
Studies in Informatics and Control, Vol.14, No. 2, June 2005 111

Advanced Queue Management Algorithms for
Computer Networks

Jalal Al-Frihat

Ministery of Education, p.o.box 1646

Amman,

JORDAN

jal_fr10@yahoo.com

Keywords. Fuzzy logic control, congestion control, active queue management, TCP/IP

Abstract: The use of the Internet for time-sensitive services, such as voice and video applications, requires a predictable quality of
service. The TCP/IP differentiated services architecture was introduced to achieve such performance. Network congestion control,
however, still remains a critical and high priority issue and a number of alternative schemes such as random early detection (RED)
and its variants were proposed to handle congestion. This paper presents an advanced active queue management (AQM) scheme to
provide congestion control in TCP/IP best-effort networks by using a fuzzy logic approach. This advance scheme uses linguistic
knowledge to implement better understood nonlinear probability discard functions, achieve better differentiation for packet
discarding behaviors for aggregated flows, thus providing a better service quality to different kinds of traffic whilst maintaining high
utilization.

Mr. Jalal Al-Frihat was born on January 12, 1962. He received his MSc degree in control system and computer engineering from
Automatic Control and Computers Faculty, Polytechnical Institute "Traian Vuia" Timisoara, Romania in 1987. As a PhD student his
research interests include computer networks, security, network applications.

1. Introduction

It is generally accepted that the problem of network congestion control remains a critical issue of high
priority, especially given the growing size, demand, and bandwidth of the increasingly integrated services
network. As the growth of the Internet increases it becomes clear that the existing congestion control
solutions deployed in the Internet transport control protocol are becoming less effective.

The existing TCP congestion avoidance mechanisms and its variants, while necessary and powerful, are not
sufficient to provide good service in all circumstances. Basically, there is a limit to how much control can
be accomplished from the edges of the network.

The RED algorithm [3] was proposed as an active queue management (AQM) approach. RED proposes a
strategy for when to start dropping packets and which packets to drop. The RED approach can be
contrasted with the tail drop (TD) queue management approach, employed by common Internet routers,
where the policy for discarding arriving packets is based on the overflow of the output port buffer.
Contrary to TD, active queue management mechanisms start dropping packets earlier in order to be able
to notify traffic sources about the incipient stages of congestion. RED has been designed to replace TD
and is currently implemented in commercially available routers, but it is not as yet widely deployed.

Apart from RED, many other variants of RED, such as A-RED [4], BLUE [2], REM [5] and other
schemes were proposed. In this paper, the strength of fuzzy logic in controlling complex and highly
nonlinear systems is used to address congestion control problems.

The application of fuzzy control techniques to the problem of congestion control in networks is suitable
due to the difficulties in obtaining a precise mathematical model using conventional analytical methods..

There is increasing empirical knowledge gathered about RED and its variants, and several ‘rules of
thumb’ have appeared in many papers.

In this paper it is highlighted the potential of the methodology based on a simple rule base and simulation
examples. The fuzzy knowledge base is devised and based on heuristic methods and experience. Some
comparison was also made between proportional integral (PI) and Adaptive REDed (A-RED) algorithms.

The paper is organized as follows. Section 2 presents RED algorithm. In Section 3 the Adaptive RED is
reviewed. The Fuzzy logic control with explicit marking is developed in Section 4. Section 5 is dedicated
for some simulation results and finally in Section 5 conclusions of this paper are presented.

112 Studies in Informatics and Control, Vol.14, No. 2, June 2005

2. Random Early Detection (RED)

Random Early Detection (RED) [1] is a proactive queue management technique, whereby a router
discards one or more incoming packets before its buffers overflow. Though RED is primarily designed
for use on a single FIFO queue, it can be extended to multiple queue systems such as fair queuing [4] in
which RED is individually applied to each queue.

RED has been developed with four basic objectives [3]. First, it avoids congestion by detecting the onset
congestion and potential for congestion rather than reacting to it. Second, it avoids bias against bursty traffic by
acting probabilistically. Third, it avoids global synchronization by breaking the oscillation between heavy and
light state of the network. Fourth, it maintains a bound on the average delay by controlling the average queue
length. RED algorithm performs mainly two crucial steps; an average queue size, AvgQ, computation and a
packet drop probability, Pa. As shown in the generalized RED algorithm in Figure 1, the average queue size is
computed every time a new packet arrives at the output queue.

Upon packet arrival do
 Compute the average queue size AvgQ

if hTAvgQ then

 drop the packet

else if hl TAvgQT then

 drop packet with probability Pa
end if

end do

Figure 1: Random Early Detection Algorithm

To determine whether an incoming packet should be dropped, RED first computes the average queue size, AvgQ.
It also uses two thresholds Tl and Th; a lower and an upper threshold, respectively, to control the growth of AvgQ.

The average queue size, AvgQ, is used to filter out transient congestion at the router and avoid any bias
against bursty traffic. AvgQ is computed using an exponentially weighted moving average (EWMA) of
the previous queue lengths. If we have 0Q

QWAvgQWAvgQ qq)1((1)

in other case m is computed as the ration between queue_idle_time and typical_transmission_time and

AvgQWAvgQ m
q)1((2)

where, the RED parameter Wq determines how rapidly AvgQ changes in response to changes in Q. m is a
linear function of time to account for the periods when the queue is empty. The algorithm estimates the
number of packets that could have been transmitted by the router during the idle period, and then uses that
in the computation of the AvgQ when a new packet arrives. It is done this way because RED computes
AvgQ at the packet arrival time rather than at a fixed time interval.

Between [Tl, Th)›, RED assigns a probability of discard for an incoming packet that depends on:
(1) the proximity of AvgQ to Th. As AvgQ approaches Th __, the probability of discard approaches its

maximum value Pmax. In order to incorporate this dependence, RED calculates a temporary

probability bP _, that increases linearly from 0 when AvgQ = Tl to the maximum value Pmax when

AvgQ = Th

lh

l
b TT

TAvgQ
PP

 max (3)

(2) the count c of consecutive packets that escaped discard. As this count increases, the probability of
discard also increases. This property is incorporated to not penalize bursty sources by spacing the
discards quite evenly rather than in a cluster. Hence, the actual packet dropping probability, Pa is a
function of Pb given by:

cP
P

b

a

 1

1
 (4)

Studies in Informatics and Control, Vol.14, No. 2, June 2005 113

where c is the number of packets since last discard. For a given value of c, Pa increases gradually from 0 to
Pmax. Keeping other variables constant and varying c, it can be observed that value of Pa increases very slowly
and then rises dramatically until it reaches 1, making it force a more or less uniform spacing of discards.

3. Adaptive Random Early Detection (A-RED)

In Adaptive RED [4] it is argued that congestion notification does not directly depend on the number of
connections multiplexed over the link. In order for an early detection algorithm to work effectively,
congestion notification must be given at a rate sufficient enough to prevent packet loss due to buffer
overflow, but not too high to cause an under utilization of the link.

Upon packet arrival do Update AvgQ
 if Tl < AvgQ < Th then
 status = Between
 else if AvgQ < Tl and status Below then
 status = Below

 /maxmax PP

 else if AvgQ > Th and status Above then
 status = Above

 maxmax PP

 end if
 end do

Figure 2: Adaptive Random Early Detection Algorithm

A-RED [4] reduces the packet loss rate by inferring whether or not RED should become more or less
aggressive. This is performed by examining the variations in the average queue length, AvgQ. As given in
Figure 2, if AvgQ oscillates around Tl, then the early detection mechanism is being too aggressive. If
AvgQ oscillates around Th, then the early detection mechanism is being too conservative. The algorithm
thus dynamically adjusts Pmax, based on the region of the AvgQ oscillation. Pmax is scaled using constant
factors and depending on which threshold it crosses. Pmax is multiplied by when the early detection
is being too conservative and is divided by when the early detection is being too aggressive.

4. Fuzzy Logic Controler FLC Explicit Marking

The design of a fuzzy control system is based on a fuzzy logic controlled AQM scheme to provide congestion
control in TCP/IP best-effort networks. The system model of FLC is shown in Figure 3, where all quantities are
considered at the discrete instant kT, with T the sampling period, e(kT) = qr – q is the error on the controlled
variable queue length, q, at each sampling period, e(kT – T) is the error of queue length with a delay T (at the
previous sampling period), p(kT) is the mark probability, and Gin and Go are scaling gains.

The proposed fuzzy control system is designed to regulate the queues of IP routers by achieving a specified
desired queue size, qr, in order to maintain both high utilization and low mean delay. A fuzzy inference system
(FIS) is designed to operate on router buffer queues, and uses linguistic rules to mark packets in TCP/IP networks.

-

qp

e

Plant
Go

Fuzzy
Logic

Controlled
AQM

Gin

d

Gin

qr e

Figure 3: Fuzzy Logic Control Structure

114 Studies in Informatics and Control, Vol.14, No. 2, June 2005

As shown in figure 3, the FIS dynamically calculates the mark probability behavior based on two
network-queue state inputs: the error on the queue length (i.e., the difference between the desired queue
length and the current instantaneous queue length) for two consecutive sample periods.

The fuzzy controller is implemented with marking capabilities, so that FLC routers have the option of
either dropping a packet or setting its ECN bit in the packet header, instead of relying solely on packet
drops. The decision of marking a packet is based on the mark probability, which is dynamically
calculated by the FIS.

The scaling gains, Gin and Go, shown in Figure 1, are defined as the maximum values of the universe of
discourse of the FIS input and output variables, respectively. In order to achieve a normalized range of the

FIS input variables from -1 to 1, the input scaling gain Gin is set to be equal to -1/(qr–QueueBufferSize),
if the instantaneous queue length is greater than the desired one; otherwise SGi is equal to 1/qr. The
output scaling gain Go is determined so that the range of outputs that are possible is the maximum, but
also ensuring that the input to the plant will not saturate around the maximum.

The two input variables the error on the queue and the same with one sampling period delay are fuzzyfied on
the universe -1 to 1 with five linguistic terms as follows negative big (NB), negative small (NS), yero (Z),
positive small (PS), positive big (PB). The output variable, mark probability with the universe of discourse 0 to
1 has the following linguistic terms: zero(Z), very small (VS), small (S), big (B), very big (VB).

Following the approach in [4], Go is set to a value indicating the maximum mark probability (e.g. 10%)
that can also be adjusted in response of changes of the queue length.

The FIS uses linguistic rules to calculate the mark probability based on the input from the queues shown
in Table 1. Usually multi-input FISs can offer better ability to linguistically describe the system
dynamics. We expect that we should be able to tune the system for a better performance, and improve the
behavior of the queue, by achieving high utilization, low loss and delay. The dynamic way of calculating
the mark probability by the FIS comes from the fact that, according to the error of queue length for two
consecutive sample periods, a different set of fuzzy rules apply. Based on these rules and inferences, the
mark probability is calculated more dynamically than other AQM approaches [3, 4].

This point can be illustrated based on the decision surface of the FIS used in the FLC scheme. The
decision surface and the linguistic rules shown in Table 1 provides some insights on the operation of
FLC. The mark probability behaviour under the region of equilibrium (i.e., where the error on the queue
length is close to zero) is smoothly calculated. On the other hand, the rules are aggressive about
increasing the probability of packet marking sharply in the region beyond the equilibrium point. These
rules reflect the particular views and experiences of the designer, and are easy to relate to human
reasoning processes and gathered experiences.

Table 1. Rule Base – linguistic Rules

e(kT-T) p(kT)
NB NS Z PS PB

NB B B VB VB VB
NS VS S S B VB
Z Z Z VS VS S

PS Z Z Z VS VS

e(kT)

PB Z Z Z Z Z

Usually, to define the linguistic rules of a fuzzy variable, Gaussian, triangular or trapezoidal shaped
membership functions are used. Since triangular and trapezoidal shaped functions offer more
computational simplicity, we have selected them for the rule base. Then, the rule base is fine tuned by
observing the progress of simulation, such as packet marking and delay occurrences, and throughput
curves. Any gain in throughput must be traded off by a possible increase in the delay experienced at the
terminal queues. Alternatively, an adaptive fuzzy logic control method can be used, which is based on
tuning the parameters of the fuzzy logic controller on line, using measurements from the system. The
tuning objective can be based on a desired optimization criterion, for example, a trade-off between
maximization of throughput with minimization of end-to-end delay experienced by the users.

The design of FLC aims to generally provide better congestion control and better utilization of the
network, with lower losses and delays than other AQM schemes [3,4], especially by introducing
additional input variables and on-line self-tuned rule base.

Studies in Informatics and Control, Vol.14, No. 2, June 2005 115

5. Simulation Results
In this section the performance and robustness of the proposed FLC AQM in a set of environments are
evaluated, and compare with A-RED [4], and PI controller [5]. The version 2.1b9a of NS-2 [9] simulator
was used in simulations. The network topology used is shown in Figure 4. The TCP/Reno with an
advertised window of 240 packets is used.

Router
A

Router
B

 S1

 S2

 SN
 D

Figure 4: Network Topology

The size of each packet is 1000 bytes. The buffer size of all queues is 500 packets. AQM is used in the queues
of the bottleneck link between router-A and router-B. All other links have a simple TD queue. All sources S1,
S2,…, SN with N flows are greedy sustained FTP applications and in the last simulation a web-like traffic is
introduced. The links between all sources and router-A have the same capacity and propagation delay pair (C1,
d1), whereas the pairs (C2, d2) and (C3, d3) define the parameters of the bottleneck link between router-A and
router-B, and the link between router-B and the destination D, respectively.

The sampling period for FLC AQM is fixed to 0.006 sec as in [5]. The desired queue size of all AQM schemes
is set to 200 packets, as this is used in [5] (for A-RED, we set the minimum threshold to 100 packets, and the
maximum to 300, giving an average queue size of 200 packets). The simulation time is 100 sec. In the first
experiment is investigated the effect of the traffic load factor N, by increasing N from 100 to 200, 300 and
400. The expected queuing delay experienced at router-A is 106.7 ms (15Mbps link capacity corresponds
to 1875 packets/sec; for a queue size of 200 packets the expected mean delay is 200/1875 =0.1067. From
simulation it can be concluded by noticing the packet losses as traffic load increases, that FLC has the
lowest drops. FLC has stable and low packet loss over large traffic load. A-RED has the largest drops
with a large increase of packet loss with respect to higher loads.

In the next experiment the utilization of the bottleneck link with respect to the mean queuing delay was
investigated. FLC outperforms other AQM schemes on both high utilization and low mean delay, exhibiting a
more stable, and robust behavior. The other AQM schemes have a poor performance as the number of traffic load
increases, achieving much lower link utilization, and large queuing delays, far beyond the expected value. Table 2
lists the statistical results of the mean queuing delay and its standard deviation. It is clear that FLC has the lowest
variance in queuing delay, resulting in a stable and robust behavior. On the other hand, the other AQM schemes
exhibit very large queue fluctuations with large amplitude that inevitably deteriorates delay jitter.

Table 2: Mean Delay and Standard Deviation for First Experiment
 Mean-Delay

(ms)
Standard Deviation

(ms)
PI 120.40 55.80

FLC 104.33 26.24
100

sources
A-RED 107.53 73.84

PI 145.22 87.55
FLC 113.25 31.27

200
sources

A-RED 112.55 51.29
PI 172.21 97.25

FLC 122.54 37.54
300

sources
A-RED 121.35 52.21

PI 184.27 99.22
FLC 125.23 31.35

400
sources

A-RED 157.14 58.57

Next the performance of AQM schemes are investigated by introducing additional web-like traffic that
can be seen as noise-disturbance to the network. The number of flows is kept to 100 for FTP applications,
with an additional 100 web-like traffic flows. Two specific values of the desired queue size (i.e., 100 and
200 packets) were chosen to examine the robustness of the AQM schemes. For both cases the results are
shown in Table 3 as the mean queuing delay, its standard deviation and packet losses.

116 Studies in Informatics and Control, Vol.14, No. 2, June 2005

Table 3: Mean Delay and Standard Deviation and Packets Drops for the Second Experiment

 Mean delay (ms) Standard
dev.(ms)

Drops(pack.)

PI 71.60 45.27 1031
FLC 56.71 22.62 169

Desired queue
size 100

A-RED 57.15 41.68 1154
PI 137.71 38.96 1023

FLC 106.77 23.35 365
Desired queue

size 200
A-RED 109.21 69.27 2715

FLC keeps a queuing delay close to the expected one with the lowest variance, while it exhibits the
highest link utilization with the lowest drops. The other AQM schemes exhibit very large variations of the
queue; consequently, this has the effect of having degraded link utilization with large number of drops.

6. Conclusions

In this paper an advanced active queue management algorithm, based on fuzzy logic is presented in
comparison with some other AQM approaches. This algorithm for explicit marking is implemented in
TCP/IP networks, using fuzzy logic techniques, in order to provide effective congestion control by
achieving high utilization, low losses and delays. The proposed scheme is contrasted with a number of
well-known AQM schemes through a wide range of scenarios.

The proposed fuzzy logic approach for congestion control is implemented with marking capabilities
(either dropping a packet or setting its ECN bit). The design of the fuzzy knowledge base is kept simple,
using a linguistic interpretation of the system behavior.

FLC controller is shown to exhibit many desirable properties, like robustness and fast system response,
and behaves better than other AQM schemes in terms of queue fluctuations and delays, packet losses,
with capabilities of adapting to high variability and uncertainty in network.

REFERENCES

1. Network Simulator, NS-2, Homepage, http://www.isi.edu/nsnam/ns/.

2. BRADEN, B., Recommendations on Queue Management and Congestion Avoidance in the
Internet, IETF RFC2309, April 1998.

3. FENG W, KANDLUR D, SAHA D, SHIN K., Blue: A New Class of Active Queue Management
Algorithms. Technical Report UM CSE-TR-387–99, 1999.

4. FLOYD S., V. JACOBSON, Random Early Detection gateways for congestion avoidance,
IEEE/ACM Trans. on Networking, Aug. 1993.

5. FLOYD,S., R. GUMMADI, S. SHENKER, Adaptive RED: An Algorithm for Increasing the
Robustness of RED’s Active Queue Management, Technical report, ICSI, August 2001.

6. HOLLOT,C.V., V. MISRA, D. TOWSLEY, W.-B. GONG, Analysis and Design of Controllers for
AQM Routers Supporting TCP Flows IEEE Trans. on Automatic Control, (47), 6, pp. 945-959, 2002.

7. PEDRYCZ, W., Computational Intelligence: An Introduction, CRC Press, 1998.

8. PITSILLIDES,A., A. SEKERCIOGLU, Congestion Control, Computational Intelligence in
Telecommunications Networks, (Ed. W. Pedrycz, A. V. Vasilakos), CRC Press, pp.109-158, 2000.

9. PLASSER, E., T. ZIEGLER AND P. REICHL, On the Non-linearity of the RED Drop Function,
in Proc. of Int. Conference on Computer Communication (ICCC), August 2002.

10. RAMAKRISHNAN, K., S. FLOYD, The Addition of Explicit Congestion Notification (ECN) to
IP, IETF RFC 3168, September 2001.

11. SEKERCIOGLU, A., A. PITSILLIDES, A. VASILAKOS, Computational intelligence in
management of ATM networks, Soft Computing Journal, 5(4), pp. 257-263, 2001.

12. ZIEGLER,T., S. FDIDA, AND C. BRANDAUER, Stability Criteria of RED with TCP Traffic, in
Proc. of IFIP ATM&IP Working Conference, Budapest, 2001.

