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Abstract: This paper provides, under some assumptions, a simple algorithm for the inversion of a fuzzy relational equation with 
sum-product composition. This result is applied to the inversion of a discrete fuzzy linguistic model. It is shown that only a matrix 
inversion is necessary to obtain the solution which is unique, whenever it exists.  
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1. Introduction 

The inverse problem of fuzzy relational equations has been widely tackled since the work of Sanchez [7]. 
In general, the operators studied are max-t operators, where t is a t-norm such as the min or product 
operators (e.g. [1] [5] [6] [8] [9]), and it was shown that, the solutions, whenever existing, form an upper 
semi-lattice with upper and lower bounds.  

The addition (bounded sum) operator is a possible alternative to the max operator for implementing the 
union of fuzzy sets. Fuzzy systems which use the product as the intersection operators and the addition as 
the union operator (referred to as the Sum-Prod inference) are more robust with respect to input changes 
than that which use truncation operators, and provide a smoother output [2]. Moreover, the Sum–Prod 
composition, when used together with a Center of Gravity Method for defuzzication assure a linear 
interpolation of the output between the rules which is of interest for control purposes [4]. 

This note presents a special case of the inverse problem which consists of finding the fuzzy set A  for 
which A R B , where R  is a fuzzy relation, B  a fuzzy set and   the Sum-Prod composition. The 
incidence of the result on the inversion of  fuzzy linguistic models is shown in a second part.  

2. Inversion of Fuzzy Relational Equations with Sum-prod Composition 

The product operator of two scalars a  and b  is noted .a b a b  . The bounded sum operator is noted 

 min ,1a b a b   . 

Let the row vector  1,..., ma a a  correspond to the fuzzy subset A , and the matrix 1
1

i mij
j n

R r  
 

     

denotes a fuzzy relation on U V   ,where ,U V  are fuzzy universes of discourse. 
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The product-sum composition of a  with the matrix R  , noted a R b , is equal to the row vector 

 1 ,..., nb b b  corresponding to the fuzzy subset B  such that : 

.j i iji
b a r . (1) 

Lemma 1. Suppose that a R b , where , , ,a R b  are defined above, and  
1

1 , 1
m

i ij
i

j n a r


    then 

b aR . (2) 

Proof  Since 
1

1
m

i ij
i

a r


 , 
1 1

min ,1
m m

j i ij i ij
i i

b a r a r
 

 
  

 
  . Thus, b aR . 

Corollary 1. Suppose that a R b , where , , ,a R b  are defined above, and 
1

1
m

i
i

a


 , then b aR . 

Let  1 , ... , nb b b    a fuzzy sequence of V , and 1
1

i mij
j n

R r  
 

    , a fuzzy relation of U V . 

Let us note p n m  ,  1kk b   , and  cardq   . 

Let  ib b i   , which denotes vector b   for which all elements equal to 1 have been removed, and 

note  ijR r j   .  Suppose that now  m q , we note   (  values)mb b   , which consists of m  

elements of b , and  
1ij j m

R r





  the matrix which consists of the corresponding m  columns of R . 

Note that b  may consist of any combination of m  elements of b  and that the choice of these elements 
can be chosen anyhow. We can now state the following theorem: 

Theorem 1. 

If  m q ,  if R  is invertible, and if there exists a fuzzy sequence a  of V  such that a R b  , then the 

solution is unique and given by: 

1a b R   . (3) 

Proof 

From the construction of b  , 
1

min ,1 1
m

j i ij
i

b a r


    
 
 . By the Lemma, b a R  , and 1a b R    since, 

by the hypotheses of the Theorem , R  is a square and invertible matrix. 

Corollary 2. Let us note \b b b  


 the complement of the sequence b  with respect to b , and R


  the 

corresponding matrix. Suppose that R  is invertible and that the dimension of vector b  is at least m , the 

solution 1a b R    to the problem a R b   exists and is unique iff 

a R b 


 . (4) 

Remark The corollary expresses that the remaining p  equations are compatible with the solution 
1a b R   , so that indeed a R b   . As an example, in the case where all elements are smaller than 1, 

one can choose arbitrarily m  elements of  b  to build b , and verify that the remaining equations provide 
the same result.  

If this assumption is not verified, there is no solution to the inversion problem (item “iv” in the inversion 

procedure). It is also clear that, when  dimb m   (for example, all elements of b  are 1’s), the solution 
will not be unique. This, along with the case where R  is not invertible –for which the solution is not 
unique- will be tackled in future work.  

The result in the Corollary 2 is quite important since fuzzy relational inversion with other operators 
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provide only bounds for solutions which may prevent the use of adaptive or inverse-model-based control. 

The inversion procedure to find a  from R  and b  is as now follows: 

i) Remove all the 1 ’s from vector b , and check that the dimension of vector b  is at least m  

ii) Take m  columns of b  to build vector b , and build the appropriate square matrix R  

iii) Check that R  is invertible and compute 1a b R    

iv) Check that a R b 


  , i.e.  

- if j  and j m , 
1

m

i ij j
i

a r b


    

- if j  
1

1
m

i ij
i

a r


  , so that 1jb  . 

3. Application to the Inversion of Fuzzy Linguistic Models  

3.1. A Fuzzy Linguistic Model 

The linguistic fuzzy model [3] has been introduced as a way to integrate qualitative knowledge under the 
form of  RN  if-then rules iR  . 

iR : IF x  IS iA  THEN y  IS iB , (5) 

where x  and y  are respectively the input and output linguistic variables, and their base variables are 

x X , y Y .  The antecedent linguistic terms iA  and consequent terms iB  belong respectively 

to the fuzzy sets A  and B . The membership functions of the antecedent (resp. consequent) fuzzy sets are 
the mappings  ( ) : 0,1

iA x X   and  ( ) : 0,1
iB y Y  . Each of the fuzzy rules can be regarded as a 

fuzzy relation of X Y  onto  0,1 . For values ,x y  in X Y , the membership function  ,
iR x y  is 

defined in the product space A B  as 

 , ( ) ( )
i i iR A Bx y x y    . (6) 

The fuzzy relation R  representing the entire model is given by the fusion of the individual rules iR  : 

   , ,
iR Ri

x y x y   , (7) 

where the operators ,   are defined above. 

Once a rule base has been formed, the membership function ( )B y   to the fuzzy set B  , induced by the 

fuzzy input set A  is given by: 

( ) ( )B Ay x R    ,  (8) 

where   is the Sum-Product composition. 

It is possible to discretize the sets X  and Y  with respectively m  and n  sample points, where 

 1 , ,d d d
mx x x   and  1 , ,d d d

ny y y   are the sampling points with respect to X  and Y . In this 

case, fuzzy sets and relations of equation (7) are represented by the fuzzy membership values at a set of 
discrete points such that : 

( ) ( )d d d
B Ay x R   ,  (9) 

where  1( ) ( ) , , ( )d d d
A A A mx x x    , ( ) ( )d d d

B Ay x R   ,  where d d
ijR r     is a m n  matrix 

such that 
1

min ( ) ( ) ,1
R

k k

N
d d d d

ij A i B j
k

R r x y 


 
     

 
 ,  

where kA  and kB  refer to the fuzzy subsets attached to the kth rule kR . 
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3.2. Fuzzy Model Inversion 

Theorem 2 

Let matrix dR  a fuzzy relation  0,1d dx y  , where  1 , ,d d d
mx x x  ,  1 , ,d d d

ny y y   and B  a 

fuzzy set of V . We note       1 1,..., ,...,d d
n B B nb b b y y      , p n m  ,   1kk b   , and 

 cardq   .  

We can now build  ib b i   ,  d d
ijR r j  , and, supposing that  m q  we note 

  1i mb b   
 ,  

, 1

d d
ij i j m

R r





 , \b b b  


, dR


 the matrix corresponding to b


 . 

Suppose that  m q   and dR  is invertible. The unique fuzzy subset A  of U  , with 

      1 1,..., ,...,d d
m A A ma a a x x      , such that  da R b  ,  given by:  

  1d

a b R


  , (10) 

exists iff da R b 


 . 
Proof  by direct application of Theorem 1 and Corollary 2. 

3.3. Example 

Let us consider a simple fuzzy model which describes how the heating power of a burner depends on the 
oxygen supply [adapted from [10]); fuzzy sets  , ,A LOW OK HIGH  and 

 , ,B LOW MEDIUM HIGH are given in Figure 1. 

 

 

 

Figure 1. Membership Functions. 
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The 3 rules are: 

If 2O  flowrate IS LOW THEN heating power is LOW 

If 2O  flowrate IS OK THEN heating power is MEDIUM 

If 2O  flowrate IS HIGH THEN heating power is HIGH 

The sample points are  0,0.5,1dx   and  0,25,50,75,100dy  . 

From the figure 1, we have    1 0.4 0d
LOW x  ,    0.1 1 0.4d

OK x  , 

   0 0.3 1d
HIGH x  , and one can derive the same for dy . 

We thus have from relation (9) , taking the first rule: 

   1

1 0.76 0 0 0

0.4 0.28 0 0 0

0 0 0 0 0

d d d
LOW LOWR x y 

 
 

    
  
 

;  one obtains identically 

2

0.01 0.06 0.1 0.07 0.02

0.1 0.6 1 0.7 0.2

0.04 0.24 0.4 0.28 0.08

dR

 
 

  
  
 

, 3

0 0 0 0 0

0 0 0 0.15 0.3

0 0 0 0.5 1

dR

 
 

  
  
 

 and 

 
1 0.82 0.1 0.7 0.02

min ,1 0.5 0.88 1 0.85 0.5

0.04 0.24 0.4 0.78 1

d
iR R

 
 

   
 
 

  .  

Let  0.808 0.986 0.73 1 0.51b   corresponding to a “rather LOW” heating;  

taking the 3 first columns gives 

1 0.82 0.1

0.5 0.88 1

0.04 0.24 0.4

dR

 
 

  
 
 

,  0.808 0.986 0.73b   and 

   1
0.5 0.6 0.2da b R


    corresponds to a “rather LOW” flowrate  such that da R b  . 

One can check easily that da R b 


  and that, indeed, the two first values are the right ones, i.e. 

4 51, 0.51b b   . 

Conclusion 

A sufficient condition has been given to invert a sum-product relation which has been applied to a fuzzy 
linguistic model. It is shown that a simple matrix inversion is necessary to obtain a solution. This 
algorithm could find applications in adaptive control. This work will be extended to the case of non-
invertible relational matrices for which a unique solution does not exist. 
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