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Abstract: Authentication is a subject with applications in many fields. Since commonly used fixed passwords offer only a low level 
of security some more advanced techniques based on one-time passwords have been proposed. Among them, Leslie Lamport in his 
paper Password Authentication with Insecure Communication proposed the use of irreversible functions to generate one-time 
passwords. Because of the intractability of their inverses, cryptographic hash functions are the first solution for this purpose. Some 

functions defined over nZ  have also intractable inverses and for this reason are used in public key encryption. These functions can 

be used to generate one-time passwords and they have some advantages because they are more flexible than hash functions, but 
unfortunately they are harder to compute. This paper proposes a more efficient solution from the computational point of view based 

on a function defined over nZ . The solution uses quadratic residues in a time-memory trade method. The computational 

performance of the proposed solution is analyzed and the results show that under certain circumstances the time-memory trade 

method gives better results for the functions defined on nZ  than for hash functions. A final case study ilustrates a practical 

example in which the results of the paper can be easily used. 
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MAIN NOTATIONS 

ANUB ,   - the upper bound of the number of authentications; 

)(xF n   
  

timesn

xFFF


 ))...))((...(( - the composition of function )(xF  with herself n-times; 

PPN   - the number of pre-computed passwords; 

nx   
timesn

xxxx


 ... - the exponentiation of the variable x  to n ; 

nZ       }1,...,3,2,1,0{  n - the set of integers modulo n ; 

*
nZ   }1),gcd(, {  nxZxx n - the set of integers smaller than n and relatively primes to n ; 

)(n     - Euler   function for an integer n , )(n  denotes the number of integers smaller than n  and 

relatively prime to n ; in this paper is used the particular case qpn   where p  and q  are 

prime numbers, then )1()1()(  qpn  and for any integer *
nZx  holds 1mod)( nx n . 



 

202  Studies in Informatics and Control, Vol. 14, No.3, September 2005 

1. Introduction 

Authentication is probably the most commonly used security protocol. We authenticate almost every day: 
when we log on to an operating system, when we talk through our mobiles or when we get money from 
our credit card. In this paper we will use the term user to denote the entity which needs to authenticate 
and the term system to denote the entity to which identity is to be proven. 

Most commonly, the process of authentication is based on using a password which is a secret and acts like 
a proof of someone’s identity. However passwords have a main drawback because they can be stolen and 
used by an adversary to impersonate the real owner.  

In order to eliminate this disadvantage, one-time passwords are a good choice. One-time passwords are 
passwords that can be used only once in order to authenticate. Because of this, if a password which was 
already used is stolen by an adversary it cannot be used to impersonate the owner.  

Lamport has proposed in [1] a scheme to generate one-time passwords by using irreversible functions. 
The scheme is based on computing the sequence )}(),...,(),(),(,{ 21 xFxFxFxFx AN  on the user side and 

verifying it in reverse order by checking step by step one password at the time on the system side. Here x  
is an arbitrary value chosen by the user and kept secret, AN  is the maximum number of authentications to 

be performed chosen also by the user, F  is a known one way function (this means that by giving x  it is 
easy to compute )(xF  but by giving )(xF  it is infeasible or hard to compute x ).  

In the initialization session the user will compute )(xF AN  and send this value to the system which will 

receive and store it. Each value from the sequence will then play the role of a password and when the user 

needs to authenticate in the thi  session he will send )(xF iN A  . The system, who already knows  

)(1 xF iNA   will simply verify the user’s identity by computing ))(( xFF iN A   and checking that 

)())(( 1 xFxFF iNiN AA   . If verification succeeds the system will store )(xF iN A   as the previous 

authentic one-time password.  

Cryptographic hash functions [3][4][5] have been used on some systems  in order to obtain such a one-
time password authentication [6][7].  

Since the authentication protocol described previously allows only a fixed number of authentications AN  

it is important for the user to choose this number as accurately as possible. As stated in [8] an upper 
bound 

ANUB ,  for the number of authentications would be easier to choose. 

A higher value for the bound 
ANUB , can became a disadvantage when hash functions are used because 

computing the passwords requires multiple compositions of F . This disadvantage can be removed by 
using functions in nZ  where the number of multiple compositions can be significantly reduced.  

Therefore exponentiation over nZ , which is more flexible, has been proposed in order to remove these 

disadvantages. In [8] the function:  

  ,mod)( nxxF   (1) 

defined over *
nZ  ,were qpn   is the product of two primes, was used to generate one-time passwords in 

Lamport’s scheme. In (1)   is an integer exponent. Appendix A gives an example of such one-time 
passwords generated in nZ . 

Nevertheless, functions over nZ  are harder to compute and this can become an important disadvantage. 

In this paper a more efficient solution from the computational point of view will be proposed for 
generating one-time passwords over nZ . The solution is based on quadratic residues and requires some 

additional storage space but passwords will be generated significantly faster. 
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There is a large variety of authentication protocols available in the cryptographic literature, because of 
this choosing a particular authentication protocol should be based on the particular environment were it is 
to be used. The authentication technique described in this paper is also a proposal that may be suitable in 
some cases and inappropriate in others. 

Section 2 discusses some computational aspects regarding the exponentiation in nZ  and section 3 gives 

the idea of the time-memory trade with quadratic residues. In section 4 the full description of the protocol 
is presented and section 5 will give details regarding the efficiency of the proposed solution. Section 6 
summarizes the conclusion of this paper.  

2. Computational Complexity for Generating One-time Passwords 
with Exponentiation Over nZ  

Computing the last password of the chain could require less computation for function (1) than for hash 
functions because the exponents can be reduced modulo  n . So, for a number of   authentications, 

instead of nxxF mod)(
  , the following relation can be used to compute the last password: 

nxxF n mod)( )(mod 
   (2) 

Generally to compute the one-time password for the thi  session will require the computation of the exponent:  

 ne i  mod   (3) 

and then the computation of the password: 

nxxF ei mod)(    (4) 

To compute the exponent e  from (3) will require: 

)(log
2

3
2 iOe     (5) 

modular multiplications in Z , while to compute the password from (4) will require about:  

 eO ex 2log
2

3
   (6) 

modular multiplications in nZ . This is the expected number of modular multiplications required by the 

repeated square and multiply exponentiation algorithm [2, page 614]. It should be underlined that (5) and 
(6) give only approximate values. 

Then by summing relations (5) and (6) the expected number of modular multiplications in order to 
compute the password is about: 

   ieO iF
  22 log

2

3
log

2

3   (7) 

For simplicity, the quantity depending on  i  can be neglected in (7) because it should be small 

enough relative to the quantity depending on the exponent e . At the same time, without losing the 
accuracy of the result, because the value of e  is expected to be close to )(n  we will consider that the 

expected number of modular multiplications, which represents the time complexity in order to compute a 
one-time password, is:  

  nO iF
 2log

2

3
   (8) 

Example: Let’s suppose that we need 202  authentications using one-time passwords and that the modulus 

n  and the order of the group  n  will have each 1024 bits. To compute 
202F  according to (7) we need 
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   15662log
2

3 20
2  n  modular multiplications and according to (8)   1536log

2

3
2 n  modular 

multiplications (the results are close enough). It is important to remark that there is no need to compute 
202  compositions of F  in order to obtain the last one-time password and all we need is about 1500  

modular multiplications. 

Using function (1) offers the advantage that computing the last password can be done faster than by using 
hash functions because there is no need of multiple compositions. Unfortunately computing one modular 
exponentiation is much more complex than computing one hash function. Since every password requires 
one modular exponentiation the time to compute several one-time passwords will become higher for 
function (1) than for hash functions.  

3. A Time-memory Trade Solution  

By taking 2  in function (1) we obtain the squaring function: 

nxxF mod)( 2   (9) 

were qpn   is the product of two prime integers. This function is one-way since quadratic residues can 

be computed only if the factorization of n  is known.  

In this case the computation of the thi  individual password from a chain of   passwords, that would be 

nxF
ii mod2 

  , will  require   n2log
2

3
 modular multiplications. But since 11   iii FFF   

the user can also compute iF   in only one modular multiplication if he computes first 1iF  (note that 
in fact is one modular squaring, however a modular squaring has approximately the same cost as a 
modular multiplication).  

So, in order to save user computational time a number of passwords can be pre-computed and this may 
depend on the space available to store them.  

Let now PPN  be the number of these pre-computed passwords. For (9) we can obtain PPN  one-time 

passwords in only  PPN  multiplications after the computation of nxF
PPN

PPN mod2 

  . This means a 

computational effort of only    PPNn 2log
2

3  modular multiplications if there is enough space available 

to store PPN  passwords.  

This turns into a more flexible way to generate one-time passwords because we can compute and store 
only a small amount of passwords while we also ensure that we will never run out of passwords by 
choosing an appropriate upper bound. This solution may be viewed as time-memory trade solution 
because some memory will be required in order to store the one-time passwords computed in advance 
while the computational time will be significantly reduced. A more concrete description of the protocol 
follows in section 4. 

The same solution can be applied if hash functions are used but this time in a different context. For hash 
functions the inconvenient is not the computational time, because we always have to compute the entire chain 
of   passwords, but the storage space when it is not convenient to store all of the   passwords. This solution 

can be applied to hash functions when it is possible to store only a limited amount of passwords.  

For the case of (9)  we can choose the appropriate upper bound 
ANUB ,  and the number of pre-computed 

passwords PPN  and then we can compute PPN  passwords at the computational cost of one modular 

multiplication per password plus one modular exponentiation, space should also be available to store PPN  

passwords. If all the PPN  passwords are used it will be possible to compute a new set of PPN  passwords and 

so on, as long as the upper bound is not exceeded. This mechanism is also suggested in Figure 1.  
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Figure 1. Splitting the Sequence of 1, 
ANUB  One-time Passwords into Smaller Sequences of PPN  

One-time Passwords 

4. Using Both the Upper Bound and the Number of Pre-computed 
Passwords 

We will now resume the stages of the authentication protocol for the squaring function nxxF mod)( 2  

(stages are also illustrated in Figure 2): 

1. Initialization session: 

1.1. The user generates: two random prime integers p  and q , a random integer a  and chooses the 

upper bound 
ANUB ,  (see section 1) and the number of pre-computed passwords PPN  (see section 

3). He then computes: qpn  ,    11  qp ,  ne PPANU NB mod2
1

0
,  , naa e mod0

0   and 

stores the first NAE  one-time passwords  11    1    1   jjjPP aaadoNtojfor   (notice that 

ANUB

PP
aaN

,2
1   ).  

1.2. The user sends secure to the system the pair: ),( 1PPNan  

1.3. The system receives ),( 1PPNan  and initializes 1
PPNLAST aP . 

2. Authentication session: For the authentication of the user to the system in the current session ( i is 
the number of the session) 

2.1. The user sets 1 ii . 

2.2. The user verifies if PPNi mod0 . If this is not true then go to step 2.4 else continue with step 2.3.  

2.3. The user computes new 
1

0
,2

 PPANU NiB
e ,  naa e mod0

0   and refreshes the one time password 

array by computing and storing a new set of PPN  passwords  

11    1    1   jjjPP aaadoNtojfor .  

2.4. The user sends  
PPPP NiNa mod1  to the system. 

2.5. The system receives and stores 
PPPP NiNNEW aP mod1 .  

2.6. The system verifies if LASTNEWNEWLASTNEW PPPPPF )( . If this is true then user is authentic 

and NEWLAST PP  . Otherwise the user is not authentic. 
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Figure 2: Flow-chart of the One-time Password Authentication Scheme with Exponentiation Over 
*
nZ  in the Particular Case 2  with the Time-memory Trade 

5. Efficiency Estimation for the Squaring Function in the Time-
memory Trade and a Case Study 

5.1. Efficiency Estimation  

We want to compare the efficiency of the squaring function (9) with the efficiency of the hash function in 
the time-memory trade described in section 3. The efficiency criteria will be the computational time 

required to compute the entire chain of one-time passwords in the time-memory trade. Let 
mT  be the time 

required by the squaring function and 
hT  be the time required by the hash function. 

We will define the efficiency coefficient   as: 





 
h

m

T

T
  (10) 

As long as 1  the proposed method with nxxF mod)( 2  is preferable to the use of a hash function. 
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In order to compute   we first have to compare the time required to compute one modular 

multiplication with the time required to compute one hash function. Let mt  be the time required to 

compute one modular multiplication and ht  be the time required to compute one hash function, also let 

the following ratio: 

h

m

t

t
  (11) 

In common words the parameter   defines how many hash functions can be computed in the same time 
required by one modular multiplication. The value of   can be deduced only from practical results and it 
will be situated in a large interval according to the hash functions used and to the size of the modulus. It is 
expected that   should vary from tens to hundreds. Some conclusive values from this point of view are 
given in Table A1 from Appendix A. For example, based on values from Table A1, on an Intel Centrino 
at 1.6 GHz if the hash function used is SHA1 and the multiplications are performed over a 1024 bit 

modulus for 6103.1 ht  seconds and 6102.77 mt  seconds the value of   is 3.59
h

m

t

t
 . This 

means that computing the one-time passwords with only one modular multiplication over nZ  per 

password will require about 59 times more time than with the hash function.  

On a first look, the value of   would lead to the conclusion that hash functions are by far more effective 
than the squaring function. This does not hold anymore if we decide to split the sequence of 

ANUB ,  one-

time passwords into smaller sequences as proposed in section 3. In this case it is obvious that the 
efficiency coefficient   must be taken into account. For this purpose we will now show how the 

splitting of the sequences will influence the computational time. 

It is realistic to accept that the number of pre-computed passwords PPN  is different for the squaring 

function and for hash functions because they have different space requirements. In fact hash functions 
require from 128-256 bits while a modulus would be from 1024-2048 bits.  

Now, let m
PPN  be the number of pre-computed passwords for the squaring function and h

PPN  the number 

of pre-computed passwords for the hash function. Using these numbers it is possible to determine the 

amount of time required for computing the thi  sequence for both the squaring function  iTm  and the 

hash function  iTh  (see Figure 1).  

If the squaring function is used to compute the thi  sequence of m
PPN  one-time passwords, based on the 

time complexity from (8), the required time will be: 

    m
m
PPm tNniT 





  2log

2

3
  (12) 

Using the upper bound 
ANUB ,  and h

PPN  for the computational time required by the hash function to 

compute the thi  sequence holds: 

    h
h
PP

h
PPNUh tNiNBiT

A
 ,   (13) 

It is important to observe that  iTh  is affected by the size of the upper bound 
ANUB ,  and decreases for 

every new sequence of pre-computed passwords, while  iTm  is not affected by 
ANUB ,  and remains 

constant for every sequence. As a consequence the efficiency coefficient   will depend on the upper 

bound and on the number of pre-computed passwords. Indeed, by using (12) and (13) to estimate the total 
time required in each case to compute the entire sequence of  

ANUB ,  passwords, we obtain: 
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    m
m
PPm

PP

NU
N

B

i
mm tNn

N

B
iTT A

h
PP

ANU







  



 2
,

1

log
2

3

,

  (14) 

and respectively: 

   


 

h
PP

ANU

A

h
PP

ANU

N

B

i
h

h
PP

h
PPNU

N

B

i
hh tNiNBiTT

,,

1
,

1

 

  hh
PP

NU

h
PP

NUh
PPh

h
PPNUh

PP

NU
t

N

B

N

B
NtNB

N

B
AA

A

A 









 1

2

1 ,,
,

,
h

NU

h
PP

h
PPNU

h t
B

N

NB
T AA 


 

2
,,   (15) 

Then by using (14) and (15) in relation (10) we obtain the computational form of the efficiency 
coefficient: 

 
h
PPNU

m
PP

m
PP

h
PP

NB

Nn

N

N

A





,

2 2log3 
  (16) 

5.2. Case Study  

Regarding the distributed control environment from Figure 3, we are interested in the communication 
between system S  from the supervisor level and a controller C  from the data acquisition level. In the 
following scenario the controller C  will play the role of the user who needs to authenticate to system S . 
In this framework we want to decide if it would be better to use the time-memory trade from section 3 
with the hash function SHA1 or with the proposed squaring function on a 1024 bit modulus n . The time 
interval in which this distributed control environment has to function is assumed to be one-year.    

The controller C  is a computer with an AMD64-2800+ processor at 1.8 GHz and, according to the time 

values from Table A1 in Appendix A, we have 6108.60 mt  seconds and 6101.1 ht  seconds. The 

nature of system S  and of the 10 remote systems 10,1, iRi  from the field level is not important for the 

purpose of this example; they can be any-kind of terminal that is able to send, receive and interpret 
commands. The communication between all systems is done via Ethernet.  

 

 

 

Figure 3: A Distributed Control Environment 
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The case study assumes the following scenario: the controller C  asynchronously receives data from 
every remote system iR  and has the task to inform the supervisor system S  every time such an event 

happens. In this way the controller assures the supervisor system that the control system, which consist 
from the field level and the data acquisition level, is functioning. A communication event from any 
remote system iR  to C   may happen at a maximum rate of 1 event per minute. The controller C  will 

inform system S  that such an event took place by sending an authentic one-time password computed 
with Lamport’s scheme. 

For stronger security we will avoid storing long term secrets directly on the controller C  hard disk or 
memory and instead we will suppose that the controller has access to two secure external buffers with 8 
kilobytes of memory, these buffers could be for example two keys connected to the USB port.  The first 
buffer will be used to store a random number which represents the secret key and the second buffer will 
be used to store the temporary passwords. Nevertheless, this solution also offers more flexible security 
since if the password has to be changed it will not require an intervention in the hardware or software of 
C , the secret keys can be easily changed with new ones.  

The following computational steps hold for this scenario: 

 Computation of the upper bound 
ANUB , : 

Since there are 10 remote systems and a communication event from every iR  to C  may happen every 

minute we may expect that 10 authentication per minute are to be performed from C  to S . Since the 
referred time interval is one year long we deduce that the upper bound of the number of authentications 

will be 6
, 103.5106024365 

ANUB . 

 Computation of the number of pre-computed passwords PPN : 

The number of pre-computed passwords depends on the storage space from the external buffer which in 
our case is 8 kilobytes.  For the hash function the size of one password is 160 bits, since SHA1 is a 
function which outputs 160 bits, and therefore the number of pre-computed passwords is 

409
160

828 10




h
PPN . For the squaring function the size of one password is 1024 bits, since n  has 

1024 bits, and the number of pre-computed passwords is 64
1024

828 10




m
PPN .  

 Estimation of the ratio  : 

While the time required for one modular multiplication is 6108.60 mt  seconds and the time required 

for one hash function is 6101.1 ht seconds it results that 2.55
h

m

t

t
 . 

 Computation of the efficiency coefficient  : 

By using (16) it follows that the efficiency coefficient is 2.0
409103.5

64210243

64

409
2.55

6





 . Since 

  is smaller than 1 this means that the squaring function is certainly more effective than the hash 

function. It is easy to verify this result by computing both 
mT  and 

hT . By using (14), since 

6108.60 mt , a total of 3.2108.60641024
2

3

64

103.5 6
6







 


 

mT  hours will be spent on 

computing the entire chain for the squaring function while for the hash function, by using (15) with 
6101.1 ht  seconds, a total of 4.10101.1

2

103.5

409

409103.5 6
66







 
hT  hours will be required. Now 

by using (10) we obtain again 2.0
4.10

3.2
 . A particular explanation for the efficiency of the 

squaring function is the fact that due to the value of the upper bound and the number of pre-computed 
passwords the computation of the first chain of passwords will require   83.5101.1103.51 66  

hT   
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seconds for the hash function and only     09.0108.606451231 6  
mT  seconds for the squaring 

function. These values were computed with (12) and (13) and as mentioned the time for the hash function 
will decrease for every new sequence while for the squaring function will remain constant. 

6. Conclusions 

One-time password schemes offer stronger security than fixed passwords and this paper proposes the use 
of the squaring function defined over nZ  to generate such passwords. This solution is certainly faster 

than the general case of the exponentiation over nZ  proposed in [8]. It also has advantages compared to 

hash functions when the number of authentications is high and uncertain.  

The performance analysis from section 5 shows that the squaring function over nZ  could require less 

computational time than the hash function in the time-memory trade. As long as the efficiency coefficient 

  from (16), which depends on the upper bound of the number of authentication and on the number of 

pre-computed passwords, satisfies the condition 1  using the squaring function instead of the hash 

function should be considered.  

The final case study shows a possible scenario in which the use of the squaring function in nZ  is more 

convenient than the use of a hash function.  
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APPENDIX A 

AN EXAMPLE OF ONE-TIME PASSWORDS COMPUTED ON A 
1024 BIT MODULE 

The abstract aspects presented in this paper may naturally raise some questions regarding the 
implementation of such an authentication protocol; these questions may address both the hardware and 
the software that can be used for this purpose. We will briefly try to clarify some of these questions.  

Any modern CPU may easily manipulate the values that are used in the authentication technique proposed 
in this paper. In Table A1 we give several computational timings obtained on different CPU’s. The 
memory does not represent a problem when we are referring to standard computers since any modern 
computer would have enough memory to store almost any amount of passwords. The memory problem 
can appear when we decide to store password on external devices (such as smartcards). These devices 
offer more security or mobility but have a limited amount of memory. When the size of the memory from 
the external device is reduced, for example 8 kilobytes are used in the case study from section 5.2., the 
use in the time memory trade from section 3 of the squaring function instead of a hash function should be 
considered for a better computational time.  

Finally, about software issues, it must be stated that such an authentication technique can be implemented 
under any operating system and with a large variety of programming languages that offer support for 
large integer arithmetic [12][13].  

The maximum number of users may also appear questionable. It is obvious that the authentication 
technique proposed in this paper as any other authentication technique can be used in a MU1S (Multiple 
User One System) architecture, so any number of users can authenticate to a system. 

Large integers, of 1024 bits or more, are commonly used in cryptography (for example in the RSA 
Cryptosystem [9]). Such integers are required in order to make the factorization infeasible; a good example of 
how hard is to break such integers is the Factoring Challenge from RSA Security (see [10] for details).  

For the reader unfamiliar with numbers used in cryptography we give an example of one-time passwords 
generated by the squaring function over a 1024 bit module. The following two large primes p  and q  

were generated using Mathematica 4.2 environment [11]. The rest of the computation was done using 
Python 2.4. [12] . The fact that we used Mathematica 4.2 and Python 2.4. is not relevant since there are 
also other environments that offer support for large integer arithmetic, for example C/C++ libraries GMP 
[13]. Any modern computer can easily manipulate such big integers and in Table A1 we offer some 
computational timings on some CPU’s to illustrate this. 

1. Let the following two 512 bit primes: 

p 15576537075761163371954685998335606213381699487107478323820682062467859817007702747770599587132071120

346284888517016256461019376987370216091760365741828407 

q 171555481918842391650403850378312893517811347069907646561492560935565895398460930669875431789424555344

33834362430269299438205220162223169059333648532526839 

The time required for the generation of these two large primes is in column (1) of Table A1, see also the 
note below the table.   

2. The module qpn   and the value of      11  qpn  will be the following: 

 qpn 2672240324658922403718843253912503299445179862678905997584969425957649766319308056461469405650066915

255397628063015266902188866843441656777478065712905340676057852802167476557668066671477089576922924877222290235
81171828416437235315109718026309669904147726623845632546123135003029029377130770091318507660115473 

       11 qpn 267224032465892240371884325391250329944517986267890599758496942595764976631930805646

1469405650066915255397628063015266902188866843441656777478065712905340348737000125713451187717356309808133
9252945829362398604361123367239198787846131390326816690382962107184372638159883757910380443222753738494022
4493385760228 
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3. Let the value of x  be the following 1024 bit value: 
x 202916084198731929681761688537040576339688550348359076862326068268465274596839019390637592583057291211

8322365394220961444344911063514751758103403541700987707324473661636237975254859721003067852358631783968917
75464577347236631284635574690174380108299295573407573666813421307722136468321262332427372756154955448 

The time required for steps 2 and 3 is not relevant; see the note below Table A1.  
4. For nxxF mod)( 2  the values for the first three compositions of the function )(),(),( 32 xFxFxF  will 

be the following: 
 nxxF mod)( 2 2424260836972747863988068053209237876520704454024673841778747951266772693606990424202925

4514204956596069312515611657638865036161499602617291683926594238870655671822464746435374568094385683763561
6325413384168823292997614107101726112246675204724572974249832210402681096965092765387879322948129617025381
325473312 

 nxxF mod)( 42 28806079118810285484186494395735467785986810469425782680450478477841190929508464920516

9134793647619824591368793789743024270757739194411331469177312725591694415104264809178812461771952937483330
2504295603723308335865436950723203250725468795071708507433223386513605853162890288311116474149981565217682
4333601857 

 nxxF mod)( 83 157084103226164648931522255979267050751163956959106635542477819974958927950229835349767

7041769767333740583783809384313698481103871906939501353850650972528575063265812863087088059995377497202604
6285737656957964741121746565703362363562409265387724898605860691288557823189502286374458071310530892653177
3902660998 

The time required for the computation of one composition of the function is in column (3) from Table A1; 
see also the note below Table A1.  
5. For 1000000  the value of )(xF  will be the following: 

   nxxF n mod)( mod21000000  483706269277096494062946276311678421524106431461240879288686212223122890600

2224027744371801738363883671575371596170627580702839941472135822839408532962514364750509029700880770360181
2748865628359316125201367299759128097908354046595351140997294176763480511533901038537715805138017469826287
766770052810320080792 

The time required for the computation of )(xF  is in column (4) from Table A1; see also the note below 

Table A1. 
 

Generation 
of the 512 
bit primes 

qp,  

 
 

 
Computation 
of SHA1 hash 

function 

ht  

Computation of 
nxxF mod)( 2  

(one modular 
multiplication) 

mt  

Computation of 
  nxxF n mod)( mod2  

  

for 1000000  

(approximately one 
modular exponentiation 
with 1024 bit exponent) 

 
Ratio 

h

m

t

t
  

 
 

 
 

 

(1) (2) (3) (4) (5) 
Intel 

Centrino 
1.6 Ghz 

854.0  s 6103.1   s 6102.77   s 3101.93   s 3.59  

Intel PIV 
2.4 Ghz 

767.0  s 6103.1   s 3108.76   s 3106.92   s 0.59  

AMD64 
2800+ 1.8 

Ghz 

739.0  s 6101.1   s 6108.60   s 3105.72   s 2.55  

Table A1. Time required for some computations (time is expressed in seconds) 

Note: The time from column (1) was measured on program written in Mathematica 4.2. while the time from columns 
(2),(3),(4) was measured on a program written in Python 2.4., different timings can be achieved in different 
environments. The generation of the two large primes qp,  is a randomized process and very different timing values 

can be obtained, we have taken the average value from 1000 random generations of the two primes. The computation 

of nxxF mod)( 2  and   nxxF n mod)( mod2  
  are deterministic processes and only minor variations are to be 

expected in timings. The time required for the computation of qpn  ,      11  qpn  and the generation of 

x  can be considered irrelevant compared to the previous timings. All the computers that we used had 512Mb of 
RAM and were running Windows XP, however this is not very important for the timing values. 


