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Abstract :Data replication has been considered a promising technique for improving performance of a large distributed web server 
(DWS) system. One of the key issues in the design of DWS is determining the optimal number and placement of objects (e.g. 
HTML documents) on the web servers. This paper specializes the basic tabu search algorithm for object replication problem that not 
only determines the number of replicas but also their placement in a web server system to minimize a cost function subject to 
storage and server load constraints. The performance of the proposed algorithm is evaluated and compared with four other 
algorithms through a simulation study and results are reported. The simulation results demonstrate that the proposed tabu search is 
an effective and superior algorithm to solve the object replication problem as compared to many other proposed algorithms. 
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1. Introduction 

Demand placed on Web services continue to grow and Web systems are becoming more overloaded than 
ever before. As a result, users of popular web sites often experience poor response time or denial of a 
service (time-out error) if the supporting web-servers are not powerful enough. Since these sites have a 
competitive motivation to offer better service to their clients, the system administrators are constantly 
faced with the need to scale up site capacity. There are two options to scale-up Web services [1]. The first 
option, generally referred to as hardware scale-up, is to upgrade the Web server to a larger and powerful 
machine with advanced hardware support and optimized server software. While hardware scale-up 
relieves short-term pressure, it is neither a cost-effective nor a long-term solution, considering the steep 
growth in the client demand curve which characterizes the Web (the number of on-line users is growing at 
about 90% per annum) [2].  

The second option to keep up with ever increasing request load and provide scalable Web services is to 
deploy a distributed Web server system (DWS) composed of multiple server nodes where some system 
component under the control of the content provider can route incoming requests among different servers 
[3]. The DWS approach, generally referred to as scale-out, is not only cost effective and more robust 
against hardware failure but it is also easily scalable to meet increased traffic by adding additional servers 
when required. The performance of such systems (e.g. latency, throughput, availability, hop counts, link 
cost, and delay) can also be improved by maintaining multiple copies of objects at various locations in 
DWS [1,3].  

A proactive distributed web server system can decide where to place copies of a document to get the optimal or 
near optimal performance. However, in most existing DWS systems, each server keeps the entire set of web 
documents managed by the system. Incoming requests are distributed to the web server nodes via DNS servers 
or Web switches [2,5-7]. Although such systems are simple to implement but they could easily result in uneven 
load among the server nodes due to caching of IP addresses on the client side. 

To achieve better load balancing as well as to avoid disk wastage, one can replicate part of the documents 
on multiple server nodes and requests can be distributed to achieve better performance [8-10]. However, 
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some rules and algorithms are then needed to determine the optimal number of replicas of each 
document/object and their locations in a DWS. Choosing the right number of replicas and their locations 
can significantly reduce web access delays and network congestion. In addition, it can reduce the server 
load which may be critical during peak time. Many popular web sites have already employed replicated 
server approach which reflects upon the popularity of this method [11].  

Choosing the right number of replicas and their location is a non-trivial and non-intuitive exercise. It has 
been shown that deciding how many replicas to create and where to place them to meat a performance 
goal is an NP-hard problem [12]. Therefore, all the replica placement approaches proposed in the 
literature are heuristics that are designed for certain systems and work loads. 

This paper proposes a tabu search algorithm for replica placement in a distributed web server 
environment. The major motivation behind proposing a tabu search algorithm for objective replication 
problem is the fact that various researchers have shown that tabu search, if applied intelligently, produces 
better quality results as compared to many traditional heuristics in solving a variety of optimization 
problems [13]. In this paper, we specialize the basic tabu search into a specific algorithm for the object 
allocation and replication problem by turning the abstract concepts of tabu search, such as initial solution, 
solution space, neighborhood, etc, into more concrete, problem specific and implementable definitions so 
that better quality solution can be obtained as quickly as possible.  We also give a detailed formulation of 
the system and cost models suitable for the application of the proposed algorithm. The results presented in 
section 6 demonstrate that the proposed algorithm out-performs some well-known algorithms proposed in 
the literature. 

The rest of the paper is organized as follow: Section 2 reviews some of the existing work related to object 
replication in the web.  Section 3 describes the system model and presents cost function. Section 4 gives 
an overview of the tabu search algorithm. The tabu search algorithm is specialized for object replication 
problem and a detail description of the algorithm is given in section 5. Section 6 presents our simulation 
results followed by conclusions in section 7.  

2. Related Work 

The problem of replica placement in communication networks have been extensively studied in the area 
of file allocation problem (FAP) [14] and distributed database allocation problem (DAP) [15]. Both FAP 
and DAP are modeled as a 0-1 optimization problem and solved using various heuristics such as knapsack 
solution [16], branch-and-bound [17], and network flow algorithms [18]. Most of the previous work on 
FAP and DAP is based on the assumption that access patterns are known a priori and remain unchanged. 
Some solutions for dynamic environment were also proposed [19,20]. Kwok et al. [21] and Bisdikian 
Patel [22] studied the data allocation problem in multimedia database systems and video server systems, 
respectively. Many proposed algorithms in this area try to reduce the volume of data transferred in 
processing a given set of queries. 

Another important data replication problem exists in Content Delivery Networks (CDN). Unlike FAP and 
DAP, in a CDN, a unit of replication/allocation is the set of documents in a website that has registered for 
some global web hosting service. In [23], the replica placement problem in CDN is formulated as an 
uncapacitated minimum K-median problem. In [24], different heuristics were proposed based on this K-
median formulation to reduce network bandwidth consumption. The authors of [25] take storage 
constraint into consideration and reduce the knapsack problem to replica placement problem in CDNs. Li 
[11] proposed a suit of algorithms for determining the location of replica servers within a network. The 
objective of this paper is not to determine the placement of objects themselves but to determine the 
locations of multiple servers within a network such that the product of distance between nodes and the 
traffic traversing the path is minimized.  

Wolfson et al. [26] proposed an adaptive data replication algorithm which can dynamically replicate 
objects to minimize the network traffic due to “read” and “write” operations. The proposed algorithm 
works on a logical tree structure and requires that communication traverses along the paths of the tree. 
They showed that the dynamic replication leads to convergence of the set of nodes that replicate the 
object. It, however, does not consider the issue of multiple object replications. Further, given that most 
objects in the Internet do not require “write” operation, the cost function based on “read” and “write” 
operations might not be ideal for such an environment.  

Bestavros [27] considered the problem of replicating contents of multiple web sites at a given location. 
The problem was formulated as a constraint-maximization problem and the solution was obtained using 
Lagrange multiplier theorem. In [28], the authors have studied the page migration problem and presented 
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a deterministic algorithm for deciding on where to migrate pages in order to minimize its access and 
migration costs. This study, however, deals only with page migration assuming that the network has k 
copies of a page. In addition, it does not address the problem of adding and deleting replicas to the system 
and presents no special algorithm for replica selection.  

Tensakhti et al. [12] present two greedy algorithms, a static and a dynamic one, for replicating objects in a 
network of web servers arranged in a tree-like structure. The static algorithm assumes that there is a 
central server that has a copy of each object and then a central node determines the number and location 
of replicas to minimize a cost function. The dynamic version of the algorithm relies on the usage statistics 
collected at each server node. A test is performed periodically at each site holding replicas to decide 
whether there should be any deletion of existing replicas, creation of new replicas, or migration of 
existing replicas. Optimal placement of replica in trees has also been studied by Kalpakis at el. [4]. They 
considered the problem of placing copies of objects in a tree network in order to minimize the cost of 
serving read and write requests to objects when the tree nodes have limited storage and the number of 
copies permitted is limited. They proposed a dynamic programming algorithm for finding optimal 
placement of replicas. 

The problem of document replication in extendable geographically distributed web server systems is 
addressed by Zhuo et al [1]. They proposed four heuristics to determine the placement of replica in a 
network. In addition, they presented an algorithm that determines the number of copies of each 
documents to be replicated depending on its usage and size. In [29], the authors also proposed to replicate 
a group of related documents as a unit instead of treating each document as a replication unit. They also 
presented an algorithm to determine the group of documents that have high cohesion, that is, they are 
generally accessed together by a client in a single session. 

Xu el al. [30] discussed the problems of replication proxy placement in a tree and data replication 
placement on the installed proxies given that maximum M proxies are allowed. The authors proposed 
algorithms to find number of proxies needed, where to install them and the placement of replicas on the 
installed proxies to minimize the total data transfer cost in the network. Karlsson et al. [31] developed a 
common framework for the evaluation of replica placement algorithms.  

Heddaya and Mirdad [32] have presented a dynamic replication protocol for the web, referred to as the 
Web Wave. It is a distributed protocol that places cache copies of immutable documents on the routing 
tree that connects the cached documents home site to its clients, thus enabling requests to stumble on 
cache copies en route to the home site. This algorithm, however, burdens the routers with the task of 
maintaining replica locations and interpreting requests for Web objects. Sayal el al. [33] have proposed 
selection algorithms for replicated Web sites, which allow clients to select one of the replicated sites 
which is close to them. However, they do not address the replica placement problem itself. In [34], the 
author has surveyed distributed data management problems including distributed paging, file allocation, 
and file migration.  

3. The System Models 

A replicated Web consists of many sites/servers interconnected by a communication network. A unit of 
data to be replicated is referred as an object. An object can be a XML/HMTL page, an image file, a 
relation, etc. Each object is identified by a unique identifier and may be replicated on a number of 
sites/server. The objects are managed by a group of processes called replicas, executing at replica sites. 
We assume that the network topology can be represented by a graph G(V, E), in which N=|V| is the 
number of nodes or  vertices, and |E| denotes the number of edges (links). Each node in the graph 
corresponds to a router, a switch or a web site. We assume that out of those N nodes there are n web 
servers as the information provider. Associated with every node v  V is a set of nonnegative weights and 
each of the weights is associated with one particular web server. This weight can represent the traffic 
traversing this node v and going to web server i (i = 1,2,…,n). This traffic includes the web access traffic 
generated at the local site that node v is responsible for and, also, the traffic that passes through it on its 
way to a target web server. Associated with every edge is a nonnegative distance (which can be hop 
count, data transmission rate, or the economic cost of the path between two nodes).  

A client initiates a read operation for an object k by sending a read request for k. The request goes through 
a sequence of hosts via their attached routers to the server that can serve the request. The sequence of 
nodes that a read request goes through is called a routing path, denoted by . The requests are routed up 
the tree to the home site (i.e. root of the tree). Note that a route from a client to a site forms a routing tree 
along which document requests must follow. Focusing on a particular sever i, the access traffic from all 
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nodes leading to a server can be best represented by a tree structure if the transient routing loop is ignored 
[11,12,26]. Therefore, for each web server i, a spanning tree Ti, rooted at i, can be constructed. Hence, m 
spanning trees rooted at m web servers represent the entire network. The spanning tree Ti  rooted at a site i 
is formed by the clients that request objects from site i and the processors that are in the path  of the 
requests from clients to access object k at site i.  

3.1. The Object Replication Model 

In this paper, we consider a centralized object replication model in the sense that there is a central 
arbitrator that decides on the number of replicas and their placement based on the statistics collected at 
each site. Upon determining the placement of replicas for each object, the central arbitrator re-configures 
the system by adding and/or removing replicas according to the new placement determined by the 
arbitrator. The location of each replica is broadcasted to all the sites. In addition, each site i keeps the 
following information: 

ji
kC , : The cost of accessing object k at site i from site j. 

ji
kf , : The access frequency of object k at site i from site j 

kN : The set of sites that have a replica of object k 

The traffic frequency, ji
kf , , is the number of read requests for a certain period of time t issued at site i for 

object k to site j. This frequency includes the number of requests issues from site i and the request for 
object k passing through in its way to j. This traffic can easily be monitored and recorded by using the 
existing technologies. 

There are a number of methods that have been proposed to calculate cost (latency) [12,31]. To determine 
the cost (latency), our proposed algorithm proceeds as follows: each replica site j maintains a count c of 
the total number of requests it receives in a period of time t. The arrival rate, λ, at the replica is given by  
λ=c/t. Assuming that each replica site has an exponential service time with an average service rate of µ, 
then the time T, a request will spend at the replica site (waiting + processing time) is the well-known 
M/M/1 queuing result T=1/( µ - λ). Periodically, each replica site computes its T and broadcasts it to all 
the sites in its tree. Upon receiving this value from site j, site i would add to it the average latency 
involved in receiving data from j and broadcast this new value to its neighbors other than  j. The latency 
will reach at all the sites in a recursive way. The added communication cost (latency) can be obtained by 
having each site periodically query its neighbors and determining this cost.  

3.2. The Cost Model 

Determining an optimal replication involves generating new allocations and determining their goodness. 
The evaluation is done in terms of an objective function subject to system constraints. The designation of 
an objective function reflects the view of goodness of object replication with respect to system design 
goals. It is not feasible to completely describe a system with just one objective function; instead the 
objective function should only capture the critical aspects of the system design. Also, the form and the 
parameters of the objective function should be proper. That is, if the objective function indicates that an 
allocation is better than the other one then the actual measurements should concur. Keeping in mind these 
considerations, we develop the objective function for object replication problem as follow: 

Suppose that the vertices of G(V,E) issue read requests for an object and copies of that object can be 
stored at multiple vertices of G. Suppose that there are total n sites (web servers) and m objects. Let X is 
an n  m matrix whose entry xik=1 if object k is stored at site i and xik=0 otherwise then the cost of serving 
object k at site i from site j, denoted by i

kTC , is given by: 

ji
k

ji
k

n

j
jk

i
k CfxTC ,,

1
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The cost of serving requests for all the m objects at site i, denoted by TCi, is given by 
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The cumulative cost, TC, of serving all the objects over the whole network can be written as 
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If bk, sk,  TSi,  Lik, and Pi denote the minimum number of safety copies of object k,  size of object k, total 
storage capacity at site i, processing load of object k, and total processing capacity of site i, respectively, 
then the replica placement problem can be defined as a 0-1 decision problem to find X that minimizes (3) 
subject to storage capacity, processing capacity, and  minimum copy constraints. That is, we want to 
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In formula (5), the minimum number of safety copies for object k should be equal or greater that 1 (i.e. 

1kb ) This is necessary in case some failure of the servers may occur and/or we want different 

minimum number of copies for each object. Note that each object should have at least one copy in the 
network. The second constraint specifies that the total size of all the objects replicated at node i should 
not exceed its storage capacity. The third constraint specifies that the processing load brought by all the 
objects assigned at node i should not exceed the total processing capacity of a node. 

4. Tabu Search  

Tabu search is a well-known iterative procedure for solving discrete combinatorial optimization 
problems. It was first suggested by Glover [35] and since then, it has been successfully applied to obtain 
optimal and suboptimal solutions to such problems as scheduling, time tabling, travelling salesman, and 
layout optimization.  

A general framework of Tabu search is given in Figure 1. Tabu search starts from some initial solution 
and attempts to determine a better solution in a manner of a "greatest descent neighborhood" search 
algorithm. The basic idea of the method is to explore the search space of all feasible solutions by a 
sequence of moves. A move is an atomic change, which transforms the current solution into one of its 
neighboring solutions. Associated with each move is a move value, which represents the change in the 
objective function value as a result of the move. Move values generally provide a fundamental basis for 
evaluating the quality of a move. At every iteration of the algorithm, an admissible best move is applied 
to the current solution to obtain a new solution to be used in the next iteration. A move is applied even if 
it is a non-improving one, i.e. it does not lead to a solution better than the current solution. To escape 
from local optima and to prevent cycling, a subset of moves is classified as tabu (or forbidden) for certain 
number of iterations. The classification depends on the history of the search, particularly as manifested in 
the recency or frequency that certain moves of solution components, called attributes, have participated in 
generating past solutions. A simple implementation, for example, might classify a move as tabu if the 
reverse move has been made recently. These restrictions are based on the maintenance of a short-term 
memory function (the tabu list), which determines how long a tabu restriction will be enforced, or 
alternatively, which moves are admissible at each iteration.  

The tabu tenure (i.e. the duration for which a move will be kept tabu) is an important feature of tabu 
search, because it determines how restrictive the neighborhood search is. The tabu restrictions are not 
inviolable under all circumstances and a tabu move can be overridden under some conditions. A condition 
that allows such an override is called an aspiration criterion. For example, an aspiration criterion might 
allow overriding a tabu move if the move leads to a solution, which is the best obtained so far.  
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Tabu_search() 
{ 

initialize the short-term memory 
generate a starting solution 0s  

0
* sss,    /*s is current solution and s* is best solution found so 

far*/ 
for(i=1; i<=maxtry; i++) { 

bestmovevalue= 
for (all candidate moves in the neighbourhood) 

if ( the candidate move is admissible) { 
obtain the neighbor solution s  by applying a candidate 
move to the current solution s 
movevalue= c(s))sc(    /* c(s)is the objective function  

   to be optimized */ 
if (movevalue<bestmovevalue){ 

bestmovevalue=movevalue 
ss'  

} 
}  

}  
update the short term memory function 

if ))c(s)(c(s' *  'ss*   
'ss   

} 

Figure 1. A general Framework of Tabu Search 

5. Object Placement and Replication with Tabu Search Algorithm 

The replica placement problem described in section 4 reduces to finding a 0-1 assignment of the matrix X 
that minimizes the cost function (4) subject to a set of constraints (constraints (5) to (8)). The time 
complexity of this type of problems is exponential. In this section, we specialize the basic tabu search into 
a specific algorithm for the object allocation and replication problem. This implies turning the abstract 
concepts of tabu search, such as initial solution, solution space, neighborhood, move generaration, tabu 
criteria and others, into more concrete, problem, specific, and implementable definitions. 

The core of the proposed tabu search algorithm for object replication is given in Figure 2. The input 
parameters to the algorithm are the number of objects (input parameter no_of_objects), number of servers 
in the network (input parameter no_of_servers), the network topology (input parameter topology), and 
maximum number of successful moves the algorithm makes before terminating (input parameter 
maxmoves).  

The routine tabu_search() makes use of other routines to perform the changes in the solution space. 
Some important routines are init_solution(), init_history(), compute_cost(), select_site(), 
select_best_move() and update_history(). A detail description of these routines is given in the following 
sections. Other routines are self-explanatory and properly commented in the algorithm given in Figure 2. 
We also use two arrays N and R of sets that store the current allocation of all the objects to servers (called 
the residence set) and objects that are allocated to a specific node respectively. 

The final output of the algorithm is an array of residence sets (a residence set Rk contains the server IDs 
on which object k is replicated).  It is important to correctly define the parameters of the algorithm and to 
implement it as efficiently as possible to reduce the overall complexity and computation time. In the 
following sections, we describe how the important routines can be implemented. 
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residence_set  
tabu_search(no_of_objects,no_of_servers,topology,maxmoves) 
{ 

object_set N[n];    //N[i] is set of objects assigned at site i 
residence_set R[m]; //R[i] is a set of nodes at which object i  

  // is assigned 
 
initial_solution(R,N,no_of_objects, no_of_sites); //initail 
schedule 
init_history(history);   //initialize history 
cost_value=compute_cost(R) //compute cost of residence set 
best_value=cost_value;   // used by aspiration criterion 
best_residence_set=R;  //set residence found so far 
nmoves=0;      //moves made so far 
for(i=1; i<=maxtry; i++) { // maxtry > maxmoves 

siteinstance=select_site(no_of_servers);  //select a site 
neigh_size=get_neighbourhoodsize(n,topology); 
//select the neighborhood set of the selected site 
neighborhood=select_ 
neighborhood(topology,siteinstance,neigh_size); 
object_instance=select_object(no_of_objects); //a random object 
 
best_move=select_best_move(no_of_objects, neighborhood, 
       N[siteinstance], R) 

 apply_move(best_move,R); 
new_cost=compute_cost(R); 
update(N,R)//update N w.r.t. new R 
if(not tabu(best_move.move) or new_cost < best_value)  { 

nmoves++; 
update_history(history,best_move.move); 
if (new_cost < best_value and ferasible(R)){  
   best_residence_set=R; 
  best_value = new_cost; } 

} 
else { undo_move(best_move,R); undo_object_set(best_move,N); }    
if nmoves>maxmoves break; 

} //for 
return best_residence_set; 

} 
 

Figure 2. The core of Tabu Search Task Scheduling Algorithm 

5.1. Initial Solution 

The routine init_solution() uses a greedy algorithm to get the initial solution. It proceeds as follows: For each 
object k whose storage and processing requirements are less than the storage and processing capacity of site 1, 
calculate the profit (in terms of cost function) of putting a copy of object k on site 1. Sort the objects in 
descending order of their profits. Starting with object 1 in the sorted list, replicate objects one by one on site i 
until  all the objects are replicated or there is no more capacity at site i to hold any other object.  Repeat the 
same procedure for remaining m-1 sites. The complete algorithm is given in Figure 3. Note that this method 
ensures that the initial solution satisfies all the constraints and hence is a feasible solution.  
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initial_slution(R, N, no_of_objects, no_of_nodes) 
{ 

initilize(N);   // array of empty object sets 
initialize(R);  // array of empty residence sets 
for (i=1;i<=no_of_nodes;i++) 
   for (j=1;i<=no_of_objects;j++){ 

if (size[j] <= storage_capacity[i] and load[j]<= 
load_capacity[i]) 
{ 

object[j].profit=calculate_proft(i,j); 
object[j].id=j; 

   } 
   sort_descending(object); 
   j=1; 
   while (storage and load constraint satisfied) { 

assign_object(object[j].id,i); //assign object to site i 
N[i]=N[i]  {object[j].id} 
R[object[j].id]=R[object[j].id]  {i} 
j++; 

   } //while 
} //for 

} 
 

Figure 3. Algorithm to Find Initial Solution 

5.2. Move Generation 

For our replication algorithm, the set of all possible solutions consists of all the possible permutations of 
the objects subject to the constraints. To generate a new allocation, it is possible to move an object from 
one site to another site (object migration) or put an additional copy of the object on  a node (object 
replication).  

The proposed algorithm (shown in Figure 2) generates a new move in four steps. First, select site () 
routine randomly selects a site. Then find neighborhood () finds a subset of sites from the given network 
topology that should be considered for object replication and migration. In our simulation, it was 
observed that the neighborhood should include all the sites that are directly connected to the site selected 
by select site () routine for efficient and better quality solution. However, generally, any number of nodes 
can be selected as a neighborhood.  Then the routine select_best_move () (given in Figure 4) selects the 
best valid move in the neighborhood set. The routine considers the following moves: 

1.  (migrate,object,n,neighborhood) – That is, migrating an object from site n to another site in the 
neighborhood. 

2. (replication,object,n,neighborhood) – That is, replicating an object already residing on site n to 
another site in the neighborhood. 

3. (add,object,n) – That is, adding an object not currently replicated at site n. 

The best move selected by the routine is applied to the current solution to obtain the new solution by 
calling routine apply move (). 
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move_struct select_best_move(n, neighbourhood, N, R) 
{ 

// n is randomly selected node 
// N is set of objects assigned to node n 
// R is the array of residence set 
// move_struct is struct that contain move and profit  
// as its attributes 

 
best_move.profit=0; 
for (each p in neighborhood) { 

profit=evaluate_move(N,transfer,i,n,p); 
if (profit > best_move.profit and move is valid) { 

best_move.profit=profit; 
best_move.move=(transfer,i,n,p); 

} 
profit=evaluate_move(replicate,i,n,p); 
if (profit > best_move.profit and move is valid) { 

best_move.profit=profit; 
best_move.move=(transfer,i,n,p); 

} 
} //for 
o=select_node_not_in(N); 
profit=evaluate_move(add,o,n); 
if (profit > best_move.profit and move is valid) { 

best_move.profit=profit; 
best_move.move=(transfer,i,n,p); 

} 
return best_move; 

} 
 

 

Figure 4. Algorithm to Select the Best move 

5.3. Tabu Lists 

The chief mechanism for exploiting memory in tabu search is to classify a subset of moves in the 
neighborhood as forbidden (tabu). This classification depends on the history of the search, particularly 
manifested in the recency or frequency that certain moves or solution components have participated in 
generating past solutions. We use the following tabu criteria to make certain moves tabu. 

5.3.1 Recency Tabu 

There are three kinds of moves in our algorithm as explained before The first one is (migrate, object,n,m) 
and has a reverse move expressed as (migrate,object,m,n). The second move is (replicate,object,n,m) with 
a reverse move (replicate,object,m,n). The last move is (add,object,n) and has a reverse move 
(migrate,object,n,m). A move is prohibited (or is tabu) if its reverse has been executed recently. Unlike 
standard tabu search in which the value of tabu tenure is fixed, we determine the tabu tenure of a move 
through a feedback (reactive) mechanism during the search. The tabu tenure of a move is equal to one at 
the beginning (the inverse move is prohibited only at the next iteration), and it increases only when there 
is evidence that diversification is needed, and it decreases when this evidence disappears. In detail, the 
evidence that diversification is needed is signaled by the repetition of previously visited configurations. 
All configurations found during the last I iterations of the search are stored in memory (use of a queue is a 
possible implementation strategy). After a move is executed, the algorithm checks whether the current 
configuration has already been found and it reacts accordingly (tabu tenure of the move increases if a 
configuration is repeated, it decreases if no repetition occurred during a sufficiently long period).  

5.3.2. Same Cost Value 

This is a powerful tabu to diversify the search when stuck in local optima. This tabu is triggered if the 
same value of the cost function has been obtained during the last c iterations, where c is specified by the 
user. When this tabu is switched on, all solutions with a cost value equal to the cost value selected during 
that period are tabued. The user can also specify the tenure of the tabu.  
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5.4. Aspiration Criterion 

Tabu conditions based on the activation of some move attributes may be too restrictive and result in 
forbidding a whole set of unvisited moves which might be attractive. The aspiration criterion allows 
overriding a tabu move under certain conditions. The proposed algorithm overrides a tabu restriction if 
the move leads to a solution better than the best found so far. This is the only aspiration criterion used by 
the proposed algorithm. 

6. Experimental Results 

This section presents some performance measures obtained by simulation of the proposed algorithm. 
Since the object replication algorithm is NP-complete, computing the exact (optimal) solution is too 
computationally intensive to be useful in practice. Similar to other studies, we compare the performance 
of our algorithm with four well-known algorithms proposed in the literature. These are: random allocation 
algorithm [23], greedy algorithm [12], hot spot [23], and Max-router fan-out placement algorithm [24].  

In our simulation, we generated two types of random network topologies: random trees and random 
graphs. The reason for selecting tree network topology is the fact that most of the distributed web server 
systems are organized as trees.  We use the random graph topology to show the effectiveness and 
applicability of the proposed algorithm to any other type of topology that might be suitable for a 
particular web server system. To generate a random tree, we wrote a program that takes two parameters: 
the total number of nodes and the maximum degree of a tree node. Starting from the root node, we 
recursively create random children until the total number of nodes specified is reached. In our simulation, 
we used trees having 100-600 nodes and the maximum degree of 3-10 (a tree with a higher number of 
nodes has a higher degree). 

To generate random graphs, we use the GT-ITM internetwork topology generator [36]. In particular we 
use three network models: pure random, Waxman, and Transit-Stub. In the pure random model, vertices 
are distributed at random locations in a plan and an edge is added between a pair of vertices with a 
probability p. In the Waxman model, the probability of an edge from node u to v is given by p(u,v)=α e-

d/(βL), where 0 < α and β ≤ 1 are the parameters of the model, d is the Euclidean distance from u to v and L 
is the maximum distance between any two nodes. The Transit-Stub model generates hierarchical graphs 
by composing interconnected transit and stubs (for details see [37]). We use a variety of parameters for 
each network model. 

The total objects to be replicated were varied from 1000 to 2000. In each simulation run, we used 
different object sizes which follow a normal distribution. The average object size is taken as 10 KB and 
maximum size was taken as 100KB. About 64% of objects sizes were in the range of 2KB and 16KB. The 
storage capacity of a server was set randomly in such a way that total storage of all the servers was 
enough to hold at least one copy of each object at one of the servers. In each trial, we run the replica 
placement algorithms for 200,000 requests for different objects. We created log files by generating 
requests for objects for multiple sessions. This log file was used by the proposed algorithm to collect 
various statistics. 

During a simulation run, each site keeps a count c of the total number of requests it receives for an object. 
The latencies are updated periodically for each replica using the formula )/(1  T  where  is the 

average arrival rate and  is the average service time. Exponential service time is assumed with an 
average service rate of 100 transactions/second. The value of T is propagated to the clients in the shortest 
path spanning tree. The cost (latency) at different sites is computed as discussed in section 3.1. At the end 
of every 20,000 requests, the mean latency required to service all the 20,000 requests is calculated and 
used as a performance measure of the simulated algorithms. The average number of iterations for tabu 
search algorithm was fixed from 15000 to 150000 depending on the problem size. The number of 
successful moves when the algorithm was forced to terminate was fixed at 1/2 of the total number of 
iterations. The minimum neighborhood size was taken equal to or more than the number of sites directly 
connected to a site whose neighborhood is to be searched.  

To compare the algorithms, we run each of the algorithms for the same input parameters (network 
topology, network size, number of objects, size of each object, etc) as described above and compute the 
value of the cost function given by (3). Each algorithm is run for a number of times by varying different 
input parameters and the average cost value (also referred to as latency) is then compared.  A similar 
approach has been used by almost all the other researchers. 
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In the first set of experiments, we compared the algorithms for tree topology. Figure 5 shows the average 
latency for different tree sizes. The figure shows that the average latency decreases for all the algorithms 
as the number of sites increases in the system. This is because of the fact that as the number of sites 
increases, more replica of an object can be placed. Also, note that the performance of the proposed 
algorithm is better (i.e. tabu search has the minimum latency value) than the other four algorithms 
demonstrating the effectiveness of the proposed algorithm. However, there were about 3.5% cases when 
tabu search produced inferior quality solution as compared to another algorithm. Also, there were about 
24% cases when the proposed tabu search algorithm produced solutions which were more than 50% better 
than the closest ones found by any other algorithm. The figure 6 shows the average performance of the 
algorithms for all the simulation runs for tree topologies with 100-600 nodes. The figure clearly 
demonstrates that the proposed algorithm outperforms the rest of the four algorithms.  

In the second set of experiments, we repeated our simulation for pure random, Waxman, and Transit-Stub 
graph topologies. The results (figure 7 and 8) show a trend similar to the results obtained for tree 
topology. The proposed algorithm performs better than the other four algorithms.  The average of all the 
simulation runs (both for trees and graphs) are shown in figure 9 and figure 10. These results show that 
the proposed algorithm out-performs all other algorithm, no matter what network topology and other 
parameters are used. We also noted in our simulation that when the network topology is changed while 
keeping all the other parameters constant, the proposed algorithm was able to find the solutions better 
than other four algorithms in more than 95% of cases. Also, the change in the bandwidth did not have any 
negative impact on the relative performance of the proposed algorithm. 

In our simulation, we also studied the effect of change in the access frequencies on different algorithms and the 
results of some simulation runs are shown in figure 11 and 12. The results were obtained by evaluating the 
percentage improvement in the latency (cost function) when the object access frequencies (i.e. the request 
arrival rate at various nodes) were changed, for a simulation run. The request arrival rate for objects at the 
network nodes were changed either randomly, by a constant factor or it follows a Poisson distribution. The 
proposed algorithm adjusted the replication of object better than all the other algorithms and was able to find 
better object replication matrix consistent with the results reported in this paper.  

Conclusions 

Object replication on a cluster of web servers is a promising technique to achieving better performance. 
However, one needs to determine the number of replicas of each object and their locations in a distributed 
web server system. Choosing right number of replicas and their locations is a non-trivial problem. In this 
paper, we modeled the object replication and allocation as a 0-1 optimization problem. Then a tabu search 
algorithm is proposed to obtain solution to this problem. A detailed description of the proposed algorithm 
and its implementation considerations are discussed. The proposed algorithm has been compared with 
four other algorithms through a simulation study. A comparison of the proposed algorithm with four other 
algorithms demonstrates the superiority of the proposed algorithm.  
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Figure 5. Average Latency for Different Tree Sizes 
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Figure 6. Average Latency for all Simulation Runs 
for Tree Topology 
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Figure 8. Average Latency for all Simulation Runs 
for Graph Topologies 
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Figure 9. Average Latency for all Simulation Runs 
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Figure 10. Average Latency for Different 
Algorithms for all the Simulation Runs 
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Figure 11. Percentage Improvement for Different 
Network Sizes in Latency when Object Arrival 

Rates are Changed 
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