
Studies in Informatics and Control, Vol.14, No.2, June 2005 117 

An Acceleration of Gradient Descent Algorithm 
with Backtracking for Unconstrained Optimization 

Neculai Andrei 

National  Institute for Research and Development in Informatics, 

Center for Advanced Modeling and Optimization, 

8-10, Averescu Avenue, Bucharest 1, 

ROMANIA 

E-mail: nandrei@ici.ro 

Abstract. In this paper we introduce an acceleration of gradient descent algorithm with backtracking. The idea is to modify the 

steplength t k by means of a positive parameter  k , in a multiplicative manner, in such a way to improve the behaviour of the 

classical gradient algorithm. It is shown that the resulting algorithm remains linear convergent, but the reduction in function value is 
significantly improved. 

Keywords: gradient descent methods, backtracking, acceleration methods 

1. Introduction 

One of the first and very well known method for unconstrained optimization  

min f x( )           (1) 

where f R Rn:   is convex and continuously differentiable, is the gradient descent method, designed 

by Cauchy early in 1847 [3]. In this method the negative gradient direction is used to find the local 
minimizers. The algorithm starts with an initial point x dom f0  and generates a sequence of points 

according to the following iterative procedure: 

x x t dk k k k  1 ,          (2) 

where t k is the stepsize and d g f xk k k    ( ).   

The method proved to be effective for functions very well conditioned, but for functions poorly 
conditioned it is excessively slow, thus being of no practical value. Even for quadratic functions the 
gradient descent method with exact line search behave increasingly badly when the condition number of 
the matrix deteriorates. Early attempts to increase the performance of the method have been considered 
by Humphrey [9], Forsythe and Motzkin [7] and Schinzinger [14].  

As we know, at the current point xk the direction of the negative gradient is the best direction of search 

for a minimizer of function f , and this is the direction of gradient descent method. However, as soon as 

we move in this direction, it ceases to be the best and continue to deteriorate until it becomes orthogonal 
to  f xk( ).  That is, the method begins to take small steps without making significant progress to 

minimum. This is the major drawback of the gradient descent method, the steps it takes are too long, i.e. 
there are some other points zk on the  line segment connecting xk  and xk1 , where  f zk( )  

provides a better new search direction than   f xk( ).1  

The purpose of this paper is to present an acceleration of the gradient descent method. The idea is to modify 
the steplength t k (computed by backtracking) by means of a positive parameter  k in a multiplicative 

manner in such a way as to improve the behaviour of the classical gradient algorithm. It is shown that the 
resulting algorithm is linear convergent, but the reducing in function value is significantly improved. The 
structure of the paper is as follows. In section two we present the line search with backtracking and prove that 
the Armijo rule in a backtracking scheme generates steplengths bounded away from zero. Section 3 presents 
the accelerated gradient descent algorithm. It is shown that the accelerated algorithm reduces the function 
values with an exponent that is smaller that the corresponding exponent of gradient descent algorithm. Some 
numerical examples and comparisons are given in section 4. 



118 Studies in Informatics and Control, Vol.14, No.2, June 2005 

2. Line Search with Backtracking 

For implementing the algorithm (2) one of the crucial element is the stepsize computation. Many 
procedures have been suggested. In the exact line search the step tk  is selected as: 

t
t

f x tdk k k


arg min ( ).
0

        (3) 

In some special cases (for example quadratic problems) it is possible to compute the step tk  

analytically, but in most cases it is computed to approximately minimize f  along the ray 

 x td tk k : ,0  or at least to reduce f  sufficiently. In practice the most used are the  inexact 

procedures. A lot of inexact line search methods have been proposed: Goldstein [8], Armijo [1], Wolfe 
[16], Powell [13], Dennis and Schnabel [4], Fletcher [6], Potra and Shi [12], Lemaréchal [10], Moré and 
Thuente [11], and many others. In particular, one of the very simple and efficient line search procedure is 
the backtracking line search. This procedure considers the following scalars 0 0 5  . , 0 1   

and s g d dk k
T

k k  /
2

and takes the following steps based on the Armijo’s rule: 

Backtracking procedure 

Step 1. Consider the descent direction dk  for f  at point xk .  Set t sk .  

Step 2. While f x td f x t f x dk k k k
T

k( ) ( ) ( ) ,     set t t  .  

Step 3. Set t tk  .  

Typically,   0 0001.  and   0 8. ,  meaning that we accept a small portion of the decrease 

predicted by linear approximation of f  at the current point. Observe that, if d gk k  ,  then sk  1.  

Proposition 1. Suppose that dk is a descent direction and f x( )  satisfies the Lipschitz condition 

   f x f y L x y( ) ( )  for all x , y  in  x f x f x: ( ) ( ) 0 , where L  is a positive constant. 

If the line search satisfies the Armijo condition, then 

t min
L

g d

d
k

k
T

k

k


 











1

1
2,

( )
.

 
       (4) 

Proof. Set  K k t sk k1  : and  K k t sk k2  : .  Then for all k K 1 we have 

f f s g dk k k k
T

k  1   

and for all k K 2 : 

f f t g dk k k k
T

k  1  .  

By Armijo rule since t sk k/   for all k K 2 , we have 

f f x
t

d
t

g dk k
k

k
k

k
T

k   ( ) ,





 

for all k K 2 . Now, using the mean value theorem on the left side of this inequality, it follows that 

there exists  k  [ , ],0 1 such that 

g x
t

d d g dk
k

k k
T

k k
T

k( ) , 

   

for all k K 2 . 

 
 
 
 



Studies in Informatics and Control, Vol.14, No.2, June 2005 119 

Having in view the Lipschitz condition, from the above inequality, by Cauchy-Schwartz inequality, we have: 

t
L d g x

t
d g x d g x

t
d g x dk

k k
k

k k k k k
k

k k k

T

k 





2
     







( ) ( ) ( ) ( )  

     g d g d g dk
T

k k
T

k k
T

k( ) ,1  

for all k K 2 . 

Rearranging this inequality and combining it with the inequality corresponding for k K 1 we get the 

bound (5). (See also [15].)  

3. Accelerated Gradient Descent Algorithm 

In this section we present an accelerated gradient descent algorithm for solving unconstrained 
optimization problem (1). Considering the initial point x0 we can compute f f x0 0 ( ) , 

g f x0 0  ( )  and by backtracking determine t argmin
t

f x tg0 0 0
0 1


 

( ).  With these, the next 

iteration is computed as x x t g1 0 0 0   where again f1  and g1 can be immediately computed. Now, 

at the iteration k  1 2, ,  we know xk ,  f k and gk .  Using the backtracking procedure the stepsize 

t k can be determined with which the following point z x t gk k k  is computed. By backtracking 

procedure we get a t k  ( , ]0 1  such that: 

f z f x t g f x t g gk k k k k k
T

k( ) ( ) ( ) .     

 

With these, let us introduce the accelerated gradient descent algorithm by means of the following iterative 
scheme: 

,1 kkkkk gtxx           (5) 

where  k  0  is a parameter which follows to be determined in such a manner to improve the behaviour 

of the gradient descent algorithm. 

Now, we have: 

 f x t g f x t g g t g f x g o t gk k k k k k
T

k k k
T

k k k k( ) ( ) ( ) .     
1

2
2 2 2

 

On the other hand, for   0, we have: 

 f x t g f x t g g t g f x g o t gk k k k k k
T

k k k
T

k k k k( ) ( ) ( ) .        
1

2
2 2 2

2
 

Rejecting the high order terms we can write: 
f x t g f x t gk k k k k k k( ) ( ) ( ),           (6) 

where 

k k k
T

k k k
T

k kt g g t g f x g( ) ( ) ( ) ( ) .      1
1

2
1 2 2 2     (7) 

Let us denote: 

a t g gk k k
T

k  0,  

b t g f x gk k k
T

k k 2 2 ( ) .  
Observe that for convex functions bk  0.  Therefore 

k k ka b( ) ( ) ( ) .     1
1

2
1 2        (8) 

Now, we see that   k k kb a( )   and  k m( ) , 0 where m k ka b / .  More than this, 

k ( ) ,1 0  k m( )2 1 0    and    k ka( ) .0 0  Therefore, k ( )  is a convex quadratic 



120 Studies in Informatics and Control, Vol.14, No.2, June 2005 

function with minimum value in point m  and  

k m
k k

k

a b

b
( )

( )
.  




2

2
0  

Considering   m  in (6), we see that for every k  

f x t g f x t g
a b

b
f x t gk m k k k k k

k k

k
k k k( ) ( )

( )
( ),   


 

2

2
 

which is a possible improvement on the values of function f , (when a bk k ). 

Therefore, using this simple multiplicative modification of the stepsize t k as  k kt ,  where 

,/ kkmk ba   we get: 

f x f x t g f x t g g
a b

bk k k k k k k k
T

k
k k

k

( ) ( ) ( )
( )

     





1

2

2
   

  






f x a

a b

b
f xk k

k k

k
k( )

( )
( ),

2

2
      (9) 

since 

 a
a b

bk
k k

k





( )

.
2

2
0  

Now, in order to establish the algorithm we must determine a way for bk computation. For this, at point 

z x t gk k k  we have: 

,)~(
2

1
)()()( 22

kk
T
kkk

T
kkkkkk gxfgtggtxfgtxfzf   

where ~xk is a point on the line segment connecting xk and z.  On the other hand, at point 

x z t gk k k  we have: 

,)(
2

1
)()()( 22

kk
T
kkk

T
zkkkk gxfgtggtzfgtzfxf   

where g f zz   ( )  and xk is a point on the line segment connecting xk and z.  

Having in view the local character of searching and that the distance between xk and z  is enough small, 

we can consider ~ .x x xk k k   With these, adding the above equalities we get: 

bk =t g f x g t y gk k
T

k k k k
T

k
2 2  ( ) ,        (10) 

where y g gk z k  .  Now, we have all the elements to present our algorithm. 

Accelerated Gradient Descent Algorithm (AGD) 

Step 1. Consider a starting point x dom f0  and compute: f f x0 0 ( )  and  

g f x0 0  ( )  . Set k  0.  

Step 2. Using backtracking determine: t argmin
t

f x tgk k k
 


0 1

( ).  

Step 3. Compute: z x t gk k k  ,  g f zz   ( )  and y g gk z k  .  

Step 4. Compute: a t g gk k k
T

k ,  b t y gk k k
T

k  and  k k ka b / .  

Step 5. Update the variables: x x t gk k k k k  1  and compute f k1 and gk1 .   

Step 6. Test a criterion for stopping the iterations. If  the test is satisfied, then stop;  



Studies in Informatics and Control, Vol.14, No.2, June 2005 121 

otherwise consider k k 1 and go to step 2 

The gradient descent (GD) algorithm can be immediately particularized from AGD by skipping steps 3 
and 4 and considering  k  1 in step 5 where variables are updated. 

Observe that if a bk k , then  k  1.  In this case  k k kt t and it is possible that  k kt  1  or 

 k kt  1,  i.e. it is possible that the steplength  k kt to be greater than 1. On the other hand, if a bk k , 

then  k  1.  In this case  k k kt t  1, i.e. the steplength  k kt is reduced. Therefore, if a bk k , then 

 k  1  and the steplength t k computed by backtracking will be modified, by its increasing or reducing 

through factor  k , thus avoiding the algorithm to take orthogonal steps along the iterations.  

It is worth saying that if a bk k / ,2  then k k ka b( ) /0 2 0    and  k  1.  For any 

  [ , ]0 1 , k ( ) .  0  As a consequence from (6) we see that for any 

  ( , ),0 1 f x t g f xk k k k( ) ( ).   In this case, for any   [ , ]0 1 ,  k k kt t .  However, in our 

algorithm we selected  k m  as the point achieving the minimum value of k ( ).  

Proposition 2. Suppose that f is a strongly convex function on the level set  S x f x f x : ( ) ( ) .0  

Then the sequence xk generated by AGD converges linearly to x* .  

Proof. From (9) we have that f x f xk k( ) ( ), 1 for all k.  Since f is bounded below, it follows that 

  .0)()(lim 1 
 kk xfxf

k
 

Since f is strongly convex there are positive constants m  and M  such that mI f x MI  2 ( )  

on the level set S.  Suppose that x tg Sk k   and x tg Sk m k  , for 0 1 t .  

We have 

f x tg f x tg
a b

bk m k k k
k k

k

( ) ( )
( )

.   



2

2
 

But, from strong convexity we have the following quadratic upper bound on f x tgk k( ):  

.
2

)()(
2

2

2
2

2 kkkkk g
Mt

gtxftgxf   

Observe that for 0 1 t M/ ,     t Mt t2 2 2/ /  which follows from the convexity of 

 t Mt 2 2/ .  Using this result we get: 

f x tg f x t g
Mt

gk k k k k( ) ( )   
2

2
2

2

2

2
 

   f x
t

g f x t gk k k k( ) ( ) ,
2 2

2

2

2
  

since   1 2/ .  

The backtracking terminates either with t  1 or with a value t M  / .  This provides a lower bound 

on the decrease in the function f .  For t  1 we have: 

f x tg f x gk k k k( ) ( )  
2

2
 

and for t M  /  

f x tg f x
M

gk k k k( ) ( )  
 

2

2
. 

Therefore, for 0 1 t M/ ,  we always have 



122 Studies in Informatics and Control, Vol.14, No.2, June 2005 

f x tg f x min
M

gk k k k( ) ( ) , .  









2

2
      (11) 

On the other hand 

 ( ) ( )
.

a b

b

t g t m g

t M g

tm

M
gk k

k

k k

k

k







2
2

2 2

2

2 2

2

2

2

2

2

2

2 2

1

2
 

Now, as above, for t  1  

( ) ( )
.

a b

b

m

M
gk k

k
k




2 2

2

2

2

1

2
 

For t M  /  

 ( ) / ( )
,

a b

b

m M

M
g

M
gk k

k
k k







2
2

2

2
2

2

2

2

1

2

1

2

 
 

since 0 1   and m M/ . 1  

Therefore, 

( ) ( )
,
( )

.
a b

b
min

m

M M
gk k

k
k




 







2 2 2

2

2

2

1

2

1

2


     (12) 

Considering (11) together with (12) we get: 

f x tg f x min
M

g min
m

M M
gk m k k k k( ) ( ) ,

( )
,
( )

.  









 








 
  

2

2
2 2

2

21

2

1

2
 (13) 

Therefore 

f x f x min
M

min
m

M M
gk k k( ) ( ) ,

( )
,
( )

. 









 















1

2 2

2

21

2

1

2


  
 

But, f x f xk k( ) ( ) 1 0  and as a consequence gk goes to zero, i.e. xk converges to x* .  Having 

in view that f xk( )  is a nonincreasing sequence, it follows that f xk( ) converges to f x( ).*  

From (13) we see that 

f x f x min
M

min
m

M M
gk k k( ) ( ) ,

( )
,
( )

.  









 















1

2 2

2

21

2

1

2


  
 

Combining this with  

 g m f x fk k2

2
2 ( ) *  

and subtract f * from both sides of the above inequality we conclude: 

 f x f c f x fk k( ) ( ) ,* *
   1        (14) 

where 

c min m
m

M
min

m m

M

m

M
 










 






1 2

2 1 1
1

2 2


  

,
( )

,
( )

.    (15) 

Therefore, f xk( ) converges to f * at least as fast as a geometric series with an exponent that depends 

on the backtracking parameters and the condition number bound M m/ .  Therefore, the convergence is 

at least linear.  

At every iteration k , selecting  k m in (5), the AGD algorithm reduces the function values 

according to (14) where c  is given by (15). Since GD algorithm achieves (14) with 



Studies in Informatics and Control, Vol.14, No.2, June 2005 123 

c min m
m

M
 








1 2

2
1

 
, ,       (16) 

it follows that, if m  1, the AGD algorithm is an improvement, i.e. an acceleration, of GD. 

4. Numerical Results and Comparisons 

In this section we report some numerical results obtained with a Fortran implementation of the above 
gradient descent algorithms. The full description of these experiments is documented at the web page: 
http://www.ici.ro/camo/neculai/ansoft.htm. 

All codes are written in Fortran and compiled with f77 (default compiler settings) on a Workstation 1.8 Ghz.  

For the very beginning let us present the following example illustrating the behaviour of these algorithms. 
In the next series of experiments we present the numerical results obtained with a number of 340 
unconstrained optimization test functions. 

An illustrative Example. Let us illustrate the behaviour of the accelerated gradient descent algorithm on 
the following function (trigonometric function): 

f x n x i x xj
j

n

i i
i

n

( ) cos ( cos ) sin . 








   














11

2

1  

Considering x0 0 2 0 2 0 2 [ . , . , , . ],   0 0001.  and   0 8.  in the backtracking procedure, as 

well as the the following criteria for stopping the iterations 

 


f xk g( )     or     t g d f xk k
T

k f k  ( ) ,1  

with  g  10 6 and  f 
10 20 , for n  100 , the evolution of f x fk( ) * , ak  and 

( ) / ( )a b bk k k 2 2 , for different values of backtracking parameter   is illustrated in Figures 1, 2, 3, 4 and 5. 

 

Figure 1. Accelerated Gradient Descent characteristics.   0 0001. .  

 



124 Studies in Informatics and Control, Vol.14, No.2, June 2005 

 
 

Figure 2. Accelerated Gradient Descent characteristics.   0 001. .  

 
 

Figure 3. Accelerated Gradient Descent Characteristics. .01.0  

 

Figure 4. Accelerated Gradient Descent characteristics.   0 1. .  



Studies in Informatics and Control, Vol.14, No.2, June 2005 125 

 

Figure 5. Accelerated Gradient Descent characteristics. .25.0  

From this example we see that the contribution of the acceleration scheme, given by 

( )a b

b
k k

k

 2

2
 , 

is substantial. In comparison with the reduction operated by the gradient descent algorithm, given by 
 ak , observe that the contribution of the accelerated scheme is dependent on the value of the 

backtracking parameter  .  For   enough small, for example   0 0001. as usually is considered in 

the backtracking procedure, we see that for almost all iterations: 

( )
.

a b

b
ak k

k
k




2

2
  

Table 1 shows the number of  iterations (#iter), number of function evaluations (#fg), cpu time (seconds) 
(cpu(s)), as well as the average steplength corresponding to GD and AGD algorithms for 
n  100 200 1000, , , .  

Table 1. Algorithm Characteristics.   0 0001. .  

 Gradient Descent Accelerated Gradient Descent 
 #iter #fg cpu (s) t k  #iter #fg cpu (s)  k k

t  

100 45 448 0.17 0.48490 131 516 0.22 1.38764 
200 69 598 0.49 0.53880 140 543 0.50 0.91710 
300 304 1608 2.03 0.69477 137 595 0.82 1.37628 
400 64 877 1.49 0.43523 114 536 0.94 1.19269 
500 327 1786 3.68 0.68818 148 681 1.42 1.14217 
600 73 1056 2.64 0.42819 99 502 1.27 1.34367 
700 70 1202 3.51 0.35077 38 292 0.88 0.91164 
800 80 1337 4.45 0.37733 25 260 0.82 0.59176 
900 95 1505 5.66 0.40425 108 570 2.20 1.15465 

1000 62 1052 4.39 0.35699 63 417 1.87 1.13343 

TOTAL 1189 11469 28.51  1003 4912 10.94  

 

Table 2 shows the number of  iterations (#iter), number of function evaluations (#fg), cpu time (seconds) 
(cpu(s)), as well as the average steplength corresponding to GD and AGD algorithms for 
n  1000 2000 10000, , , .  



126 Studies in Informatics and Control, Vol.14, No.2, June 2005 

Table 2. Algorithm Characteristics.   0 0001. .  

 Gradient Descent Accelerated Gradient Descent 
 #iter #fg cpu (s) t k  #iter #fg cpu (s)  k k

t  

1000 62 1052 3.96 0.35047 63 417 1.60 1.11510 
2000 96 2033 15.43 0.28254 165 769 5.87 1.16464 
3000 119 2411 27.47 0.34527 24 416 4.67 0.42287 
4000 69 1924 29.22 0.16058 74 641 9.78 1.10106 
5000 125 2770 56.90 0.28841 90 719 13.68 1.31227 
6000 91 2846 65.03 0.12231 60 645 14.77 0.94762 
7000 156 3537 94.36 0.31129 162 1076 28.89 1.17126 
8000 155 4003 122.21 0.26681 67 645 19.72 1.13035 
9000 100 3048 104.91 0.16543 55 682 23.40 1.00044 

10000 168 4083 156.32 0.27942 142 1051 40.32 1.16849 

TOTAL 1141 27707 675.81  902 7061 162.70  

For the next series of experiments, we selected 34 large-scale unconstrained optimization test problems (5 
from CUTE library [2]) in extended or generalized form. For each test function we have considered 10 
numerical experiments with number of variables n  100 200 1000, , , .  

In the following we present the numerical performance of AGD and GD codes, in which we stopped the 
iterations as soon as one of the above criteria is satisfied. 

Table 3 presents the global characteristics, corresponding to these 340 test problems, referring to the total 
number of iterations, total number of function evaluations and total cpu time for these algorithms. 

Table 3. Global characteristics of AGD and GD. 340 problems 

Global characteristics AGD GD 

Total number of iterations 657915 1598990 
Total number of function evaluations 17432902 40979772 
Total cpu time (seconds) 4547.80 10043.26 

Table 4 shows the number of problems, out of 340, for which AGD and GD achieved the minimum 
number of iterations, minimum number of function evaluations and the minimum cpu time, respectively. 

Table 4. Performance of  AGD and GD Algorithms. 340 Problems 

Performance criterion # of problems 

AGD achieved minimum # of iterations in 320 
GD achieved minimum # of iterations in 36 
AGD and GD achieved the same # of iterations in 16 
AGD achieved minimum # of function evaluations in 322 
GD achieved minimum # of function evaluations in 18 
AGD achieved minimum cpu time in 325 
GD achieved minimum cpu time in 28 
AGD and GD achieved the same cpu time in 13 

The performance of these algorithms have been evaluated using the profiles of Dolan and Moré [5]. That 
is, for each algorithm, we plot the fraction of problems for which the algorithm is within a factor of the 
best number of iterations, the best number of function evaluations, or the best cpu time, respectively. The 
left side of these Figures gives the percentage of the test problems, out of 340, for which an algorithm 
performs better; the right side gives the percentage of the test problems that were successfully solved by 
each of the algorithms. Mainly, the right side represents a measure of an algorithm’s robustness.  

In Figure 6, 7 and 8 we display the performance profiles of Dolan and Moré, corresponding to AGD and 
GD, referring to the number of iterations, number of functions evaluations and cpu time, respectively. 



Studies in Informatics and Control, Vol.14, No.2, June 2005 127 

 

Figure 6. Performance Based on Number of Iterations, 340 Problems. 

 

Figure 7. Performance Based on Number of Function Evaluations, 340 Problems 

 
Figure 8. Performance based on cpu time metric, 340 problems 

Observe that AGD outperforms GD in the vast majority of problems, and the differences are substantial. 
From table 3 we see that referring to cpu time AGD is about twice fastest that GD. We explain this 
difference in behaviour of these algorithms by recalling that as the stationary point is approached, GD 
method takes small, nearly orthogonal steps. This poor convergence of the GD algorithm at the later 
iterations can be explained by considering the following expression of function f : 

f x t g f x t g t gk k k k k k k k k( ) ( ) ,   
2 2 21

2
      (17) 



128 Studies in Informatics and Control, Vol.14, No.2, June 2005 

where  k I f z 2 ( )  is a scalar approximation of the Hessian at the point z which belongs to the line 

segment connecting xk and xk1 .  Observe that if xk is close to a stationary point with zero gradient, and f is 

continuously differentiable, then gk

2
will be small. Therefore, t gk k

2
in (17) is of a small order of 

magnitude, its contribution to reduce the function values being almost insignificant. Since the gradient descent 
method uses only the linear approximation of f to find the search direction, ignoring completely the second 

order term ( / ) ,t gk k k
2 2

2  we expect that the direction generated will not be very effective, if the ignored 

term contributes significantly to the description of f , even for relatively small values of t k . In AGD this is 

compensated by modifying the steplength in order to destroy the orthogonality of the successive search directions 
giving thus the possibility for a substantial progress towards minimum. 

5. Conclusions 
In this paper we have introduced an acceleration of the gradient descent algorithm by means of a simple 
multiplicative modification of the steplength given by a backtracking procedure in the classical gradient 
descent algorithm. The accelerated algorithm is linear convergent with an exponent which is smaller than 
the exponent corresponding to the gradient descent algorithm. 

REFERENCES 

1. L. ARMIJO, Minimization of functions having Lipschitz continuous first partial derivatives, 
Pacific Journal of Mathematics, vol. 6, pp. 1-3, 1966. 

2. I. BONGARTZ, A.R. CONN, N.I.M. GOULD and P.L. TOINT, CUTE: constrained and 
unconstrained testing environments, ACM Trans. Math. Software, vol. 21, pp. 123-160, 1995. 

3. A. CAUCHY, Méthodes générales pour la résolution des systémes déquations simultanées, C.R. 
Acad. Sci. Par., vol. 25, pp.  536-538, 1848. 

4. J.E. DENNIS and R.B. SCHNABEL, Numerical Methods for Unconstrained Optimization and 
Nonlinear Equations, Englewoods Cliffs, N.J.,Prentice-Hall, 1983. 

5. E.D. DOLAN, J.J. MORÉ, Benchmarking optimization software with performance profiles, 
Math. Programming, vol. 91, pp. 201-213, 2002. 

6. R. FLETCHER, Practical Methods of Optimization, John Wiley and Sons, New York, 1987. 

7. G.E. FORSYTHE and T.S. MOTZKIN, Asymptotic properties of the optimum gradient 
method, Bull. American Society, vol. 57, pp. 183, 1951. 

8. A.A. GOLDSTEIN, On steepest descent, SIAM Journal on Control, vol. 3, pp. 147-151, 1965. 

9. W.E. HUMPHREY, A general minimising routine - minfun, in Recent Advances in Optimisation 
Techniques, A. Lavi, and T.P. Vogl, (Eds.),  John Wiley, 1966. 

10. C. LEMARÉCHAL, A view of line search, in Optimization and Optimal Control, A. Auslander, W. 
Oettli and J. Stoer (Eds.) Springer Verlag, pp. 59-78, 1981. 

11. J.J. MORÉ and D.J. THUENTE, On line search algorithms with guaranteed sufficient decrease, 
Mathematics and Computer Science Division Preprint MCS-P153-0590, Argonne National 
Laboratory, Argonne, 1990. 

12. F.A. POTRA and Y. SHI, Efficient line search algorithm for unconstrained optimization, Journal 
of Optimization Theory and Applications, vol. 85, pp. 677-704, 1995. 

13. M.J.D. POWELL, Some global convergence properties of a variable-metric algorithm for 
minimization without exact line searches, SIAM-AMS Proceedings, Philadelphia, vol. 9, pp. 53-72, 1976. 

14. R. SCHINZINGER, Optimization in electromagnetic system design, in Recent Advances in 
Optimisation Techniques, A. Lavi, and T.P. Vogl (Eds.), John Wiley, 1966. 

15. SHI ZHEN-JUN, Convergence of line search methods for unconstrained optimization, Applied 
Mathematics and Computation, vol. 157, pp. 393-405, 2004. 

16. P. WOLFE, Convergence conditions for ascent methods, SIAM Review, vol. 11, pp. 226-235, 1968. 




