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SPAIN 
Abstract: In 1973 Gill and Murray proposed a non-simplex active-set method (also known as basis-deficiency-allowing dual 

simplex variation since P.-Q. Pan’s 1998 work) for the primal linear problem in inequality form min{ }T Tc x A x b  . In 

this note a non-simplex active-set method for its dual linear program in standard form max{ }Tb y Ay c y O     is 

given, so we obtain a different but equivalent description of the basis-deficiency-allowing primal simplex variation of Pan, which is 

an exterior method that allows us to work with a subset of independent columns of A  which is not necessarily a square basis. The 
new description reveals more clearly the relations with Gill and Murray’s work; moreover, we focus our attention in providing 
several alternatives to address several features not properly addressed by Pan, namely their sparse implementation, suitable Phase I’s 
and Farkas’ connection. 
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1. The Proposed Algorithm 

Let us consider the usual unsymmetric primal-dual pair of linear programs using a non-standard notation 
(we have deliberately exchanged the usual roles of b  and c , x  and y , n  and m , and ( )P  and ( )D , 

as in e.g. [1, §2]): 

( ) min ( ) ( ) max ( )

s t s t

T n T m

T

P x c x x R D L y b y y R

A x b Ay c y O

   
     

  
 

where n mA R   with m n  and rank( )A n . We denote with F  and G  the feasible regions of 

( )P  and ( )D , respectively. 

In [2] Gill and Murray proposed a non-simplex active-set algorithm (see also [1, §2.5–2.6], [3] and [4, 

§8.5.4]) for solving problem ( )P  starting with a feasible point (0)x . In a similar way, we can develop a 

non-simplex active-set method for its dual linear program in standard form ( )D . We allow that the basic 
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(dual) variable set has less than n  indices and so we start with a dual feasible point (0)y  that can have 

more than m n  zero elements. We shall indicate with km n  the number of elements of the ordered 

basic set ( )kB , with ( ) ( )[1: ]k kN m \ B  and with kn m
kA R   and ( )kn m m

kN R    the submatrices 

of A  formed with the columns included in ( )kB  and ( )kN , respectively, with rank( )k kA m ; as 

usual, the i th column of A  is denoted by ia , and consistently the matrix whose i th row is T
ia  is 

denoted by TA . We shall indicate with ( )kn n m
kZ R    a matrix whose columns form a basis (not 

necessarily orthonormal) of ( )T
kN A . Superindex ( )k  will be withheld when it is clear from context. 

The algorithm, using “pseudo-MATLAB” notation, is as follows:  

S0. Initialize. Let 0k   and let (0)y  be a given dual feasible point with basic set (0)B  and basic matrix 0A .  

S1. Check for optimality. Compute ( )kx  as a solution of T
k BA x b  and compute the residues 

( ) ( )k T k
N k Nr N x b   of the non-basic constraints (residues ( )k

Br  of the basic ones are zero). If ( )k
Nr O  

then stop, because ( )kx  is optimal.  
S2. Pick a non-basic variable to add to the basic set and define (if possible) the search direction for the 

basic variables. Using some appropriate rule, choose an index 1: ( )kj m m   such that ( ) 0
j

k
Nr  . 

With ( )k
jp N , determine if it exists a search direction ( ) kmk

Bd R  for the basic variables (the search 

direction for the non-basic ones is ( ) km mk
N jd e R    ) by checking the compatibility of the system 

k B pA d a . If T
k pZ a O  then we can obtain ( )k

Bd  and go on to S3. If T
k pZ a O  such system is not 

compatible, so ( )p ka R A  and p  can be added to ( )kB  without deleting constraints from ( )kB ; we 

indicate this fact by letting 0i  , q   and going on to S5 with 0  . 

S3. Calculate the maximum feasible step along the search direction. For 1: ki m  calculate the step i  

such that the i th basic variable would be zero: 
( ) ( ) ( )

( ) 1

if 0
and let min

if 0
i i i

k
i

k k k
B B B

i ik i m
B

y d d

d
  

 

      
  

 

S4. Test for unbounded solution and pick a basic variable to delete from the basic set. If     then 

stop, because L  is unbounded above in G  (i.e., F   ). Else, using an appropriate rule, choose index 

1: ki m  of a basic variable such that i  . 

S5. Prepare the next iteration. If 0i   then 
( ) ( ) ( ) ( )

i i

k k k k
i B B iq B y d B       

and delete the i th column from kA . Then let ( )k
jN   and  

( ) ( )
( ) ( ) ( ) ( ) ( )[ ] [ ]

k k
k k k k kB B

B

y d
y B B p N N q




 
        

 
 

Append pa  as the last column of kA  and let 1k k  . Go back to S1.  

The proposed algorithm is a different but equivalent description of the basis-deficiency-allowing primal 
simplex variation of [5]. It is an exterior method (so it does not need any primal feasible point to start with) 
with respect to which Dantzig has exhibited “enthusiastic encouragement and advice” [6]. It ends with optimal 
solutions for ( )P  and ( )D  but these solutions do not necessarily correspond to a square basis, because we 

maintain here dual feasibility and complementary slackness (not strictly because we can have 0iy   and 

0ir  ) and stop when we reach primal feasibility. We could obtain an optimal square basis starting with these 

optimal solutions by applying the strongly polynomial algorithm of Megiddo [7]. 
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Note that we are generalizing the well-known primal simplex method (in which km n  for all k ) to 

allow the case km n , so we can directly deal with basic feasible solutions of Ay c y O    (which 

correspond to degenerate vertices of G  if km n ) without including kn m  additional indices in 
( )kB  to conform a square basis. Dense examples of distinctive behaviour with respect to the primal 

simplex method can be found in [8,5]. The new description reveals more clearly the relations with Gill 
and Murray’s work; in fact, the generalization of the well-known dual simplex method was already done 
in [2] by allowing to perform non-simplex steps! 

The rest of the note is organized as follows. A proof of the finite termination of the §1 algorithm under dual 
nondegeneracy assumption on iterations in which an exchange is involved is included in §2, as well as several 
comments on suitable Phase I’s (§3) and their sparse implementation (§4), solving either a sequence of sparse 
compatible systems or else a sequence of sparse least squares problems; the computational behaviour of two of 
the Phase I’s proposed are highly encouraging. These Phase I’s are new elementary proofs of the Farkas’ 
lemma (§3), which constitute an alternative to that given by Dax in [9].  

2. Proof of Convergence 

Under dual nondegeneracy assumption, the convergence of the proposed algorithm can be proved being 

aware of the following facts. When ( 1) ( ) ( )k k ky y d    with 0  , in order to be 
( 1) ( 1) ( ) ( )T k k k T kb y L L b y     it must hold that ( ) 0T kb d  ; this can be derived easily from 

( )kAd O , since 

( ) ( ) ( )k k k
k B k N p k jAd A d N d a N e O       

and from ( )k
Br O , because 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

( ) 0
j

T k T k k T k k T k k T k

k T k k T k k T k
B B N N N j N

b d A x r d x Ad r d

r d r d r e r

    

      
 

The vector ( )k
By  of multipliers such that ( )k

k BA y c  is unique because kA  has full column rank. So 

when ( )p ka R A  and 1 [ ]k k pA A a   , the only choice for ( 1)k
By   keeps on verifying ( 1)k

k BA y c   

is that ( 1) ( )[ 0]k k
B By y   , because 1kA   will have full column rank too and then ( 1)k

By   has to be unique. 

In this case we have no improvement in the dual space because ( 1) ( )k kL L  . But observe that when 

km n  it is not possible that ( )p ka R A . Finally, when ( )k
Bd O  we have that ( )( )kd  is a 

direction (of ascent) of G , for  
( ) ( ) ( )and ( ) 0 and ( )k T k kd O b d A d O        

so we can derive the infeasibility of ( )P  from the dual form of the Farkas’ lemma. 

Note that we have to resort to some anti-cycling rule (e.g., Bland’s rule) to deal with degenerate steps. 
Nevertheless, to prove finite termination (i.e., that no cycling occurs) we only need to assume dual 
nondegeneracy on iterations in which an exchange is involved, because basic variable sets cannot be 
repeated if we only add an index.  

3. Suitable Phase I’s and Farkas’ Connection 

In order to obtain a dual feasible solution to start with we can easily adapt the Gass’ single artificial 

variable Phase I (e.g., [4, §7.9.4] and [6]). Given a point (0)y O  such that (0)Ay c , we can define a 

Phase I by using a single artificial variable z  and the initial residue (0) (0)s Ay c  : 



82 Studies in Informatics and Control, Vol.14, No. 2, June 2005 

(0)

minimize

subject to 0

m

n m

z y R z R

Ay s z c y O z A R 

   
       

 

so we have to maximize T yb  subject to Ay c  and y O , where: 
(0)

1[ 1] [ ] [ ]m mb O e A A s y y z c c              

The point 
(0) (0)[ 1]yy    is feasible with respect to the constraints of the Phase I, but with 0m n . 

This is the reason why we solve this Phase I using the proposed non-simplex active-set method, e.g. with 
(0)y O  and (0) [ 1]B m  . In this case the primal problem corresponding to the proposed Phase I is  

minimize

subject to
1

T P P n

T
mP n m

T

c d d R

OA
d A R

c

 
  
 
 
  

 

 
     

 

and then a primal null-space descent direction Pd  come into play [10, 8]. 
As an alternative Phase I we can proceed as in [11]. We can apply the NNLS algorithm [12, §23.3] or the 
Dax algorithm [9] to the positive semidefinite quadratic problem  

2
2minimize 1 2 || || subject toAy c y O      (1) 

which implies solving a sequence of unconstrained least squares problems of the form 2min || ||kA z c  

(NNLS) or of the form ( )
2min || ||k

kA w s  (Dax). In this case we do not need any artificial variable 

and what we obtain is a direction of F  or a dual basic feasible solution with km n . It turns out that 

the computation can also be paraphrased in terms of a primal null-space descent direction [13, 10]. 
Instead of (1) we can deal with its Wolfe dual (least distance) strictly convex quadratic problem  

2
2minimize 1 2 || || subject to T T nu A u A c v u R       (2) 

which also implies solving a sequence of least squares problems. To solve (2) we can particularize any of 
the primal, dual and primal-dual active-set methods introduced in [14]. 
We could also have adopted the dual point of view, namely using the non-simplex active-set algorithm of 
[2] or [4, §8.5] and the Gass’ Phase I with a single artificial variable (e.g., [4, p. 314]), 

(0)

minimize

subject to 0

n

T n m

z x R z R

A x r z b z A R 

   
      

 

where (0) (0)Tr A x b   and (0)(0) [ 1]xx   , e.g. with (0)x O  (a primal degenerate vertex) and 
(0)B    (the case (0) 1:B m  and (0) [ 1]N m   needs a further generalization of the simplex 

method [15] to allow km n  and so it is intended to deal mainly with primal degeneracy). Note that we 

also need an anti-cycling rule to prove finiteness, and that in this case the dual problem corresponding to 
the proposed Phase I is  

1maximize [ 0]

subject to
1 1

T m

n n n m

T

b R

A O O
O A R

b

 

 





  

   
        

   

 

From this point of view, we can also use a least-squares-based Phase I, solving  
2
2minimize 1 2 || || subject to T nx A x b x R      

with a quadratic algorithm or using the Cline’s method described in [12, §23.4].  

All the Phase I’s given above are new elementary proofs of the Farkas’ lemma, which constitute an 
alternative to the proof given by Dax in [9]. Note that in the NNLS-based case, we do not have to resort to 
any anti-cycling rule in exact arithmetic. An application of this idea can be found in [16]. 

4. Sparse Implementation Details and Computational Results 
The implementation of the algorithmic schemes given above for dense problems can be accomplished 

with the QR factorization of kA  (adding and deleting columns); but nowadays we are mainly interested 
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in sparse problems, and hence we have tried two sparse orthogonal approaches. 

Our first sparse orthogonal approach use the sparse QR factorization of T
kA  (adding and deleting rows). 

Since kA  is formed by a subset of the columns of a fixed matrix A , we have adapted [17] to matrices 

with more rows than columns Saunders’ techniques for square matrices [18] using the static data structure 
of George and Heath (e.g., see [19] and the references therein) but allowing row downdating on it; this 
way we can take advantage of the intermediate results obtained when dealing with the problem 

2min || ||TA x b  by processing TA  row by row in relationship with ( )D . 

The disadvantage of the least-squares-based Phase I’s with respect to the Phase I’s with a single artificial 
variable is that the necessity to obtain least squares solutions does not allow us to work with the QR 

factorization of T
kA . In [3, p. 321] iterative relaxation techniques are recommended, but in this way we 

do not take advantage of the existing relationship between kA  and 1kA  . A suitable (second) sparse 

orthogonal approach is to adapt the methodology of Björck [20] and Oreborn [21] to be able to apply the 
sparse NNLS algorithm with a “short-and-fat” matrix A . They proposed an active set algorithm for the 
sparse least squares problem 

minimize 1 2 subject toT T my Cy d y y R l y u        

with 0C  . In our problem  

1: 0T T
i iC A A d A c i m l u             

but 0C  , hence to maintain a sparse QR factorization of kA  we have had to adapt [13] the proposed 

technique as in [22], but without forming C . 

We have conducted [23, §5] some computational experiments comparing slight modifications of two of 
the Phase I’s given above against the TOMLAB LPSOLVE V3.0 [24] sparse implementation of the usual 
primal simplex method. The sparse technique chosen depends on the primal null-space descent direction 
used. The computational results, both for sparse adaptations of classical test problems and for the first 31 
smallest NETLIB problems [25], are the subject of a forthcoming paper, in which we will show the clear 
advantage obtained in number of iterations, quality of solutions and execution time when suitable pivot 
strategies are used and with no special anti-cycling tools. 

The sparse orthogonal approaches that we have tried have the added bonus that they are parallelisable and 
they fit well within a mixed interior-point simplex methodology. This is due to the fact that, in spite of 

using active-set methods, we work on top of the static structure of the Cholesky factor of TAA  (our first 

approach, as in interior-point algorithms using the normal equations approach) or else on that of TA A  
(our second approach, as in the interior-point method described in [26]).  

Acknowledgements 

The authors thank M. Saunders who, with respect to the technical report prior to [11], commented us: 
“Their method is equivalent to the known (and very simple) NNLS algorithm for non-negative least 
squares. Their real contribution was to apply it to linear programs to find a feasible solution”. We also 
thank A. Dax and Å. Björck for providing us with references [3] and [20]. 

REFERENCES 

1. OSBORNE, M.R., Finite Algorithms in Optimization and Data Analysis, John Wiley and Sons, 
Chichester, 1985.  

2. GILL, P.E. and MURRAY, W., A numerically stable form of the simplex algorithm, Linear 
Algebra Appl., 7:99–138, 1973.  

3. DAX, A., Linear programming via least squares, Linear Algebra Appl., 111:313–324, 1988.  

4. GILL, P.E., MURRAY, W. and WRIGHT, M.H., Numerical Linear Algebra and Optimization, 
Vol. 1, Addison-Wesley, Redwood City, 1991.  

5. PAN, P.-Q., A basis-deficiency-allowing variation of the simplex method for linear 
programming, Computers Math. Applic., 36(3):33–53, August 1998.  



84 Studies in Informatics and Control, Vol.14, No. 2, June 2005 

6. PAN, P.-Q. and PAN, Y.-P., A phase-1 approach for the generalized simplex algorithm, 
Computers Math. Applic., 42(10/11):1455–1464, November 2001.  

7. MEGIDDO, N., On finding primal- and dual-optimal bases, ORSA J. Computing, 3(1):63–65, 
Winter 1991.  

8. SANTOS-PALOMO, Á., The sagitta method for solving linear programs, Europ. J. Operl. 
Res., 157(3):527–539, September 2004.  

9. DAX, A., An elementary proof of Farkas’ lemma, SIAM Rev., 39(3):503–507, September 1997.  

10. SANTOS-PALOMO, Á. and GUERRERO-GARCÍA, P., Sagitta method with guaranteed 
convergence, Technical report, Department of Applied Mathematics, University of Málaga, 2005. 
Submitted for publication.  

11. DANTZIG, G.B. and LEICHNER, S.A. and DAVIS, J.W., A strictly improving linear 
programming Phase I algorithm, Ann. Oper. Res., 46/47:409–430, 1993.  

12. LAWSON, C.L. and HANSON, R.J., Solving Least Squares Problems, Original edition, 
Prentice-Hall, Englewood Cliffs, NJ, USA, 1974.  

13. SANTOS-PALOMO, Á. and GUERRERO-GARCÍA, P., Solving a sequence of sparse least 
squares problems, Technical report MA-03-03, Department of Applied Mathematics, University 
of Málaga, September 2003. Submitted for publication.  

14. SANTOS-PALOMO, Á., New range-space active-set methods for strictly convex quadratic 
programming, In OLIVARES-RIEUMONT, P. (ed.), Proceedings of the III Conference on 
Operations Research, volume 2, page 27, Universidad de La Habana, Cuba, March 1997.  

15. GUERRERO-GARCÍA, P. and SANTOS-PALOMO, Á., Working with non-simplex active-set 
full row rank sparse matrices, Technical report, Department of Applied Mathematics, University 
of Málaga, 2005. In preparation.  

16. GUERRERO-GARCÍA, P. and SANTOS-PALOMO, Á., Gyula Farkas would also feel proud, 
Technical report MA-02-01, Department of Applied Mathematics, University of Málaga, 
November 2002. Submitted for publication. 

17. GUERRERO-GARCÍA, P. and SANTOS-PALOMO, Á., Solving a sequence of sparse 
compatible systems, In GRIFFITHS, D. and WATSON, G.A. (eds.), Proceedings of the 19th 
Biennial Conference on Numerical Analysis, pages 23–24, Dundee, Scotland, June 2001. 
Submitted for publication.  

18. SAUNDERS, M.A., Large-scale linear programming using the Cholesky factorization, Tech. 
report CS-TR-72-252, Computer Science Department, Stanford University, CA, January 1972.  

19. HEATH, M.T., Numerical methods for large sparse linear least squares problems, SIAM J. 
Sci. Statist. Comput., 5:497–513, 1984.  

20. BJÖRCK, Å., A direct method for sparse least squares problems with lower and upper 
bounds, Numer. Math., 54:19–32, 1988.  

21. OREBORN, U., A Direct Method for Sparse Nonnegative Least Squares Problems, Licentiat 
thesis, Department of Mathematics, Linköping University, Sweden, 1986.  

22. COLEMAN, T.F. and HULBERT, L.A., A direct active set algorithm for large sparse 
quadratic programs with simple lower bounds, Math. Progr., 45:373–406, 1989.  

23. GUERRERO-GARCÍA, P., Range-Space Methods for Sparse Linear Programs (Spanish), Ph. 
D. thesis, Departamento de Matemática Aplicada, Universidad de Málaga, Spain, July 2002.  

24. HOLMSTRÖM, K., The TOMLAB optimization environment v3.0 user’s guide, Technical 
report, Mälardalen University, Sweden, April 2001.  

25. GAY, D.M., Electronic mail distribution of linear programming test problems, Committee on 
Algorithms (COAL) Newsletter, 13:10–12, 1985.  

26. BIRGE, J.R. and FREUND, R.M. and VANDERBEI, R.J., Prior reduced fill-in solving 
equations in interior point algorithms, Oper. Res. Lett., 11:195–198, May 1992.  




