

Studies in Informatics and Control, Vol. 14, No.3, September 2005 201

A Time-memory Trade Solution to Generate One-time
Passwords Using Quadratic Residues Over Zn

Bogdan Groza

Dorina Petrica

Toma-Leonida Dragomir

“Politehnica” University of Timisoara,

Department of Automation and Applied Informatics,

Bd. Vasile Parvan nr. 2, 300223 Timisoara,

ROMANIA

bogdan.groza@aut.upt.ro

dorina.petrica@aut.upt.ro

toma.dragomir@aut.upt.ro

Abstract: Authentication is a subject with applications in many fields. Since commonly used fixed passwords offer only a low level
of security some more advanced techniques based on one-time passwords have been proposed. Among them, Leslie Lamport in his
paper Password Authentication with Insecure Communication proposed the use of irreversible functions to generate one-time
passwords. Because of the intractability of their inverses, cryptographic hash functions are the first solution for this purpose. Some

functions defined over nZ have also intractable inverses and for this reason are used in public key encryption. These functions can

be used to generate one-time passwords and they have some advantages because they are more flexible than hash functions, but
unfortunately they are harder to compute. This paper proposes a more efficient solution from the computational point of view based

on a function defined over nZ . The solution uses quadratic residues in a time-memory trade method. The computational

performance of the proposed solution is analyzed and the results show that under certain circumstances the time-memory trade

method gives better results for the functions defined on nZ than for hash functions. A final case study ilustrates a practical

example in which the results of the paper can be easily used.

Keywords: authentication, one-time password, uncertain number of authentications, upper bound of the number of authentications,
expected number of authentications, time-memory trade

Bogdan Groza is PhD student at “Politehnica” University of Timisoara. His research activities are in the area of cryptography with
focus on asymmetric encryption techniques.

Dorina Petrica, PhD. Eng., is lecturer at “Politehnica” University of Timisoara. Her areas of interest are knowledge engineering,
artificial intelligence, medical expert systems, complexity theory.

Toma-Leonida Dragomir is university professor and PhD-advisor at “Politehnica” University of Timisoara. His research activities
and area of interest are in System Theory, Control Systems, Quality Engineering, Automation.

MAIN NOTATIONS

ANUB , - the upper bound of the number of authentications;

)(xF n
  

timesn

xFFF


))...))((...((- the composition of function)(xF with herself n-times;

PPN - the number of pre-computed passwords;

nx 
timesn

xxxx


 ... - the exponentiation of the variable x to n ;

nZ }1,...,3,2,1,0{  n - the set of integers modulo n ;

*
nZ }1),gcd(, {  nxZxx n - the set of integers smaller than n and relatively primes to n ;

)(n - Euler  function for an integer n ,)(n denotes the number of integers smaller than n and

relatively prime to n ; in this paper is used the particular case qpn  where p and q are

prime numbers, then)1()1()( qpn and for any integer *
nZx holds 1mod)(nx n .

202 Studies in Informatics and Control, Vol. 14, No.3, September 2005

1. Introduction

Authentication is probably the most commonly used security protocol. We authenticate almost every day:
when we log on to an operating system, when we talk through our mobiles or when we get money from
our credit card. In this paper we will use the term user to denote the entity which needs to authenticate
and the term system to denote the entity to which identity is to be proven.

Most commonly, the process of authentication is based on using a password which is a secret and acts like
a proof of someone’s identity. However passwords have a main drawback because they can be stolen and
used by an adversary to impersonate the real owner.

In order to eliminate this disadvantage, one-time passwords are a good choice. One-time passwords are
passwords that can be used only once in order to authenticate. Because of this, if a password which was
already used is stolen by an adversary it cannot be used to impersonate the owner.

Lamport has proposed in [1] a scheme to generate one-time passwords by using irreversible functions.
The scheme is based on computing the sequence)}(),...,(),(),(,{ 21 xFxFxFxFx AN on the user side and

verifying it in reverse order by checking step by step one password at the time on the system side. Here x
is an arbitrary value chosen by the user and kept secret, AN is the maximum number of authentications to

be performed chosen also by the user, F is a known one way function (this means that by giving x it is
easy to compute)(xF but by giving)(xF it is infeasible or hard to compute x).

In the initialization session the user will compute)(xF AN and send this value to the system which will

receive and store it. Each value from the sequence will then play the role of a password and when the user

needs to authenticate in the thi session he will send)(xF iN A  . The system, who already knows

)(1 xF iNA  will simply verify the user’s identity by computing))((xFF iN A  and checking that

)())((1 xFxFF iNiN AA   . If verification succeeds the system will store)(xF iN A  as the previous

authentic one-time password.

Cryptographic hash functions [3][4][5] have been used on some systems in order to obtain such a one-
time password authentication [6][7].

Since the authentication protocol described previously allows only a fixed number of authentications AN

it is important for the user to choose this number as accurately as possible. As stated in [8] an upper
bound

ANUB , for the number of authentications would be easier to choose.

A higher value for the bound
ANUB , can became a disadvantage when hash functions are used because

computing the passwords requires multiple compositions of F . This disadvantage can be removed by
using functions in nZ where the number of multiple compositions can be significantly reduced.

Therefore exponentiation over nZ , which is more flexible, has been proposed in order to remove these

disadvantages. In [8] the function:

  ,mod)(nxxF (1)

defined over *
nZ ,were qpn  is the product of two primes, was used to generate one-time passwords in

Lamport’s scheme. In (1)  is an integer exponent. Appendix A gives an example of such one-time
passwords generated in nZ .

Nevertheless, functions over nZ are harder to compute and this can become an important disadvantage.

In this paper a more efficient solution from the computational point of view will be proposed for
generating one-time passwords over nZ . The solution is based on quadratic residues and requires some

additional storage space but passwords will be generated significantly faster.

Studies in Informatics and Control, Vol. 14, No.3, September 2005 203

There is a large variety of authentication protocols available in the cryptographic literature, because of
this choosing a particular authentication protocol should be based on the particular environment were it is
to be used. The authentication technique described in this paper is also a proposal that may be suitable in
some cases and inappropriate in others.

Section 2 discusses some computational aspects regarding the exponentiation in nZ and section 3 gives

the idea of the time-memory trade with quadratic residues. In section 4 the full description of the protocol
is presented and section 5 will give details regarding the efficiency of the proposed solution. Section 6
summarizes the conclusion of this paper.

2. Computational Complexity for Generating One-time Passwords
with Exponentiation Over nZ

Computing the last password of the chain could require less computation for function (1) than for hash
functions because the exponents can be reduced modulo  n . So, for a number of  authentications,

instead of nxxF mod)(
  , the following relation can be used to compute the last password:

nxxF n mod)()(mod 
 (2)

Generally to compute the one-time password for the thi session will require the computation of the exponent:

 ne i  mod (3)

and then the computation of the password:

nxxF ei mod)( (4)

To compute the exponent e from (3) will require:

)(log
2

3
2 iOe   (5)

modular multiplications in Z , while to compute the password from (4) will require about:

 eO ex 2log
2

3
 (6)

modular multiplications in nZ . This is the expected number of modular multiplications required by the

repeated square and multiply exponentiation algorithm [2, page 614]. It should be underlined that (5) and
(6) give only approximate values.

Then by summing relations (5) and (6) the expected number of modular multiplications in order to
compute the password is about:

   ieO iF
  22 log

2

3
log

2

3 (7)

For simplicity, the quantity depending on  i can be neglected in (7) because it should be small

enough relative to the quantity depending on the exponent e . At the same time, without losing the
accuracy of the result, because the value of e is expected to be close to)(n we will consider that the

expected number of modular multiplications, which represents the time complexity in order to compute a
one-time password, is:

  nO iF
 2log

2

3
 (8)

Example: Let’s suppose that we need 202 authentications using one-time passwords and that the modulus

n and the order of the group  n will have each 1024 bits. To compute
202F according to (7) we need

204 Studies in Informatics and Control, Vol. 14, No.3, September 2005

   15662log
2

3 20
2  n modular multiplications and according to (8)   1536log

2

3
2 n modular

multiplications (the results are close enough). It is important to remark that there is no need to compute
202 compositions of F in order to obtain the last one-time password and all we need is about 1500

modular multiplications.

Using function (1) offers the advantage that computing the last password can be done faster than by using
hash functions because there is no need of multiple compositions. Unfortunately computing one modular
exponentiation is much more complex than computing one hash function. Since every password requires
one modular exponentiation the time to compute several one-time passwords will become higher for
function (1) than for hash functions.

3. A Time-memory Trade Solution

By taking 2 in function (1) we obtain the squaring function:

nxxF mod)(2 (9)

were qpn  is the product of two prime integers. This function is one-way since quadratic residues can

be computed only if the factorization of n is known.

In this case the computation of the thi individual password from a chain of  passwords, that would be

nxF
ii mod2 

  , will require   n2log
2

3
 modular multiplications. But since 11   iii FFF 

the user can also compute iF  in only one modular multiplication if he computes first 1iF (note that
in fact is one modular squaring, however a modular squaring has approximately the same cost as a
modular multiplication).

So, in order to save user computational time a number of passwords can be pre-computed and this may
depend on the space available to store them.

Let now PPN be the number of these pre-computed passwords. For (9) we can obtain PPN one-time

passwords in only PPN multiplications after the computation of nxF
PPN

PPN mod2 

  . This means a

computational effort of only    PPNn 2log
2

3 modular multiplications if there is enough space available

to store PPN passwords.

This turns into a more flexible way to generate one-time passwords because we can compute and store
only a small amount of passwords while we also ensure that we will never run out of passwords by
choosing an appropriate upper bound. This solution may be viewed as time-memory trade solution
because some memory will be required in order to store the one-time passwords computed in advance
while the computational time will be significantly reduced. A more concrete description of the protocol
follows in section 4.

The same solution can be applied if hash functions are used but this time in a different context. For hash
functions the inconvenient is not the computational time, because we always have to compute the entire chain
of  passwords, but the storage space when it is not convenient to store all of the  passwords. This solution

can be applied to hash functions when it is possible to store only a limited amount of passwords.

For the case of (9) we can choose the appropriate upper bound
ANUB , and the number of pre-computed

passwords PPN and then we can compute PPN passwords at the computational cost of one modular

multiplication per password plus one modular exponentiation, space should also be available to store PPN

passwords. If all the PPN passwords are used it will be possible to compute a new set of PPN passwords and

so on, as long as the upper bound is not exceeded. This mechanism is also suggested in Figure 1.

Studies in Informatics and Control, Vol. 14, No.3, September 2005 205

Figure 1. Splitting the Sequence of 1, 
ANUB One-time Passwords into Smaller Sequences of PPN

One-time Passwords

4. Using Both the Upper Bound and the Number of Pre-computed
Passwords

We will now resume the stages of the authentication protocol for the squaring function nxxF mod)(2

(stages are also illustrated in Figure 2):

1. Initialization session:

1.1. The user generates: two random prime integers p and q , a random integer a and chooses the

upper bound
ANUB , (see section 1) and the number of pre-computed passwords PPN (see section

3). He then computes: qpn  ,    11  qp ,  ne PPANU NB mod2
1

0
,  , naa e mod0

0  and

stores the first NAE one-time passwords 11 1 1   jjjPP aaadoNtojfor (notice that

ANUB

PP
aaN

,2
1 ).

1.2. The user sends secure to the system the pair:),(1PPNan

1.3. The system receives),(1PPNan and initializes 1
PPNLAST aP .

2. Authentication session: For the authentication of the user to the system in the current session (i is
the number of the session)

2.1. The user sets 1 ii .

2.2. The user verifies if PPNi mod0 . If this is not true then go to step 2.4 else continue with step 2.3.

2.3. The user computes new
1

0
,2

 PPANU NiB
e , naa e mod0

0  and refreshes the one time password

array by computing and storing a new set of PPN passwords

11 1 1   jjjPP aaadoNtojfor .

2.4. The user sends
PPPP NiNa mod1 to the system.

2.5. The system receives and stores
PPPP NiNNEW aP mod1 .

2.6. The system verifies if LASTNEWNEWLASTNEW PPPPPF )(. If this is true then user is authentic

and NEWLAST PP  . Otherwise the user is not authentic.

206 Studies in Informatics and Control, Vol. 14, No.3, September 2005

Figure 2: Flow-chart of the One-time Password Authentication Scheme with Exponentiation Over
*
nZ in the Particular Case 2 with the Time-memory Trade

5. Efficiency Estimation for the Squaring Function in the Time-
memory Trade and a Case Study

5.1. Efficiency Estimation

We want to compare the efficiency of the squaring function (9) with the efficiency of the hash function in
the time-memory trade described in section 3. The efficiency criteria will be the computational time

required to compute the entire chain of one-time passwords in the time-memory trade. Let 
mT be the time

required by the squaring function and 
hT be the time required by the hash function.

We will define the efficiency coefficient  as:





 
h

m

T

T
 (10)

As long as 1 the proposed method with nxxF mod)(2 is preferable to the use of a hash function.

Studies in Informatics and Control, Vol. 14, No.3, September 2005 207

In order to compute  we first have to compare the time required to compute one modular

multiplication with the time required to compute one hash function. Let mt be the time required to

compute one modular multiplication and ht be the time required to compute one hash function, also let

the following ratio:

h

m

t

t
 (11)

In common words the parameter  defines how many hash functions can be computed in the same time
required by one modular multiplication. The value of  can be deduced only from practical results and it
will be situated in a large interval according to the hash functions used and to the size of the modulus. It is
expected that  should vary from tens to hundreds. Some conclusive values from this point of view are
given in Table A1 from Appendix A. For example, based on values from Table A1, on an Intel Centrino
at 1.6 GHz if the hash function used is SHA1 and the multiplications are performed over a 1024 bit

modulus for 6103.1 ht seconds and 6102.77 mt seconds the value of  is 3.59
h

m

t

t
 . This

means that computing the one-time passwords with only one modular multiplication over nZ per

password will require about 59 times more time than with the hash function.

On a first look, the value of  would lead to the conclusion that hash functions are by far more effective
than the squaring function. This does not hold anymore if we decide to split the sequence of

ANUB , one-

time passwords into smaller sequences as proposed in section 3. In this case it is obvious that the
efficiency coefficient  must be taken into account. For this purpose we will now show how the

splitting of the sequences will influence the computational time.

It is realistic to accept that the number of pre-computed passwords PPN is different for the squaring

function and for hash functions because they have different space requirements. In fact hash functions
require from 128-256 bits while a modulus would be from 1024-2048 bits.

Now, let m
PPN be the number of pre-computed passwords for the squaring function and h

PPN the number

of pre-computed passwords for the hash function. Using these numbers it is possible to determine the

amount of time required for computing the thi sequence for both the squaring function  iTm and the

hash function  iTh (see Figure 1).

If the squaring function is used to compute the thi sequence of m
PPN one-time passwords, based on the

time complexity from (8), the required time will be:

    m
m
PPm tNniT 





  2log

2

3
 (12)

Using the upper bound
ANUB , and h

PPN for the computational time required by the hash function to

compute the thi sequence holds:

    h
h
PP

h
PPNUh tNiNBiT

A
 , (13)

It is important to observe that  iTh is affected by the size of the upper bound
ANUB , and decreases for

every new sequence of pre-computed passwords, while  iTm is not affected by
ANUB , and remains

constant for every sequence. As a consequence the efficiency coefficient  will depend on the upper

bound and on the number of pre-computed passwords. Indeed, by using (12) and (13) to estimate the total
time required in each case to compute the entire sequence of

ANUB , passwords, we obtain:

208 Studies in Informatics and Control, Vol. 14, No.3, September 2005

    m
m
PPm

PP

NU
N

B

i
mm tNn

N

B
iTT A

h
PP

ANU







  



 2
,

1

log
2

3

,

 (14)

and respectively:

   


 

h
PP

ANU

A

h
PP

ANU

N

B

i
h

h
PP

h
PPNU

N

B

i
hh tNiNBiTT

,,

1
,

1

  hh
PP

NU

h
PP

NUh
PPh

h
PPNUh

PP

NU
t

N

B

N

B
NtNB

N

B
AA

A

A 









 1

2

1 ,,
,

,
h

NU

h
PP

h
PPNU

h t
B

N

NB
T AA 


 

2
,, (15)

Then by using (14) and (15) in relation (10) we obtain the computational form of the efficiency
coefficient:

 
h
PPNU

m
PP

m
PP

h
PP

NB

Nn

N

N

A





,

2 2log3 
 (16)

5.2. Case Study

Regarding the distributed control environment from Figure 3, we are interested in the communication
between system S from the supervisor level and a controller C from the data acquisition level. In the
following scenario the controller C will play the role of the user who needs to authenticate to system S .
In this framework we want to decide if it would be better to use the time-memory trade from section 3
with the hash function SHA1 or with the proposed squaring function on a 1024 bit modulus n . The time
interval in which this distributed control environment has to function is assumed to be one-year.

The controller C is a computer with an AMD64-2800+ processor at 1.8 GHz and, according to the time

values from Table A1 in Appendix A, we have 6108.60 mt seconds and 6101.1 ht seconds. The

nature of system S and of the 10 remote systems 10,1, iRi from the field level is not important for the

purpose of this example; they can be any-kind of terminal that is able to send, receive and interpret
commands. The communication between all systems is done via Ethernet.

Figure 3: A Distributed Control Environment

Studies in Informatics and Control, Vol. 14, No.3, September 2005 209

The case study assumes the following scenario: the controller C asynchronously receives data from
every remote system iR and has the task to inform the supervisor system S every time such an event

happens. In this way the controller assures the supervisor system that the control system, which consist
from the field level and the data acquisition level, is functioning. A communication event from any
remote system iR to C may happen at a maximum rate of 1 event per minute. The controller C will

inform system S that such an event took place by sending an authentic one-time password computed
with Lamport’s scheme.

For stronger security we will avoid storing long term secrets directly on the controller C hard disk or
memory and instead we will suppose that the controller has access to two secure external buffers with 8
kilobytes of memory, these buffers could be for example two keys connected to the USB port. The first
buffer will be used to store a random number which represents the secret key and the second buffer will
be used to store the temporary passwords. Nevertheless, this solution also offers more flexible security
since if the password has to be changed it will not require an intervention in the hardware or software of
C , the secret keys can be easily changed with new ones.

The following computational steps hold for this scenario:

 Computation of the upper bound
ANUB , :

Since there are 10 remote systems and a communication event from every iR to C may happen every

minute we may expect that 10 authentication per minute are to be performed from C to S . Since the
referred time interval is one year long we deduce that the upper bound of the number of authentications

will be 6
, 103.5106024365 

ANUB .

 Computation of the number of pre-computed passwords PPN :

The number of pre-computed passwords depends on the storage space from the external buffer which in
our case is 8 kilobytes. For the hash function the size of one password is 160 bits, since SHA1 is a
function which outputs 160 bits, and therefore the number of pre-computed passwords is

409
160

828 10




h
PPN . For the squaring function the size of one password is 1024 bits, since n has

1024 bits, and the number of pre-computed passwords is 64
1024

828 10




m
PPN .

 Estimation of the ratio  :

While the time required for one modular multiplication is 6108.60 mt seconds and the time required

for one hash function is 6101.1 ht seconds it results that 2.55
h

m

t

t
 .

 Computation of the efficiency coefficient  :

By using (16) it follows that the efficiency coefficient is 2.0
409103.5

64210243

64

409
2.55

6





 . Since

 is smaller than 1 this means that the squaring function is certainly more effective than the hash

function. It is easy to verify this result by computing both 
mT and 

hT . By using (14), since

6108.60 mt , a total of 3.2108.60641024
2

3

64

103.5 6
6







 


 

mT hours will be spent on

computing the entire chain for the squaring function while for the hash function, by using (15) with
6101.1 ht seconds, a total of 4.10101.1

2

103.5

409

409103.5 6
66







 
hT hours will be required. Now

by using (10) we obtain again 2.0
4.10

3.2
 . A particular explanation for the efficiency of the

squaring function is the fact that due to the value of the upper bound and the number of pre-computed
passwords the computation of the first chain of passwords will require   83.5101.1103.51 66  

hT

210 Studies in Informatics and Control, Vol. 14, No.3, September 2005

seconds for the hash function and only     09.0108.606451231 6  
mT seconds for the squaring

function. These values were computed with (12) and (13) and as mentioned the time for the hash function
will decrease for every new sequence while for the squaring function will remain constant.

6. Conclusions

One-time password schemes offer stronger security than fixed passwords and this paper proposes the use
of the squaring function defined over nZ to generate such passwords. This solution is certainly faster

than the general case of the exponentiation over nZ proposed in [8]. It also has advantages compared to

hash functions when the number of authentications is high and uncertain.

The performance analysis from section 5 shows that the squaring function over nZ could require less

computational time than the hash function in the time-memory trade. As long as the efficiency coefficient

 from (16), which depends on the upper bound of the number of authentication and on the number of

pre-computed passwords, satisfies the condition 1 using the squaring function instead of the hash

function should be considered.

The final case study shows a possible scenario in which the use of the squaring function in nZ is more

convenient than the use of a hash function.

Acknowledgement

The authors thank Marius Minea for helpful suggestions about this work.

REFERENCES

1. RIVEST, R.L., SHAMIR A., ADLEMAN L, A method for obtaining digital signatures and
public-key cryptosystems, Communications of the ACM, 1978

2. Python 2.4. http://www.python.org/2.4/

3. LAMPORT, L., Password Authentication with Insecure Communication. Communication of
the ACM, 24, 770-772, 1981.

4. MENEZES, A.J., VAN OORSCHOT, P.C., VANSTONE, S.A., Handbook of Applied
Cryptography. CRC Press, 1996.

5. RIVEST, R., The MD4 Message-Digest Algorithm. RFC 1320, MIT and RSA Data Security,
Inc., 1992.

6. RIVEST, R., The MD5 Message-Digest Algorithm. RFC 1321, MIT and RSA Data Security,
Inc., 1992.

7. FIPS 180-1, National Institute of Standards and Technology (NIST). Announcing the Secure
Hash Standard., U.S. Department of Commerce, 1995.

8. HALLER, N., The S/KEY One-Time Password System. RFC 1760, Bellcore, 1994.

9. HALLER, N., METZ, C., NESSER, P., STRAW, M., A One-Time Password System. RFC 2289,
Bellcore, Kaman Sciences Corporation, Nesser and Nesser Consulting, 1998.

10. GROZA, B., PETRICA D., One-time passwords for uncertain number of authentications.
Proceedings of 15th International Conference on Control Systems and Computer Science, CSCS15, 2005.

11. Mathematica 4.2.2. http//www.wolfram.org/products/mathematica/index.html

12. RSA Laboratories - RSA Factoring Challenge http://www.rsasecurity.com/rsalabs/challenges/
factoring/numbers

13. GMP, GNU Multiple Precision Arithmetic Library http://www.swox.com/gmp/

Studies in Informatics and Control, Vol. 14, No.3, September 2005 211

APPENDIX A

AN EXAMPLE OF ONE-TIME PASSWORDS COMPUTED ON A
1024 BIT MODULE

The abstract aspects presented in this paper may naturally raise some questions regarding the
implementation of such an authentication protocol; these questions may address both the hardware and
the software that can be used for this purpose. We will briefly try to clarify some of these questions.

Any modern CPU may easily manipulate the values that are used in the authentication technique proposed
in this paper. In Table A1 we give several computational timings obtained on different CPU’s. The
memory does not represent a problem when we are referring to standard computers since any modern
computer would have enough memory to store almost any amount of passwords. The memory problem
can appear when we decide to store password on external devices (such as smartcards). These devices
offer more security or mobility but have a limited amount of memory. When the size of the memory from
the external device is reduced, for example 8 kilobytes are used in the case study from section 5.2., the
use in the time memory trade from section 3 of the squaring function instead of a hash function should be
considered for a better computational time.

Finally, about software issues, it must be stated that such an authentication technique can be implemented
under any operating system and with a large variety of programming languages that offer support for
large integer arithmetic [12][13].

The maximum number of users may also appear questionable. It is obvious that the authentication
technique proposed in this paper as any other authentication technique can be used in a MU1S (Multiple
User One System) architecture, so any number of users can authenticate to a system.

Large integers, of 1024 bits or more, are commonly used in cryptography (for example in the RSA
Cryptosystem [9]). Such integers are required in order to make the factorization infeasible; a good example of
how hard is to break such integers is the Factoring Challenge from RSA Security (see [10] for details).

For the reader unfamiliar with numbers used in cryptography we give an example of one-time passwords
generated by the squaring function over a 1024 bit module. The following two large primes p and q

were generated using Mathematica 4.2 environment [11]. The rest of the computation was done using
Python 2.4. [12] . The fact that we used Mathematica 4.2 and Python 2.4. is not relevant since there are
also other environments that offer support for large integer arithmetic, for example C/C++ libraries GMP
[13]. Any modern computer can easily manipulate such big integers and in Table A1 we offer some
computational timings on some CPU’s to illustrate this.

1. Let the following two 512 bit primes:

p 15576537075761163371954685998335606213381699487107478323820682062467859817007702747770599587132071120

346284888517016256461019376987370216091760365741828407

q 171555481918842391650403850378312893517811347069907646561492560935565895398460930669875431789424555344

33834362430269299438205220162223169059333648532526839

The time required for the generation of these two large primes is in column (1) of Table A1, see also the
note below the table.

2. The module qpn  and the value of      11  qpn will be the following:

 qpn 2672240324658922403718843253912503299445179862678905997584969425957649766319308056461469405650066915

255397628063015266902188866843441656777478065712905340676057852802167476557668066671477089576922924877222290235
81171828416437235315109718026309669904147726623845632546123135003029029377130770091318507660115473

       11 qpn 267224032465892240371884325391250329944517986267890599758496942595764976631930805646

1469405650066915255397628063015266902188866843441656777478065712905340348737000125713451187717356309808133
9252945829362398604361123367239198787846131390326816690382962107184372638159883757910380443222753738494022
4493385760228

212 Studies in Informatics and Control, Vol. 14, No.3, September 2005

3. Let the value of x be the following 1024 bit value:
x 202916084198731929681761688537040576339688550348359076862326068268465274596839019390637592583057291211

8322365394220961444344911063514751758103403541700987707324473661636237975254859721003067852358631783968917
75464577347236631284635574690174380108299295573407573666813421307722136468321262332427372756154955448

The time required for steps 2 and 3 is not relevant; see the note below Table A1.
4. For nxxF mod)(2 the values for the first three compositions of the function)(),(),(32 xFxFxF will

be the following:
 nxxF mod)(2 2424260836972747863988068053209237876520704454024673841778747951266772693606990424202925

4514204956596069312515611657638865036161499602617291683926594238870655671822464746435374568094385683763561
6325413384168823292997614107101726112246675204724572974249832210402681096965092765387879322948129617025381
325473312

 nxxF mod)(42 28806079118810285484186494395735467785986810469425782680450478477841190929508464920516

9134793647619824591368793789743024270757739194411331469177312725591694415104264809178812461771952937483330
2504295603723308335865436950723203250725468795071708507433223386513605853162890288311116474149981565217682
4333601857

 nxxF mod)(83 157084103226164648931522255979267050751163956959106635542477819974958927950229835349767

7041769767333740583783809384313698481103871906939501353850650972528575063265812863087088059995377497202604
6285737656957964741121746565703362363562409265387724898605860691288557823189502286374458071310530892653177
3902660998

The time required for the computation of one composition of the function is in column (3) from Table A1;
see also the note below Table A1.
5. For 1000000 the value of)(xF will be the following:

   nxxF n mod)(mod21000000  483706269277096494062946276311678421524106431461240879288686212223122890600

2224027744371801738363883671575371596170627580702839941472135822839408532962514364750509029700880770360181
2748865628359316125201367299759128097908354046595351140997294176763480511533901038537715805138017469826287
766770052810320080792

The time required for the computation of)(xF is in column (4) from Table A1; see also the note below

Table A1.

Generation
of the 512
bit primes

qp,

Computation
of SHA1 hash

function

ht

Computation of
nxxF mod)(2

(one modular
multiplication)

mt

Computation of
  nxxF n mod)(mod2  



for 1000000

(approximately one
modular exponentiation
with 1024 bit exponent)

Ratio

h

m

t

t


(1) (2) (3) (4) (5)
Intel

Centrino
1.6 Ghz

854.0 s 6103.1  s 6102.77  s 3101.93  s 3.59

Intel PIV
2.4 Ghz

767.0 s 6103.1  s 3108.76  s 3106.92  s 0.59

AMD64
2800+ 1.8

Ghz

739.0 s 6101.1  s 6108.60  s 3105.72  s 2.55

Table A1. Time required for some computations (time is expressed in seconds)

Note: The time from column (1) was measured on program written in Mathematica 4.2. while the time from columns
(2),(3),(4) was measured on a program written in Python 2.4., different timings can be achieved in different
environments. The generation of the two large primes qp, is a randomized process and very different timing values

can be obtained, we have taken the average value from 1000 random generations of the two primes. The computation

of nxxF mod)(2 and   nxxF n mod)(mod2  
 are deterministic processes and only minor variations are to be

expected in timings. The time required for the computation of qpn  ,      11  qpn and the generation of

x can be considered irrelevant compared to the previous timings. All the computers that we used had 512Mb of
RAM and were running Windows XP, however this is not very important for the timing values.

