. Each cycle concludes with a
product release and is made-up of four phases: inception, elaboration, construction, and transition. Each
phase is usually subdivided into iterations each of which goes through all the five work flows as shown in
figure 1. The curves represent an estimate of the required work and to which workflow it belongs to.

182 Studies in Informatics and Control, Vol.14, No.3, September 2005

Major improvements such as speeding-up the development process, maintaining consistency of system
information, avoiding redundancies, and minimizing the development effort can be achieved when
supported by automated services.

Automation in software development is given little attention disregarding the fact that the various development
stages are dependent on each other and a certain level of automation between them can be achieved. For
example, during the analysis stage, details related to a problem are specified in brief, and are extended during
the design stage. It is natural that the design specification includes details specified during the analysis, thus
part of the development process includes re-specification. Similarly, the process of coding a design is mainly
mapping or translating the design to code in a suitable programming language.

The paper presents an approach to software development that enables automatic transitions from one
development stage to the next using a common repository of system information that is shared by the
development tools. The repository used is Jasmine, an OO database, which can be accessed from a number of
commonly used development languages including C++ and Java. In addition to its open interface, it has its own
development environment through which it can be manipulated and examined [14].

The rest of the paper is organized as follows: in section two, a technique for transition between the
development stages is proposed. Section three presents the graph structure used for system information
representation suitable for our transition technique. Section four addresses the consistency problem
associated with software development and explains how it is managed within the environment report here.
Section five presents the experiments carried out to automate the transition technique proposed in section
two and that is to enable automatic transitions from one development stage to the next, followed by
concluding remarks in section six.

2. Proposed Technique for Transition between the Development
Work Flows

Many authors, such as, Booch et al [4], Quatrani [20], Eriksson and Penker [7], and Fowler and Scott [8]
have addressed OO software development with UML. Each of these authors follows a different approach
in explaining how software could be developed object oriented-ly, using UML as the notational language.
The authors clarify the details involved in every stage and, in some cases, give suggestions that aid the
developer to move swiftly from one development stage to another. A number of researchers believe that
automatic transformations between UML diagrams is possible two of recent such publications are [22 and
26]. Selonen and Koskimies [22] state that "Transformations are closely related to consistency checking:
in essence, a transformation defines the information that must be shared by consistent diagrams". In this
section, the main development stages are briefly reviewed with a discussion of the type of information
that can be extracted from the details specified for that stage.

Figure 1: The Unified Development Process [10].

Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Test

Iter.
#n

Iter.
#1

Iter.
#2

Iter.
#n-1

Core Workflows

Phases

Iterations

An iterations in the
elaboration phase

Studies in Informatics and Control, Vol.14, No.3, September 2005 183

2.1. Use Cases

Use cases show how various actors interact with the system. A use case presents the functionality
expected from the system but does not show how this functionality is implemented. Actors are the users
of use cases; they can be human or non-human (another system or hardware). There are three
relationships that are possible between use cases. They are ‘generalization’, ‘include’, and ‘extend’.
Generalization indicates that a use case inherits the behavior and characteristics of another use case. This
type of relationship is also possible between actors. The ‘include’ relationship is used to avoid duplicating
the same behavior in more than one use case. Common behavior is represented by a single use case and
then linked to any other use case that may need that behavior at some time during its processing. The
‘extend’ relationship between two use cases represents a situation in which a base use case may extend its

functionality by using another use case. The base use case can stand alone, but may need the functionality
of the other use case in some situations. Figure 2 shows an example use case diagram in which a
borrower interacts with a Loan use case that uses the functionality of a Validate User use case.

Figure 2: Use Case Diagram for A Loan Operation.

Loan Validate User

<<include>>

Borrower

Expiry

<<extend>>

Input: use case diagram
Output: sequence diagram
Process: for each use case in the use case

 diagram
 create a sequence diagram representing

a scenario

 for each actor interacting with the use

case create an actor interacting
with the sequence diagram

 end {for}

 end {for}

end {process}

Figure 3: Specifying The Sequence Diagrams.

Figure 4: Partial Sequence Diagram for the
Loan Scenario in figure 2.

Borrower

V:Validation
Window

C:Cust
Details

:Main
Menu

:Loan
Window

:Title

1.Validate(CustId)

2. Find(CustId)

3. Open()

4. LoanOption()

5. Open()

6. FindTitle()
7. Find(title)

8. BorrowItem(title) 9. Create(CustId,
title, date)

 10. Update(title)

184 Studies in Informatics and Control, Vol.14, No.3, September 2005

The development process normally starts with the specification of use cases that are then elaborated upon
with the specification of scenarios for each, using sequence and communication diagrams. Figure 4 shows
a possible scenario for the Loan use case shown in figure 2. The borrower is the actor interacting with the
use case, therefore it must be part of the scenario. Figure 3 presents the algorithm of transition from the
use case stage to the specification of scenarios stage.

2.2. Interaction Diagrams

At early stages of development, especially in the analysis stage, the system is partitioned using use cases.
However, to model the dynamic aspects of the system and show more details, interaction diagrams are
used. There are two types of interaction diagrams (sequence and communication) which are used to
model possible scenarios the use cases perform in terms of objects that interact and communicate with
each other to carry out the necessary functionality. In a sequence diagram, interactions between the
objects are ordered in time sequence, and in a communication diagram, the relationships between the
objects are shown in terms of messages that are sent and received.

Figure 4 shows the sequence diagram detailing a possible scenario for the Loan use case shown in figure
2. The Borrower enters his identification number to be validated and, if found valid, the main menu is
displayed. The loan operation can then be selected from a list of possible options that are provided by the
menu. The lending window is then displayed and the title to be borrowed is searched for. If the title is
available, a borrow command is issued and a loan transaction is created.

The sequence diagram shown in figure 4 can be presented as a communication diagram since both
diagrams contain the same objects and function calls except that they are ordered differently. Therefore,
an intelligent tool can generate one from the other. Generating a communication diagram from a sequence
diagram can automatically be done. Figure 5 presents the transition algorithm from sequence diagrams to
communication diagrams and figure 6 shows the communication diagram extracted from the sequence
diagram shown in figure 4. Similarly a sequence diagram can automatically be generated from a
communication diagram except that the sequence of operation calls would be missing. The diagrams
contain many details that can be used to extract a class diagram for the system, for example, each object is
of a class type that can be specified independently. Operation calls between objects suggest
communication between them and can, therefore, be seen as relationships. For example, two classes could
be specified for the objects of type ValidationWindow and CustDetails shown in figure 4. The first

Input: sequence diagram
Output: communication diagram
Process: for each sequence diagram

 for each actor in the sequence

diagram
 create another in the

 communication diagram
 end {for}

 for each object in the sequence

 diagram
 create an object in the

communication diagram
 with the same name and type

 end {for}

 for each message between two objects

in the sequence diagram

 create a link/message between
 the same two objects in the
 communication diagram

 end {for}

 end {for}
end {process}

Figure 5: Specifying the Communication Diagrams.

Figure 6: Communication Diagram Extracted from the
Sequence in figure 4.

Borrower

V:Validation
Window

C:Cust
Details

:Main
Menu

:Loan
Window

:Title

1.Validate(CustId)

2. Find(CustId)

3. Open()

4. LoanOption()

5. Open()

6. FindTitle()

7. Find(title)

8. BorrowItem(title)

9. Create(CustId,
title, date)

 10. Update(title)

Studies in Informatics and Control, Vol.14, No.3, September 2005 185

executes the find operation belonging to the other, thus an association relationship between the two
classes can be established, and a find() operation prototype for the CustDetails class can be specified.

2.3 Classes

Classes are the building blocks of an OO system. A class is a specification representing a set of objects
that share common attributes, operations, and relationships. Deciding on the right set of classes for a
problem is important for successful implementation. The main components of a class are its name,
attributes, and operations.

Looking at the interaction diagram shown in figure 4, we can locate the classes and the relationships
shown in figure 8. The object of type ValidationWindow interacts with the objects of type
CustDetails and MainMenu as shown in figure 4. This situation is presented as association links in
figure 8. The classes shown are missing many details that can be specified by examining other sequence
and communication diagrams the same classes participate in. Figure 7 presents the transition algorithm
from sequence diagrams to class diagrams. As we specify more details for the system under development
in terms of scenarios more class details can be determined.

After determining navigation for some of the association relationships as shown in figure 8, a class for
CustDetails with a public operation find(CustId) as shown in the C++ code in figure 10 can be
coded. The operation is a signature, and more detailed coding can be specified once it is elaborated upon
as an activity diagram. Code for all other classes can be specified in a similar way. Figure 9 presents the
algorithm to derive implementation code from class diagrams.

Input: sequence diagram
Output: class diagram
Process: for each sequence diagram

 create a class diagram

 for each object in the sequence

diagram
create a class

 end {for}

for each interaction between
objects in the sequence diagram

 create an association link
 between the two classes
 representing the participating

objects
 create a service in the

 destination class to represent
 the message passed/called

 end {for}

 end {for}

end {process}

Figure 7: Specifying Classes from Sequence Diagrams.

Figure 8: Some Classes Determined from the Sequence
Diagram in Figure 4.

Validation Window

Validate (CustId)

Main Menu

LoanOption()
Open()

CustDetails

Find(CustId)

Loan Window

FindTitle()
BorrowItem(title)

Open()

186 Studies in Informatics and Control, Vol.14, No.3, September 2005

2.4 Relationships

The three most commonly used relationships in OO modeling are ‘dependency’, ‘generalization’, and
‘association’. In a ‘dependency’ relationship, one specification uses another specification. A change in the
later may effect the behavior of the first. ‘Generalization’ is a relationship between a general class and a
more specific type of that class. The specific class inherits all the properties and relationships of the
general class and can modify the inherited behavior or add to it. ‘Association’ is a relationship in which
objects of a class communicate with objects of another class. It is also possible that objects of the same
class be connected with an association relationship. Roles and multiplicity can be specified at the ends of
a relationship. In most cases, navigation between the ends of an association is bi-directional, but in some
cases it may be useful to restrict navigation to one direction. It may also be necessary to restrict the
visibility of an association.

Analyzing a relationship enables us to specify the necessary implementation code. Figure 11 outlines the
procedure to update the implementation code with relationship details. For an ‘inheritance’ relationship,
code can be incorporated in the derived class’s header specification to inherit from the base class
depending on the access specification specified in the diagram. This situation is shown in figure 12
presenting a diagram demonstrating inheritance relationship between the two classes Time and Clock
and the C++ code to implement the classes and relationship. For a ‘dependency’ relationship a function
prototype need to be specified for the dependent class to access/call the class it uses. In an ‘association’
relationship, both classes can be extended with functions to get and set class details at the other end of the
relationship. However, if navigation is restricted, the functions need to be specified for the class
originating the relationship. Multiplicity, when specified, can be used to determine the input, and output,
for the functions.

Input: class diagram
Output: implementation code
Process: for each class diagram

 for each class in the class diagram
 create an implementation class

 using the class name

 for each attribute in the class
 create a data member in the

 implementation class
 end {for}

 for each service in the class
 create a function prototype in

 the implementation class
 end {for}

 re-arrange all data and function
 members based on their visibility
 whether private, protected, or
 public

 end {for}

 end {for}

end {process}

Figure 9: Coding The Classes

Class CustDetails {

 public:

 int find(CustId);

}

Figure 10: CustDetails Class.

Studies in Informatics and Control, Vol.14, No.3, September 2005 187

2.5 Activity Diagrams

Activity diagrams are used to specify and document control. They model the dynamic aspects of a system at
different levels of abstraction, from highly abstract to more detailed. Sequential and parallel flow of control from
one activity to another is documented. An activity is made-up of actions such that when all executed the activity is
executed. Figure 13 shows the activity diagram for the “Find a Title” operation. A title is searched for in the object
of type Title holding all titles in the system. When found, the number of available copies is checked, and the
title’s availability status is reported to the calling program. Figure 14 presents a more detailed activity diagram for
the action “Search for Title” shown in figure 13. The actions in figure 14 are atomic and can be transformed to
implementation code. The titles are searched for one by one until either the list is exhausted or the required title is
found and its number of copies is returned.

Reading an activity diagram for an operation, its details can be used to assist the programmer to code
the operation. If properly analyzed, other necessary attributes and operations can also be found and
specified as part of the code. Figure 15 outlines the procedure to utilize activity diagrams to ease and
possibly code operations. The actions, decisions, and flow of control can be inserted as comments in
the implementation file.

Figure 12: Inheritance Relationship between Classes.

Time

hours, minutes, seconds :
interger

set (integer, integer,

integer)
get (integer &, inetegr&,

integer &);

Clock

switch : interger

switch ()
advance();

class Time {
 protected:
 int hours, minutes, seconds;
 public:
 void set(integer, integer, integer);
 void get(integer &, integer &,

integer &);
}

class Clock: public Time {
 protected:
 int switch;
 public:
 void switch();
 void advance();
}

Input: class diagram
Output: implementation code updated with

relationship specification
Process: for each class diagram

 for each inheritance relationship

between the classes
update the subclass's header to
include the base class name and
the inheritance specification

 end {for}

 for each association/dependency
 relationship between the
 classes

 update the classes to include
 comments describing the
 relationship with other
 class(es)
 end {for}

 end {for}

end {process}

Figure 11: Coding the Relationships.

188 Studies in Informatics and Control, Vol.14, No.3, September 2005

2.6 Testing

Two common testing approaches are black box testing and white box testing [19]. A very useful black
box testing technique for OO systems is scenario-based testing. In this type of testing, the sequence of
events that carry out a specific user need is tested. For example, to carry out a loan operation the sequence
of events shown in figure 17 occur.

Similar sequences of events can possibly be generated automatically for all interaction diagrams. Figure
16 outlines the algorithm to generate test cases from sequence diagrams. The scenario-based test case
described in figure 17 is specified from the example shown in figure 4 by following the sequence of
events from start to end.

Input: activity diagram
Output: implementation code
Process: for each activity diagram locate the

operation it represents

for each action in the diagram
- in case of repetition/decision

follow the links for true and
false situations

- insert a line of commented code
representing the statement in
the implementation file

 end {for}

 end {for}
End {process}

Figure 15: Converting the Activity Diagram to
Implementation Code.

Input: sequence diagram
Output: scenario-based test cases
Process: for each sequence diagram
 create a scenario-based test case

 for each message in the sequence
 diagram insert it as a testing
 step in the test case
 end {for}

 organize the steps based on the
 messages' sequence numbers

 end {for}

End {process}

Figure 16: Specifying Scenario-based Test Cases from
Sequence Diagrams.

Yes

[More titles]

[Unavailable]

[Found]

Search for Title

 Copies Available > 0

[Available]

[Not Found]

1.1.1

Figure 13: Find a Title Activity Diagram.

Read Next Title from List

Figure 14: Search for Title Activity Diagram.

 Head->title == title

[No more titles]

Return Copies Available

1.1.1

No

Studies in Informatics and Control, Vol.14, No.3, September 2005 189

A common white box testing technique is basis path testing [19]. In it, a flow graph is drawn for the
operation or procedure to be tested and a basis set of linearly independent paths is determined. Flow
graphs are similar to activity diagrams, and the later can be used to derive test cases. For example, a flow
graph representing the activity diagram shown in figure 14 can be shown as in figure 18. There are two
predicates in the graph. Therefore three independent test paths can be obtained, and they are 1-2-7, 1-2-3-
4, and 1-2-3-4-5-6. We can navigate easily from the initial state to the rest of the diagram. An algorithm
can be written to navigate the diagram and to visit a certain path once only to generate the test paths.

3. Software Artifacts Representation and Storage.

Earlier research and investigations [16, 10, 25] showed that a graph structure is a suitable representation
for Object-Oriented software artifacts. A suitable graph structure is carefully drawn to represent the
information for the different development stages. Special care was taken to ensure that the graph structure
eases the automated generation of software artifacts whenever possible. A suitable database for such a
representation is Jasmine [14] an OO database that can be accessed from a number of commonly used
development languages including C++ and Java. In addition to its open interface it has its own
development environment through which it can be manipulated and examined. This section explores in
detail how each of the main UML modeling elements is mapped to the database.

3.1 Use Case Diagrams

To store details of a use case diagram, four types of classes are defined. The first represents a use case
diagram; the second represents an actor; the third represents a use case; and the fourth represents a
relationship. Figure 19 shows the database representation for the Loan use case shown in figure 2.

3.2 Interaction Diagrams

Three main classes are required to store details for interactions. The first represents a particular
interaction called 'Interaction'. An interaction is a scenario detailing a specific use case; therefore
an interaction object is linked to from a use case object. A particular interaction has a title and contains a
list of objects that interact with each other through operation calls. The second class that is required is
used to represent an object participating in an interaction called 'Entity'. Typically an object has a
name, a class type, and links to other objects through operation calls. It is important to capture the details
of operation calls, therefore, a third class is specified to represent an operation called 'Operation'. To
further decompose details of an operation, a class is specified to represent an operation parameter called
'Attribute'. To represent a link/operation call between two objects in an interaction a special class is
specified called 'Lenk'. Figure 20 shows partial representation on Jasmine for the Loan Scenario shown
in figure 4.

The customer ID is validated.

The main menu is displayed and the loan
operation is selected.

The loan window is displayed.

The title is searched for.

The item is borrowed if found.

The loan transaction is recorded.

Figure 17: Scenario-Based Test Case

Figure 18: Search for Title Flow Graph.

1

2

3

4

7

6

5

190 Studies in Informatics and Control, Vol.14, No.3, September 2005

3.3 Class Diagrams

As discussed earlier, classes consist of attributes and operations and, in some cases, a special semantic
description may be given to a class definition through a stereotype specification. In a class diagram it is
necessary to define relationships between individual classes. A special jasmine class called 'AType' is
specified to represent a modeling class. Figures 21a and 21b show an example order class and its
representation on Jasmine.

of type

destination

origin

:Actor

title = “Borrower”
relations = { }

:UseCase

title = “Expiry”

:UseCase

title = “Loan”
relations = { }

:UseCase

title = “Validate User”

:Relation

from = { }
to = { }
type = “uses”

:Relation

from = { }
to = { }
type = “extend”

:Relation

from = { }
to = { }
type = “include”

Figure 19: An Example Representation on
Jasmine for A Use Case Diagram.

has

:UseCase

title = “Loan”
interactions = { }

:Interaction

title = “Loan_Sen_1”
entities = { }

:Attribute

name = “CustId”
type = { }

:Operation

title = “find”
returntype = { }
belongsto = { }
parameters = { }

:Entity

name = “C”
classtype = { }
links = { }

:AType

name = “String”

:AType

name = “CustDetails”

:Entity

name = “V”
classtype = { }
links = { }

:Lenk

seqNo = “2”
toOID = { }
operationOID = { }

Figure 20: Partial Representation on Jasmine for the Loan
Scenario.

has
has

message to

operation

of type message

parameter

belongs to

origin

origin

destinationdestination

has

has

has

Studies in Informatics and Control, Vol.14, No.3, September 2005 191

3.4 Relationships

To represent a ‘dependency’, a class definition that holds the object ids of the class objects sharing
the relationship is needed; other details to be stored include the name and/or stereo type if any, and the
relationship type. A class called ‘Relation’ is specified for the purpose. A ‘generalization’
relationship can be named, stereotyped and constrained. A new class definition called ‘Relation2’ is
specified to represent the generalization relationship and inherits from class ‘Relation’. In most cases
navigation between the ends of an ‘association’ is bi-directional, but in some cases it may be useful
to restrict navigation to one direction. It may also be necessary to restrict visibility of an
‘association’. Another useful mechanism available in UML is to apply a constraint to the
relationship. All the details that need to be maintained for an association require the definition of a special
class called ‘AssoDet’. Using this class and inheriting from ‘Relation2’ a new class definition
called ‘Relation3’ to hold an association relationship is specified. The new class inherits all details
defined for the ‘dependency’ and ‘generalization’ relationships and adds more that are
specific to the association relationship. Figure 22 shows an association relationship between the classes
'Professor' and 'University'. It suggests that one or more professors can work for a university.

Order

- number : String
- value : Double

+ display()

Figure 21a: A Simple Order Class.

:AType

name = “Order”
attributes = { }
operations = { }

:Operation

name = “display”
belongsto = { }
visibility = 2 :Attribute

name = “value”
type = { }
visibility = 0

:AType

name = “String”

:AType

name = “Double”

:Attribute

name = “number”
type = { }
visibility = 0

Figure 21b: Representation on Jasmine for
the Order Class.

has

has of type

of type

has

belongs to

192 Studies in Informatics and Control, Vol.14, No.3, September 2005

3.5 Activity Diagrams

An activity has an initial state that signifies its start and an end state to indicate its termination. Other
components of an activity are selection, repetition, sequence, and concurrency. A set of classes are
defined to represent an activity diagram on Jasmine. The first represents the initial state, the second
represents an activity, the third represents an object an activity interacts with, the fourth represents
selection and repetition, and the fifth represents the end of an activity. Figure 23 shows the database
representation for the activity diagram shown in figure 14.

4. Consistency Management

A major issue in software development is the management of inconsistencies and has been researched by
many such as [11, 15, 9, 23, 5, 2, 17, 18]. The discussion in this section is based on the listed publications
and many others, but an attempt is made to learn from experiences that specifically address consistency
management within and between UML diagrams. UML is a multi view modeling language providing
various diagram types for describing a system from different prospective.

Liu, Easterbrook, and Mylopoulos [15] present three classes of inconsistencies within design descriptions and
they are redundancy, conformance to constraints and standards, and change. Redundancy occurs when a design

:Final

name = “Final”

:Activity

description = “return no. copies”
next = { }

:Repeat_Branch

condition =“Head->title==title”
false = { }
true = { }

:Initial

next = { }

Activity

description = “Read Next Title”
participants = { }
next = { }

:Repeat_Branch

condition = “More Items”
false = { }
true = { }

:Participant

name = “t”
classtype = { }
state = “Read”

AssoDet

mult = “1 .. *”
role = “Employee”

AssoDet

mult = “1 .. *”
role = “Employer”

:AType

name = “University”
relations = { }

AType

name = “Professor”
relations = { }

:Relation3

from = ‘ ‘
to = ‘ ‘
type = “association”
first = ‘ ‘
second = ‘ ‘
name = “Works for”
direction = 2

has origin

origin role
destination role

has

next

next

next

next

next

next

next

has destination

Figure 23: Representation on Jasmine for
"Search for Title" Activity Diagram.

Figure 22: Partial Representation on Jasmine for
an Association Relationship.

Studies in Informatics and Control, Vol.14, No.3, September 2005 193

artifact is represented more than once in more than one view. Such as when there is an overlap between two
views or they have common elements. An typical example of conformance to constraints is the fact that in
UML an attribute name must be unique within a classifier. Software development efforts must also conform to
best practices standards. Changes are unavoidable in software development and a software design may undergo
many changes before it is implemented during of which many inconsistencies may easily be introduced.
Grundy, Hosking, and Mugridge[11] identifies four types of inconsistencies structural, semantic, between
specifications at different levels of abstraction, and inconsistencies between the work of different developers.
Structural inconsistencies relate to parts of a specification in one view not represented by another that should
present it, for example, an object defined in a sequence diagram not reflected by the object diagram view. An
example of a semantic inconsistency is a service provided by an object in the sequence diagram not supported
by the same object class in the class diagram. Inconsistencies between specifications at different levels of
abstractions could occur, for example, a sequence diagram that has no use case diagram. The fourth type of
inconsistencies may occur if in a multi-development environment in which more than one developer modify
the software artifacts concurrently. Many researchers realize that it is impossible and in some cases not
desirable to resolve inconsistencies but it is possible to resolve some.

In the suggested development environment presented here the tools are tightly coupled having an
advantage to resolve redundancies as specified in [15] and structural inconsistencies as specified in [11].
The graph structure used to represent software information is shared by the different development stages.
During a development stage all information related to the software artifacts for that stage are stored. The
stage that follows has access to the same software artifacts stored by the stage before; therefore all details
already specified are made available for the new stage, and the new stage needs only to add the new
details that are not present. Such an approach in information representation that is shared, updated, and
used by the various development stages ensures that only one version of any software artifact is present,
thus information is consistent and redundancy as specified in [15] is avoided. At the same time a software
artifact specified in a diagram is automatically reflected by others, for example, adding a new object in
the sequence diagram it is automatically represented by the collaboration diagram, and reflected as a class
in the class diagram resolving structural inconsistencies as specified in [11].

A software artifact has little details in an early development stage and as development progresses it is
enriched with more details and new artifacts are created, but for the transition to be semantically correct
consistency checks must be specified. A number of researchers such as [9, 23, 5, and 2] define
consistency checks between UML views. Gomaa and Wijesekera [9] specify three example rules between
use case and interaction diagrams, class and state charts, and interaction and state charts. Simmonds and
Bastarrica [23] define five consistency checks and they are abstract object, incompatible behavior,
multiplicity, class-less instances, and observable behavior conflicts. Derrick, Akehurst, and Boiten [5]
suggest that interaction between objects in a sequence diagram must be represented as relationships
between the object classes and the objects' called services must be provided by the classes. Bodeveix,
Millan, Percebois, and Le Camus [2] specify some inter-diagram coherence rules or consistency checks
for class, object, sequence, and state diagrams. Based on these readings and further analysis of UML
diagrams a summary of consistency checks between some of the main UML diagrams is as follows:

a. Every use case diagram must have a corresponding interaction (sequence/collaboration) diagram
deploying it.

b. Interaction diagram and class diagrams:

i. Every object in the interaction diagram must have a corresponding class in the class
diagram.

ii. Every message must be represented as a service in the receiving object’s class.

iii. Communicating objects are represented as a relationship between their classes.

c. Interaction diagram and Scenario-based Test Case

i. Every interaction diagram represents a testing case of a the use case it deploys.

ii. Messages between user and objects are listed according to their sequence numbers as
testing steps.

iii. Other messages are also tested.

d. Service and Activity diagram:

i. Every service in a class is represented by an activity diagram describing the
statements/operations executed and their sequence.

194 Studies in Informatics and Control, Vol.14, No.3, September 2005

e. Activity diagram for a service to Coding steps:

i. Every action in the diagram represents an execution step in the service.

f. Class diagram to Implementation class:

i. Every class is represented as an implementation class including attributes and services.

ii. Classes having a relationship must be visible to each other.

Grundy et al [11] defines semantic inconsistencies with an example as "a type mis-match between method
calls or a non-existent method is called" such inconsistencies are avoided in the development environment
presented here since the software artifacts are independently represented with high level of granulaty. For
example a class is represented as an object on its own in the database that has links to its services and
attributes that are also represented as independent objects. Similarly, parameters for services and the
services’ return types are represented as independent objects in the database that are linked to the service
object they belong to, further details of the database representation is discussed in section three. Addition,
deletion, and changes to class names, attributes, services, or service parameters are automatically picked-
up by the different views. When updating the database object representing the class, service, or attribute
other views have no choice but to reflect the update since it is the database's current state. Semantic
inconsistencies between the diagrams is further avoided by automating the transition process from a
development stage to the next and at the same time ensuring that all consistency checks/rules specified
earlier in this section are fully adhered to.

Other inconsistencies such as that between different levels of abstraction and between the work of
multiple developers can be avoided by strictly conforming to UML constraints and best practices
standards in software development.

5. Automation Experiments

It was necessary to develop a set of CASE tools to test our approach to maintain system information and
enable automated transition between the development stages with the generation of software artifacts
from the available information whenever possible. Four prototypical tools were developed to maintain the
diagrams: use case, sequence, communication, and class as shown in figure 24. They provide the user
with an easy to use interface and functionality to maintain the diagrams. For example, the use case editor
enables the creation of use cases, actors, and the necessary relationships such as ‘include’, ‘uses’,
‘extend’, and ‘inherit’. The sequence diagram editor provides the user with diagrams to draw active
objects, actors, and operation calls that can be ordered in time sequence. The communication diagram
editor enables the user to create objects, actors, and links in the form of operation calls. Similarly, the
class editor enables the creation of classes and all possible relationships. The tools were developed using
Java, and the operations to add, retrieve, and delete models from and to the object store use Java’s
interface with Jasmine referred to as persistent Java (pJ). pJ enables instances of preprocessed Java
classes to become persistent and stored as Jasmine objects, and can be accessed using a special set of
commands provided by the interface library [14].

To test our automation approach a number of experiments were performed. A set of Java programs is
written to populate the database with an example system and process the data at each stage using the
algorithms described in section two to generate the system information that is useful for the stage that
follows. These are a series of ‘populate’ and ‘process’ programs that access the object base using the
interface library of functions. The ‘populate’ programs enrich the database with test data (simulating an
edit session), and the ‘process’ programs automatically generate new data for the development stage that
follow (simulating a forward engineering operation). In the sub sections that follow the experiments to
test the suitability of our approach in information representation and automatic forward engineering
support between the main development stages are presented.

Studies in Informatics and Control, Vol.14, No.3, September 2005 195

5.1 Creating and Processing a Use Case Diagram

At the beginning, the database is populated with a use case diagram consisting of three use cases and an
actor as shown in figure 2. Three objects of type UseCase are generated one for each use case. Three
objects of type Relation are also generated representing the relationships: ‘uses’, ‘include’ and
‘extend’, and an object of type Actor to represent the actor. The objects representing the
relationships are linked to the use case each originates from. The ‘uses’ type is added to the actor’s list
of relations, the ‘include’ and ‘extend’ to the use cases’ list of relations. Doing so eases
navigation between the objects and diagram presentation by the editor. The objects representing the use
case diagram are shown in figure 19. The use case diagram is then processed using a special program to
generate software artifacts for the stage that follows according to the algorithm shown in figure 3. An
object representing an interaction diagram for each use case is created, and an entity object
representing the Actor is created and added to the list of entities belonging to the interaction diagram it is
part of. In other words, three objects of type interaction are created for the use case diagram, one for
each use case, and one entity object representing the actor is made to be part of the interaction
object representing the use case it uses. Transformation at this stage conforms with the consistency check
a specified in section four.

5.2 Populating and Processing the Interaction Diagram

Using a populate program the Loan interaction diagram is then elaborated and a set of objects of type
Entity is created to represent the objects in the diagram, and their details are set. To represent the
interactions (operation calls) between the objects in the diagram, objects of type Operation are created

Figure 24: Tools Developed Using Java and Interfacing Jasmine.

196 Studies in Informatics and Control, Vol.14, No.3, September 2005

and their details such as name, return type, and the type of objects they operate on are set. Parameters to
operations are represented as database objects of type Attribute. They are then linked to the
operations they belong to as parameters. The types of the objects (classes) in the diagram are represented
as database objects of type AType, and the objects representing the operations are linked to the classes
they belong to, so that they become accessible from the classes. A set of database objects of type Lenk
are created for each operation call and their details such as serial number, operation name, and the entity
operated upon are set. Each is then linked to the object representing the entity that used it. By doing so the
interaction diagram is completely mapped to the database. A communication diagram can automatically
be generated by following the algorithm shown in figure 5 and using the same database representation.
Figure 4 shows part of the sequence diagram, and figure 20 shows some of the database objects
representing it.

The database representation for the interaction diagram conforms with consistency checks b i and ii.
Database objects of AType have been created representing the interaction objects' classes and database
objects of type Lenk and Operation have been created to represent the interactions/messages between
the objects. Further processing is required to represent the relationships between the classes in the
database. The program reads the objects of type Entity first and creates an object of type Relation3
for each object of type Lenk originating from an entity object. These new objects represent association
relationships between the classes, and are linked to the classes (objects of type AType) they originate
from. By doing so conformance with the remaining part of consistency check b (i.e. iii) is fully achieved
and the transformation algorithm in figure 7 is implemented. At this stage the details available in the
database are enough to generate the class diagram shown in figure 8. Figure 25 shows a partial
representation for the LoanWindow class shown in figure 8.

5.3 Populating and Processing the Class Diagram

The class diagram is enriched with more details such as operations, attributes, and relationships. To add
operations to classes, objects of type Operation are created and their details set. To add attributes,
objects of type Attribute are created, they are then linked to the class (objects of type AType) they
belong to. Details of an association relationship can be extended with cardinality, role, visibility, and
direction. Other types of relationships can also be established between classes, such as, ‘inheritance’,
‘aggregation’, and ‘dependency’.

Skeleton code can be generated at this stage by following the algorithms shown in figures 9 and 11. The
code generation program reads the AType object for a class. It can decide on the relationships the class
has and generate appropriate include statements for the class header. The AType object representing
the class holds the class name, attributes, and operations. The code generation program reads each
attribute and operation and stores them in three different lists depending on their visibility specification
whether private, protected, or public. Each attribute has a type and possible initialization details. An
operation has a name, a return type and possible parameters. Once they are all read and grouped
according to their visibility, suitable code for the class is generated. Figure 26 shows skeleton code for
the LoanWindow class that is generated from the representation shown in figure 25. More automated
details can be generated if necessary, such as set and get functions for the attributes and relations. The
transformation steps and generated code conforms with consistency check f specified in section four.

Studies in Informatics and Control, Vol.14, No.3, September 2005 197

5.4 Generating Test Cases

Recent research in automated testing such as that reported by [12, 6] highlight its importance and the need
of specialized tools to carry it out. The approach followed in system information representation in the
work presented here renders automated test case generation a simpler task.

S# Operator Operation Operated Upon

1 Borrower: validate(CustID): ValidationWindow

2 ValidationWindow: find(CustID): CustDetails

3 ValidationWindow: open(): MainMenu

4 Borrower: loanOption(): MainMenu

5 MainMenu: open(): LoanWindow

6 Borrower: findTitle(): LoanWindow

7 LoanWindow: find(title): Title

8 Borrower: borrowItem(title): LoanWindow

9 LoanWindow: create(CustID,

title,date): Loan

10 LoanWindow: update(title): Title

Figure 27: A Scenario-based Test Case Automatically

Generated.

Figure 26: Automatically Generated Skeleton C++
Class for LoanWindow.

:AType

title = “LoanWindow”
attributes = { }
relations = { }
operations = { }

:Operation

name = “findTitle”
visibility = 2

Figure 25: Partial Representation for the LoanWindow
Class.

:Operation

name = “borrowItem”
parameters = { }
visibility = 2

:Operation

name = “open”
visibility = 2

:Relation

from = “LoanWindow”
to = “Loan”
type = “association”
first = { }
second = { }

#include “Loan.h”
#include ”Title.h”

class LoanWindow {

public:
 int findTitle();
 void open();
 void borrowItem (string title);

}

has

has has

has

198 Studies in Informatics and Control, Vol.14, No.3, September 2005

To generate a scenario-based test case the algorithm shown in figure 16 is followed, the program reads all
entities belonging to an interaction (object of type Interaction). For each Entity object, the links
(objects of type Lenk) with other entities are listed. Each such object holds the sequence number for the
operation call and the object ID of the object of type Operation representing the operation. For each
Lenk object, the operation signature and class are retrieved using its ID, and are stored along with the
sequence number and the type of the entity object the link originated from (Lenk object belongs to). This
operation is repeated for all entities belonging to an interaction. The details are then sorted by sequence
number and printed as a test case. Figure 27 shows the generated scenario-based test case for the Loan
interaction diagram shown in figure 4. It shows the sequence of operations necessary to carry out a loan
operation, the type of entity responsible for each and the type of object operated upon. The steps followed
to generate the test case and the generated test case conforms with consistency check c in section four.

6. Conclusions

Incremental software development is the recommended approach for the development of high quality
software. Information specified at an early stage is the basis upon which later stages build on leading to
the final product. Iterative development further strengthens the product by specifying and implementing
more requirements in every iteration. The paper describes an approach that facilitates automatic
transitions from a development stage to the next based on a common repository of system information. A
transition technique between the development work flows is suggested clearly highlighting the
relationship between one work flow and the next. A database representation for each of the UML
diagrams is presented. The representation is designed to ensure that system information is uniquely stored
and can be shared between the development tools belonging to various development stages. The database
used provides all necessary services and tools to maintain the information and at the same time has an
open interface with widely used programming languages such as C++ and Java. The experiments carried
out to test our approach to software development and automated transitions are presented simulating a
software development effort using UML and C++. Four prototypical tools were developed using Java and
are interfaced with Jasmine.

Recent research on inconsistencies as presented in section four identifies a number of inconsistency
classes. Structural and semantic inconsistencies are overcome as a result of using the graph structure to
represent the software artifacts explained in section three that is shared by the development tools.
Consistency checks between UML diagrams are also specified in section four based on recent research
and are fully adhered to when automatically transforming from a development stage to the next as
presented in section five.

It is believed that the approach to software development presented in this paper is unique, and has many
advantages. It maximizes automation between the development work flows, thus reducing the
development time and effort, and provides a consistent transition mechanism from a development stage to
another without the need of translators. Automation includes other software development activities, such
as the generation of test cases, and implementation code. By centralizing the information of the system
under development in an open repository other project related services can be carried out such as,
matrices calculation, generation of reusable components, software reuse, and derivation of project related
statistics. New software development tools can also be plugged in to access the repository and share the
system information with other tools.

REFERENCES

1. AONIX, Software through Pictures UML [online] Available: http://www.aonix.com/. (September
20th, 1999).

2. BODEVEIX J., MILLAN T., PERCEBOIS C., LE CAMUS C., BAZEX P., FERAUD L., and
SOBEK R., Extending OCL for verifying UML models consistency. Workshop on
Consistency Problems in UML-based Software Development. UML 2002. Blekinge Institute
of Technology.

Studies in Informatics and Control, Vol.14, No.3, September 2005 199

3. BOOCH, G., Object-Oriented Analysis and Design with Applications (2nd ed.). Menlo Park, CA:
Addison-Wesley publishing company, 1994.

4. BOOCH G., RUMBAUGH J., and JACOBSON I., The Unified Modeling Language User Guide.
Reading, Massachusetts: Addison Wesley Longman, Inc., 1999.

5. DERRICK J., AKEHURST D., and BOITEN E., A Framework for UML Consistency. Workshop on
Consistency Problems in UML-based Software Development. UML 2002. Blekinge Institute of
Technology.

6. DEVANBU Premkumar T., ROSENBLUM David S., and WOLF Alexander L., Generating Testing
and Analysis Tools with Aria. ACM Transactions on Software Engineering and Methodology,
Volume 5, Number 1, January 1996, pp 42-62.

7. ERIKSSON, H., and PENKER, M., UML Toolkit. New York, N.Y.: John Wiley and Sons, Inc.,
1998.

8. FOWLER, M., and SCOTT, K., UML Distilled: Applying the Standard Object Modeling
Language. USA: Addison-Wesley Longman, Inc., 1997.

9. GOMAA H., and WIJESEKERA D., Consistency in Multiple-View UML Models: A Case Study.
Workshop on Consistency Problems in UML-based Software Development II. UML 2003.
Blekinge Institute of Technology.

10. GRUNDY, J. C., and HOSKING, J. G., Constructing Multi-View Editing Environments Using
MViews. Proceedings of the 1993 IEEE Symposium on Visual Languages, IEEE CS Press,
August 1993, pp. 220-224.

11. GRUNDY J. C., HOSKING J. G., and MUGRIDGE R., Inconsistency Management for
Multiple-View Software Development Environments. IEEE Transactions in Software
Engineering: Special Issue on Managing Inconsistency in Software Development. Vol. 24,
No. 11, IEEE CS Press., 1998.

12. HOWE Adele E., MAYRHAUSER Anneliese Von, and MRAZ Richard T., Test Case Generation as
an AI Planning Problem. Automated Software Engineering, 4, 1997, pp 77-106.

13. JACOBSON I., BOOCH G., RUMBAUGH J., The Unified Software Development Process.
Reading, Massachusetts: Addison Wesley Longman, Inc.,1998.

14. KHOSHAFIAN, S., DASANANDA, S., MINASSIAN, N., and KETABCHI, M., The Jasmine
Object Database: Multimedia Applications for the Web. Academic Press/Morgan
Kaufmann, 1998.

15. LIU W., EASTERBROOK S., and MYLOPPULOS J., Rule-Based Detection of Inconsistency
in UML Models. Workshop on Consistency Problems in UML-Based Software
Development, 5th Int. Conference on the Unified Modeling Language, Dresden, Germany,
Oct 1. 2002.

16. MEYERS, S., Difficulties in Integrating Multiview Development Systems. IEEE Software,
Vol. 8, No. 1, 1991, pp. 49-57.

17. NUSEIBEH B., EASTERBROOK S., and RUSSO A., Leveraging Inconsistency in Software
Development. Computer, 33(4):24-29, 2000.

18. NUSEIBEH B., EASTERBROOK S., and RUSSO A., Making Inconsistency Respectable in
Software Development, Journal of Systems and Software, 58 (2) 171-180, 2001.

19. PRESSMAN, R. S., Software Engineering: A Practitioner’s Approach (4th ed.). Singapore:
McGraw-Hill Companies, Inc., 1997.

200 Studies in Informatics and Control, Vol.14, No.3, September 2005

20. QUATRANI, T., Visual Modeling with Rational Rose and UML. Addison Wesley
Longman, Inc., 1998.

21. RATIONAL SOFTWARE CORPORATION, Rational Rose. [online]. Available:
http://www.rational.com/products/rose/index.jtmpl. (September 20th, 1999).

22. SELONEN P., and KOSKIMIES K., Transformations Between UML Diagrams. Journal of
Database Management. 14(3), 37-55, July-Sept 2003. Idea Group Inc.

23. SIMMONDS J., and BASTARRICA C. M., Descriptions Logics for Consistency Checking of
Architectural Features in UML 2.0 Models. Technical Report, Departamento de Ciencias de la
Computación, Universidad de Chile. January 2005.

24. VISIO CORPORATION, Visio Enterprise Evaluation Guide. [online]. Available:
http://www.visio.com/products/enterprise/index.html. (September 20th, 1999).

25. WANG, C., LEUNG, C., LONG, F., and RATCLIFFE, M., A PCTE-Based Multiple View
Environment. Proceedings of SEE’93, 1993.

26. WHITTLE J., Transformations and Software Modeling Languages: Automating Transformations in
UML. Jezequel, J. M., Hussmann H., Cook S. (Eds): UML 2002, LNCS 2460, pp. 227-242.
Springer-Verlag Berlin Heidelberg 2002.

