
75

ICI Bucharest © Copyright 2012-2022. All rights reserved

ISSN: 1220-1766 eISSN: 1841-429X	

1. Introduction

(Kourtit et al., 2012) state that in some European
and Asian countries urban population exceeds
70% of the total population. These trends force
Smart City (SC) development towards providing
better services and wellbeing for urban population.

In line with the proposed research agenda,
(Ugljanin et al., 2020; Kajan et al., 2020), a
smart city is looked at as a set of mutually
connected ecosystems, e.g. smart transportation,
environment, homes, health, etc. Each of them
is governed by some business processes (BPs)
whose inputs come from the city sensors, namely
citizens and things. Whilst the citizens could
express their thoughts and observations via social
media and smart devices participating in smart city
initiatives, the sensors (e.g. cameras, temperature
and air pollution sensors, etc.) provide their data
to smart city ecosystems.

However, integrating Internet of Things (IoT)
into BPs was not yet completely fulfilled. Some
obstacles that undermine this integration are
reported in the literature, for example in (Janiesch et
al., 2020) and (Maamar et al., 2020), to mention just
two such cases. In the former, among others, lack
of standards, limited computational capabilities,
security issues, and incompatibilities in process
flows in a BP, and communication and data flows
in an IoT environment are identified. In the latter,
Maamar et al. (2020) identify IoT-related obstacles,

namely silo restriction, the lack of IoT smartness
and the lack of an IoT-oriented software engineering
discipline that would guide the analysis, design, and
development of IoT applications, and BP-related
restrictions such as physical surroundings, data
input, and context insensitivity. On the other hand,
the “social fever” that drives people to express
their thoughts and feelings via social media (e.g.
Facebook, Twitter, etc.) has not been used as much
in a business community as it should be expected
due to power of data brought about by social
media. Although Sánchez et al. (2022) state that
people may feel social pressure to express true
thoughts when anonymity is not guaranteed on
social networks, Ugljanin et al. (2020) argue that
by motivating citizens to contribute to community
good results could be achieved.

This paper proposes the concept of Smart City
Observers (SCOs) as a glue that brings together
business world (smart city ecosystems BPs),
social world (citizens as human sensors) and IoT
world (things installed in a city). Their purpose is
to help decision makers in the smart city to use the
full potential of Social and IoT worlds, without
the need for technical knowledge and in a very
intuitive way. We design the Business to Social
for Business (B2S4B) architecture and develop
a platform based on SCOs with the purpose of
establishing a meaningful communication between
the three worlds mentioned above.

Studies in Informatics and Control, 31(3) 75-86, September 2022

https://doi.org/10.24846/v31i3y202207

B2S4B: A Platform for Smart City Business Processes
Management and Adaptation

Emir UGLJANIN1*, Dragan STOJANOVIĆ2, Ejub KAJAN1, Zakaria MAAMAR3

1 Department of Technical Sciences, State University of Novi Pazar, Novi Pazar, 36300, Serbia
eugljanin@np.ac.rs (*Corresponding author), dr.ejubkajan@gmail.com
2 Department of Computer Science, Faculty of Electronic Engineering, University of Nis, Nis, 18000, Serbia
dragan.stojanovic@elfak.ni.ac.rs
3 College of Technological Innovation, Zayed University, Dubai, U.A.E
Zakaria.Maamar@zu.ac.ae

Abstract: This paper deals with the design and development of the B2S4B platform that bridges Smart City ecosystems (the
business world) and city sensors: the IoT and citizens (the IoT and the social worlds). This platform allows the reconfiguration
of Smart City business processes (BPs) based on the detected events and knowledge derived over time. In support of this,
the concept of Smart City Observers (SCO) was introduced which acts as a man-in-a-middle between BPs, and the IoT and
the social worlds by defining what should be monitored and how the respective observations could impact these worlds.
In its turn, B2S4B analyses the detected events from all active SCOs and based on the predefined knowledge allows the
synchronized reconfiguration of a BP and of the city sensors that feed the SCOs with accurate information. This paper
proposes an approach for manual and automatic adaptation of Smart City BPs based on events reported by SCOs. In order to
demonstrate the usability and effectiveness of the proposed approach this paper illustrates how this platform could be used
in a case study on Smart City traffic control.

Keywords: Smart City, Business process, Internet of Things, Social Media.

https://www.sic.ici.ro

76 Emir Ugljanin, Dragan Stojanović, Ejub Kajan, Zakaria Maamar

The main contributions of this paper are:

	- Specification is provided and SCOs are
implemented as modular, self-standing and
event-based orchestrated services that sense
and detect events on IoT and social worlds
and perform the appropriate actions. These
events are then collected and analyzed by
B2S4B that improves smart city initiatives by
re-configuring its BPs.

	- A user-friendly tool, namely SCO Designer,
is created for generating SCO definitions and
SCO chains that allow non-technical users to
create SCOs.

	- IoT Executor is created, a tool that allows
reconfiguration of IoT devices initiated directly
by accessing IoT Executor or indirectly by
sending the request from B2S4B platform.

	- The B2S4B platform, its SCOs in action and
constituent modules and components are
evaluated in a case study focused on smart
city traffic and citizens` mobility.

The rest of this paper is structured as follows.
Section 2 presents related work along with
background on social media, Internet of Things
and smart cities. Section 3 sets forth the B2S4B
platform, while the concept of SCO, including
SCO definitions and SCO chain is described in
Section 4. Section 5 presents the reconfiguration
process, while section 6 describes the
implementation of the B2S4B platform. Finally,
section 7 sets forth the conclusion of this paper.

2. Related Work

Kaplan & Haenlein (2010) define Social media as
“a group of Internet-based applications that build
on the ideological and technological foundations
of Web 2.0, and that allow the creation and
exchange of User Generated Content.” Any
individual with a smart phone and a social
media account could be considered a human
sensor that produces real-time data (Bauman et
al., 2017). On the other hand Internet of Things
can be defined as “a world-wide network of
interconnected objects uniquely addressable,
based on standard communication protocols.”
(European Commission for Information Society
and Media, 2008). It is expected that SC utilizes
its computational and communication resources,
analyses, manages and integrates huge amounts

of generated data to increase safety, efficiency,
productivity and the quality of life for citizens
(Gharaibeh et al., 2017). Data collected from
IoT in a business process enables automated
management and time-efficient decision making
(d’Hondt et al., 2019).

There are several available platforms that support
smart city initiatives and use IoT and Social
related data separately or combined. For example,
FIWARE is a cloud-based IoT platform that
provides a set of APIs employed for developing
smart applications. It is a project sponsored by the
European Commission which is based on previous
SENSEI project and IoT-A architecture that
contains components named Generic Enablers.
Those components are used as building blocks for
smart applications (Araujo et al., 2019).

Another cloud-based platform capable to process
heterogenous data coming from multiple sources
is presented by Chamoso et al. (2020). It reuses
software and other platforms in order to simplify
smart city application development process.
Although this approach is appealing, it requires
technical knowledge to be able to integrate such
components in the smart city applications.

CityPulse (Giatsoglou et al., 2016) is a platform
which uses near real-time IoT data and social
media. Although CityPulse enables cross-domain
data integration, their approach of analysing
social media streams from Twitter focusses on
analysing content using machine learning. They
consider all streams on a certain subject which
can be misleading.

On City Data and Analytics Platform (CiDAP)
platform (Gavrilović & Mishra, 2020), IoT data
is acquired by special IoT agents and IoT brokers,
whilst data from social world is saved in Hadoop
Distributed File System (HDFS) and Spark
applications for further analysis. IoT agents are
then made available to smart city applications by
an CityModel Server, but there is no evidence of
IoT agents cooperation.

In (Faci et al., 2018) bidirectional communication
with IoT devices is examined in terms of mutation
of ESP8266 IoT devices Over The Air (OTA), and
metrics for evaluating social actions in a form of
citizens’ engagement are presented in (Kajan et
al., 2020).

	 77

ICI Bucharest © Copyright 2012-2022. All rights reserved

B2S4B: A Platform for Smart City Business Processes Management and Adaptation

This paper presents a circular process of BP
adaptation by reconfiguring SCO that may or
may not produce new data and change the way
how BP, social and IoT world are affected. In
(Ugljanin et al., 2017) the connection between
business processes and social networks is
proposed, where business process can initiate
some social action on a social network and
depending on users’ responses decides what tasks
should be performed further.

3. B2S4B Platform

Chamoso et al. (2020) state that Smart City
platforms must overcome problems related to
the large amount of collected data which is
categorized into scalability and reusability.

The proposed B2S4B platform provides a
solution to these problems. It is a highly flexible
solution for easy and smart management of city
assets, such as traffic lights and parking system.
It supports business processes adaptation based
on detected events, such as traffic jam, and
allows city managers to monitor and make an
impact on the Social and IoT world without
the necessity of having technical knowledge.
B2S4B is a suite of microservices that are loosely
coupled, distributed, capable to stand alone, and
run as separate services communicating via
publish/subscribe or HTTP protocol (Neuman,

2015). Each microservice can be deployed
within a separate container and scale according
to the requirements. Several data-related issues
were considered while building this platform.
Firstly, it is important to find an efficient way to
exchange unstructured (social world data) and
semi-structured data (IoT data). Secondly, one
should find a way to process both real-time data
and historical data on demand and automatically.
Finally, it is necessary to find the best storage
solution for storing a massive amount of data
generated by IoT devices and social networks.

The B2S4B platform architecture (Figure 1)
consists of three main modules, namely
Connectors, Smart City Observers (SCOs) and
B2S Manager, along with components that
connect them and provide their interactions, such
as repositories and message brokers.

Connectors contain services that are acting as
middleware between SCO and both the Social
world (social media such as Facebook or other
crowd-based apps) and the IoT world (sensors
and actuators, such as traffic lights, weather
service, air quality, etc.). They provide data
collection, processing and storage capabilities
and can feed SCOs with more refined and
historical data on demand. Connectors possess
bidirectional communication with Social and IoT
worlds, that includes collecting the data from

Figure 1. B2S4B platform architecture

https://www.sic.ici.ro

78 Emir Ugljanin, Dragan Stojanović, Ejub Kajan, Zakaria Maamar

both worlds (e.g. retrieving data from Facebook
campaign, or reading temperature sensor value)
as well as actuating on it (e.g. publish a new
campaign on the Facebook, or change a traffic
light). Collected data is provided to SCOs in
two ways, namely in continuous streaming
fashion (e.g. feeding data from sensors every
second), and as a response to a request (e.g.
retrieve number of check-ins at some place via
Facebook). In the case of continuous monitoring,
data is published regularly so that all SCOs that
are interested in it could subscribe to it. When
it comes to providing data on request, the result
depends on the time when SCO’s request is sent
and metadata is provided. This means that the
same request sent in different moments could
produce different results, as in the case of
sending different metadata at same time. Based
on the request and nature of collected data, the
Connectors may or may not correlate the data,
and build more meaningful and enriched data
(for instance, a social flow for data gathered from
social media (Ugljanin et al., 2016), or a data
cluster for IoT-related data), prior to applying
desired processing methods.

The aim of this paper is not to build new metrics
for evaluation of data from either Social world or
IoT world, but just to use ones that were already
developed in the previous work. Depending on its
nature, communication between Connectors and
SCOs could take place via any communication
protocol like HTTP or publish/subscribe-based
protocols, such as MQTT.

Social Connectors contain two components,
namely SA Executor and SA Monitor and one
Social data repository. The role of SA Executor
is to initiate social action, whether on social
media or a smart city Web application/portal
(e.g. publishing a campaign on Facebook, driver
alert via mobile app about changes in the traffic,
etc.). SA Monitor’s purpose is to retrieve citizens’
responses from Social World. Gathered data could
be processed in real time applying NLP or similar
techniques such as detecting emotions or applying
sentiment analysis. Retrieved social responses
could be annotated with useful information (such
as positive or negative reactions for instance) for
use in postprocessing stage and are stored in the
Social data repository (Kajan et al., 2020).

Analogously, IoT Connectors contain two
components, namely IoT Executor and IoT
Monitor, and one IoT data repository. IoT
Executor allows controlling IoT devices (namely
sensors and actuators) by either sending requests
for actuation (e.g. open or close the parking gate)
or by reconfiguring its software that is underlying
those devices by adding new capabilities. IoT
Monitor allows collection of data from IoT
devices and unifies the format for messages that
need to be consumed by appropriate SCOs. The
received data can be processed and is stored in IoT
data repository.

Smart City Observers include two components,
namely Event Detection and Action Execution,
and two repositories, namely Events and Actions.
Event Detection analyses data gathered from
input such as Connectors or another SCO and
tries to identify events based on SCO’s conditions
defined for each input. Detected events are stored
locally in the Events repository at SCO’s side
and published via message broker for advanced
analysis by Analyzer. Action execution analyses
detected events and takes proper actions as per
defined conditions from SCO definitions. Executed
action is in fact an event that will be reported to
Analyzer and stored in Actions repository.

B2S Manager allows at first, BP engineer
to manually create/update SCO definitions
through Designer component and manage SCOs
through Manager component. It also allows
automatic reconfiguration of SCO definitions
and automatic management of SCO through
Analyzer component by applying rules defined
in the Knowledge repository based on detected
High-level Events broker.

4. Smart City Observer

This paper proposes a Smart City “covered” with
a network of Smart City Observers (SCOs) that
could be self-standing or a part of SCO chains.
A SCO represents a self-contained, temporarily
constrained, planned and autonomic Smart City
activity that is driven, adapted and reconfigured
based on detected events and defined conditions.
SCO monitors different sources of data to collect
data and evaluate it with the aim of detecting
events (e.g. high traffic detection: by monitoring
street traffic sensors). Detected events trigger

	 79

ICI Bucharest © Copyright 2012-2022. All rights reserved

B2S4B: A Platform for Smart City Business Processes Management and Adaptation

specific actions based on defined conditions such
as publishing new social action on social media,
reconfiguration or actuation on IoT devices, and
sending a message to another SCO. Questions that
one should ask when trying to identify or design
a SCO are “What should be monitored?”, “Which
events are expected?”, and “How to respond based
on the detected events?”.

Each SCO has at least one set of Event Detection
and Action Execution components that defines
its life cycle as well as Events and Actions
repositories to store detected events and executed
actions. Figure 1 shows SCO’s components and
its properties as well as a data flow. Events and
Actions repositories do not persist after SCO
lifecycle is finished.

4.1 Event Detection

A SCO could track one or several sources in
parallel with different conditions and expected
events, thus a SCO could have multiple
independent Event Detection instances. Each
Event Detection instance is defined with
Data Source, Conditions and Expected Event
properties. Data Source represents a source
that is being monitored, such as another SCO
which is monitored directly, or IoT/Social
World which is monitored indirectly. A SCO
has two ways of monitoring data from sources,
either by subscribing to a topic or by sending
requests in defined time intervals. In case that
requests are sent, they contain reference (e.g. ID
of social campaign to be tracked on Facebook)
or instructions for analysis to be applied (e.g.
specific metrics for evaluating a social campaign).
This way the same data source could provide
different data depending on the request and it is
not exclusively reserved to one SCO. Conditions
include rules that are checked in the process of
event detection. Knowing that the same event
detection conditions used in different contexts
could be employed for detection of different
events (e.g. 100 cars per minute is low traffic for
highways, and high traffic for a one-way street),
for each instance of Event Detection component
a different condition is defined. Expected Event is
semantically meaningful and could be used in the
process of reconfiguration or action execution,
for instance “traffic jam” or “normal traffic”.

Each Event detection should: (1) indicate whether it
monitors another SCO, or data source from Social
or IoT World, (2) define time interval during which
certain events should be expected, (3) provide
metadata in case that a request is to be sent (e.g.
metrics to be applied to a monitored campaign),
and (4) define which events are expected and what
are the conditions for their detection.

Upon event detection, the event is stored
locally in Events repository on SCO side, as
well as broadcasted via message broker as
“High-level event” to the Analyzer. Local
events are accessible to origin SCO only and
persist if origin SCO is still active. “High-level
events” on the other hand do not expire and are
stored permanently outside of SCO. They are
represented in the form of a quadruple sequence
with 4W (who, what, when and where)

<Source, Event, Temporal, Spatial>

structured and formatted in JSON-LD to allow
better readability and machine processing. Source
links to the source that detected the event (e.g.
traffic camera). Event refers to detected event,
from the list of predefined events along with
additional metadata that could be valuable for
that event and is related to the event. Temporal
contains the date and time when an event is
detected. Spatial refers to the geolocation where
an event is detected.

4.2 Action Execution

The purpose of this component is to execute
actions on IoT and Social World via connectors
which could be the same/different from the one
used in the Event Detection instances and/or
interaction with other SCOs. A SCO could have
multiple Action Execution instances and overall
number of its instances does not need to comply
with the number of Event Detection instances.

Action Execution component relies on the
events previously detected in the process of
Event Detection and evaluates rules (Conditions
property) for executing a specific action (Action
property). Different actions could be executed
based on different conditions and could convey
additional data, such as a text used for publishing
on social media, or a script to be uploaded on an

https://www.sic.ici.ro

80 Emir Ugljanin, Dragan Stojanović, Ejub Kajan, Zakaria Maamar

IoT device. Action Execution component instances
could have different priorities if executed at the
same time.

Although the direct result of this module is the
action execution, there is a side effect of this
process, which is producing a new event (e.g.
changing the traffic lights signal timing in a
particular street is indeed an event that another
SCO could monitor).

Action execution should define: (1) conditions that
are applied onto detected events and that will be
used as a trigger for an action, (2) a side-effect
event that is the result of executing an action, (3)
subject of the action (another SCO, IoT or Social
World that will be used for action execution), (4)
what will be conveyed to the subject in terms of
metadata, (5) the frequency of action execution and
whether consecutive actions could be executed, and
(6) scheduled time for action execution.

4.3 SCO Definition

To allow non-technical users to create and run
SCO the SCO definitions specification was created,
which is reusable, extendable and shareable, and
can be used for SCO instantiation within B2S4B
platform. SCO definition does not contain any
code, and it does not define which programming
language will be used for its implementation.

The JSON-LD was employed for formalizing
SCO definitions, and an example is presented
in Listing 1. It represents minimal SCO
definition with one Event Detection and one
Action Execution instance. It monitors camera
at “Avnoja” street via IoT connector in order
to detect a “traffic-jam” event. If the “traffic-
jam” event is detected for an hour, an action
(reconfiguration of IoT device) should be
executed that will result in a change of the
traffic lights system. SCO definition identification
number is stored in _id, which will be used
during SCO initialization. The eventDetection
part defines ‘Event Detection’ module, and
actionExecution ‘Action Execution’ module.

Listing 1. An example of a simple SCO definition
1.	 {
2.	 "_id": "a061e6983a464911b92b297371055254",
3.	 "description": "Monitor traffic",
4.	 "eventDetection": [
5.	 {
6.	 "name": "street",
7.	 "sourceType": "iot-connector",
8.	 "location": "avnoja",
9.	 "date": {
10.	 "from": "2022-05-07 00:00:00",
11.	 "to": "2022-06-06 00:00:00"
12.	 },
13.	 "description": "Monitors traffic in Avnoja street",
14.	 "expectedEvents": [
15.	 {
16.	 "conditions": {
17.	 "all": [
18.	 {
19.	 "fact": "origin",
20.	 "operator": "equal",
21.	 "value": "street"
22.	 },
23.	 {
24.	 "fact": "location",
25.	 "operator": "equal",
26.	 "value": "avnoja"
27.	 },
28.	 {
29.	 "fact": "value",
30.	 "operator": "greaterThan",
31.	 "value": 0
32.	 },
33.	 {
34.	 "fact": "value",
35.	 "operator": "lessThanInclusive",
36.	 "value": 20
37.	 }
38.]
39.	 },
40.	 "event": {
41.	 "type": "traffic-jam"
42.	 }
43.	 }
44.]
45.	 }
46.],
47.	 "actionExecution": [
48.	 {
49.	 "conditions": {
50.	 "all": [
51.	 {
52.	 "fact": "events",
53.	 "operator": "detected",
54.	 "value": {
55.	 "type": "traffic-jam",
56.	 "freshness": "an hour ago"
57.	 }
58.	 }
59.]
60.	 },
61.	 "event": {
62.	 "type": "action",
63.	 "params": {
64.	 "id": "1",
65.	 "name": "traffic-light-emergency-mode",
66.	 "description": "Change traffic lights",
67.	 "connector": "iot-connector",
68.	 "frequency": "once in an hour",
69.	 "allowConsecutive": false,
70.	 "date": {
71.	 "from": "2022-05-07 00:00:00",
72.	 "to": "2022-06-06 00:00:00"
73.	 },
74.	 "content": {
75.	 "nodeid": "4540533",
76.	 "codeid": "11"
77.	 }
78.	 }
79.	 }
80.	 }
81.]
82.	 }

The source to be monitored is defined with name
and location, date defines timeframe during which
it should be monitored, and conditions define
which rules should be fulfilled so that the expected
event is detected.

The same goes for defining rules for action
executions, except that event.params define where

	 81

ICI Bucharest © Copyright 2012-2022. All rights reserved

B2S4B: A Platform for Smart City Business Processes Management and Adaptation

the action should be executed, how often it should
be executed and if it will be repeated in case it was
already executed. event.params.content contains
metadata that define reconfiguration code with ID
11 which should be executed on device with ID
4540533 once traffic jam is detected and will be
executed only once via IoT connector.

4.4 SCO Chain

SCO and BPs do not stand in contrast to each other.
The main difference is the nature of artifacts used.

On the one hand a BP acts upon business artifacts
that are defined as “a concrete, identifiable, self-
describing chunk of information that can be used
by a business person to run a business” (Nigam
& Caswell, 2003).

On the other hand a SCO deals with social artifacts
that may be seen as “a form of online activity (e.g.
tweet, tag, and endorse) that occurs over an open,
Web 2.0 application” (Maamar et al., 2015), but
also with IoT artifacts such as videos taken by
smart camera, data emitted by wearables, and
actions triggered by captured sensor’s signals.

When a SCO is looked into from the perspective
of a business process management, a SCO may
be seen as a task or subprocess, while a chain of
SCOs may be seen as a part of a BP or whole BP.

Figure 2 illustrates an example of SCO chain
composed of five SCOs, where each SCO
has a different number of inputs and outputs,
interacting with Social and IoT worlds and other
SCOs. The chain starts with SCO1 receiving the
input from Social and IoT world, and ends up
with SCO5 executing an action on Social and
IoT worlds. In a SCO chain each SCO runs
independently, so that any SCO instance could
be replaced with one or more SCOs without the
need to stop other SCOs. SCOs in a SCO chain
can easily be reconfigured (changing their duties
and actions) or scaled (powering it with the
additional computer nodes if needed). This way
a modular system with independent parties was
obtained, which is easily scalable and extendable.
It is possible to decompose any Business Process
and identify SCOs that represent its parts just
by asking the questions for SCO identification,
mentioned in section 4 and implementing BP
logic by the SCO chain.

Figure 2. SCO chain

5. Reconfiguration Process

SCO’s Event Detection deals with expected
events only, which is great in many situations,
but a problem arises when there are unplanned
situations such as the need for fast reaction to
solve parking problem during city mass event or
proper reaction in cases of some natural disasters.
Instead of spending a lot of time to design a new
process, it is more efficient to reconfigure the
SCO of interest in a SCO chain or to replace
it with a new SCO designed to overcome an
unwanted situation.

This paper considers three types of reconfigurations
that could take place. The first one includes
adjustment of rules for event detection only,
where the action remains the same (e.g. changing
threshold for traffic jam, from 100 cars per hour to
200 cars per hour). It does not affect environment
and could safely be done in any process. The
second reconfiguration includes adjustment of
action that will be executed upon event detection
(e.g. reconfiguration of IoT device, new action
on social media, etc.), and has an impact on the
environment and should be done carefully. Finally,
the third reconfiguration is applied to the whole
SCO that is in the chain. It could involve replacing
a SCO with one or more other SCOs.

Reconfiguration process could be started
manually by BP engineer through Manager
or automatically by Analyzer. In either case,
changes to SCO definition are required, the only
difference is who will trigger SCO definition
change. After the SCO definition is changed, the
SCO initiated with it will be notified to reload
and then deal with the new situation. In case of
replacement, the old SCO will be stopped and
replacement SCOs will be initiated.

Automatic reconfiguration is related to Analyzer,
High-level Events broker and Knowledge

https://www.sic.ici.ro

82 Emir Ugljanin, Dragan Stojanović, Ejub Kajan, Zakaria Maamar

repositories. Knowledge repository contains rules
that will be consulted prior to starting automatic
reconfiguration by Analyzer, and High-level
Events broker repository contains all the events
ever detected by any SCO. So Analyzer has an
overall, global look at the situation in the city,
while SCOs are local and granulated.

In the example below, the knowledge rule does not
take into account who is detecting events as long
as the events are detected, thus it gains helicopter
view and a better insight in what is happening in
the city at a higher level.

Knowledge rule example – If “crowded event”
is detected in “city center”, “Avnoja street”,
“Prvomajska street” during “past hour” , the
traffic system should be adjusted and “mass
event” is detected.

Although knowledge rules do not consider SCO that
detected events of interest, data origin is important
in terms of trust as different sources could have
different weights (e.g. an event detected based on
the data collected from IoT is more trustworthy than
one which is based on data from Social media).
That way, a “traffic jam” event in the rule above,
is a universal event and is not related to a specific
SCO or a specific type of device.

Reconfiguration is a part of BP reengineering
that handles BP lifecycle (Dumas et al., 2013)
in a continuous loop between „as-is“ and „to-
be“ stages allowing decision makers to provide
best services to citizens and keep a BP accurate
in achieving business goals.

6. Implementation

This section presents a case study related to the
implementation of B2S4B platform, the technical
challenges encountered during this process, and
B2S4B platform in action.

6.1 Case Study

Smart City needs to capitalize on data gathered
from social networks and IoT and allow automatic
but controlled adaptation and reconfiguration
of business processes. The purpose of business
process adaptation is to provide the citizens with
the best services.

For illustration purposes, the city of Novi Pazar
was chosen, which organized the event “Dan
dijaspore” for the first time. Due to historical
heritage and geographic location limitations,
the city lacks big squares, so organizing mass
gatherings would require closing streets and
changing traffic system. The Smart City does not
have an idea how many people to expect and what
is the optimal solution for the event. It wants to
react according to citizens` interest and to avoid
closing too many streets if unnecessary or avoid
closing them too early.

The idea is to promote the event and check citizen
interest by monitoring how many people plan to
attend the event by reporting on Facebook and
how they react to the Facebook campaign that
announces the event. If high interest in the event
in detected the city decides to close Avnoja street
for the concert and starts monitoring crowd
gathering 10 hours before the concert starts to
determine street closing time. If the crowd starts
gathering it will close Avnoja street for new traffic
and citizens will be informed about it via social
networks. Closing the Avnoja street is a trigger to
starting monitoring 3 nearby parking lots to check
if the citizens coming to the concert have enough
place to park. If all the parking spots are busy,
the city will close “Stevana Nemanje” street for
traffic transforming it into temporary parking and
alerting citizens on social networks.

6.2 SCO in Action

For this purpose, 3 SCOs were created and
deployed. SCO 1 monitors Facebook event
interest and citizen’s responses on the Facebook
Campaign to detect interest in attending the
concert. If high interest in the event is expected
SCO 2 will close Avnoja street and alert citizens
via Social media, but only when the crowd starts
to gather. Closing Avnoja street is a signal that
the event is starting and SCO 3 starts monitoring
parking availability in surrounding parking lots. If
there is no parking available, it will close “Stevana
Nemanje” street and notify citizens about the
new available parking spots. Figure 3 shows a
SCO chain that is automatically generated with
the proposed Designer component based on the
created SCO definitions.

	 83

ICI Bucharest © Copyright 2012-2022. All rights reserved

B2S4B: A Platform for Smart City Business Processes Management and Adaptation

6.3 Technical Challenges

When it comes to monitoring IoT and Social
world the “What if” simulation approach is
employed (Banks, 1999) in order to simulate
different data sources allowing control of their
values through the dashboard that helps to test
different real-life scenarios.

Data collected from these sources is further
provided to B2S4B platform through the
respective Connectors. Real “Wemos D1 mini”
ESP8266-based chips are also employed to show
how reconfiguration could be made using the
proposed open-source IoT Executor (GITHUB,
n.d.-a) by mimicking traffic light system.

The proposed implementation allows the user
to: (1) create SCO definitions and Knowledge,
(2) create a SCO chain and display its graphical
model, (3) manage SCOs, (4) simulate Sensor’s
readings, and (5) make an impact on Social and
IoT worlds indirectly.

SCO definitions are stored in MongoDB database
to be used in the process of SCO instantiation. To
create SCO definitions one uses an in-house user-
friendly dashboard based on JavaScript and PHP
hosted on connect.rs (Anon, n.d.-a). SCO chain is
displayed with GoJS graphic library (GOJS, n.d.).

Docker containers (DOCKER, n.d.) are used
for running SCOs and container management
tool Portainer for managing containers and
SCO images (Portainer, n.d.). To instantiate
SCO, SCOID (identification of respective SCO
definition) should be provided as environment
variable based on which the appropriate SCO

definition is fetched and SCO starts executing
tasks that are assigned to it. NodeJS is employed
for running SCOs inside containers. SCO
Conditions are evaluated using JSON Rules
Engine (GITHUB, n.d.-b).

Sensor simulation dashboard allows users
to control parking space availability in three
parking lots, crowd gathering in Avnoja street,
and simulate citizens’ attending Facebook
event and interest in the concert over social
networks. Controls on the dashboard enable
users to adjust parameters and check different
conditions and how the system responds. Open-
source message broker Mosquitto (Mosquitto,
n.d.) was installed and configured on a Linux
Ubuntu server to allow communication between
B2S4B modules. It supports MQTT (MQTT,
n.d.) as a fast and lightweight message exchange
protocol based on the publish/subscribe pattern
to allow communication between the proposed
simulation dashboard (Social and IoT worlds)
and SCOs. Connector simulation dashboard is
publicly accessible via (Anon, n.d.-b). The IoT
world reconfiguration is demonstrated by creating
a model of traffic lights system. It consists of a
“Wemos D1 mini” device wired with appropriate
led lights, connected to an external battery and
configured to use IoT executor framework. By
changing the values in the Simulation dashboard,
different data is provided to running SCOs which
make changes to traffic lights system.

High-level events are reported to Analyzer using
Kafka broker, and Analyzer uses Siddhi complex
event processing engine to process all the events
detected and executed by all available SCOs.

Figure 3. A SCO chain created using the Designer component

https://www.sic.ici.ro

84 Emir Ugljanin, Dragan Stojanović, Ejub Kajan, Zakaria Maamar

Implemented components, underlying
technologies and communication protocols are
shown in Figure 4.

6.4 Scalability and Reusability

Platform scalability was analysed from four
perspectives: (1) decision making actors; (2) scaled
components; (3) communication between B2S4B
platform components and (4) insights on expected
volume of data exchange between components.

The platform supports local and city-wide
decision making. Local decision making is
related to a SCO, that in fact monitors a small
area in a Smart City (e.g. a street, an intersection,
or a tunnel). As such, a SCO will monitor only a
few data sources, indirectly via Connectors, that
way it shall collect data only from relevant data
sources. This way the need for high CPU power is
reduced for machines that run SCOs and one can
save network bandwidth when it comes to simple
events detection and reacting to them.

In the Smart City case study, one proposes the
deployment of IoT Connectors in the Fog layer
close to the IoT devices they communicate with,
where each Connector is assigned only to a specific
area of the city. Each Connector is in fact a data
sink and uses a different broker to communicate
with related SCOs and data sources. Thus, by
adding more Connectors horizontal scaling is
allowed. This way network load is distributed and

specific protocol limitations in terms of allowed
number of clients, data volume, or number of
messages exchanged are avoided. For instance,
Mosquitto broker allows up to 60,000 messages
per second on a machine with a 3 GHz Intel Core
2 Duo processor and 4 GB of RAM.

When it comes to city-wide decision making in
B2S4B platform, this is a task of the Analyzer,
that collects high-level events reported by all
available SCOs published to Kafka broker and
thus monitors the whole city. Although decision
makers know how many SCOs are available in the
city, it is not expected that all SCOs will run at the
same time, and each of them has specific logic in
terms of detecting events. The performance and
the throughput of data volume sent by SCOs to
Analyzer could be affected by the person that
designs the SCO while creating SCO definitions.
For example, whether one SCO detects an event
once in 10 minutes or once in an hour highly
reduces the overall volume of messages sent to
Analyzer via Kafka broker. When it comes to
Kafka broker limitations, the broker can handle
up to 100,000 messages per second, and could
be scaled by adding additional partitions and
multiple instances.

Figure 5 shows components of B2S4B and data
flow, including the distribution of the volume of
exchanged messages. As the Figure shows, the
amount of messages is reduced exponentially from
Things to SCOs and then to Analyzer.

Figure 4. Technology stack for the implementation of B2S4B

	 85

ICI Bucharest © Copyright 2012-2022. All rights reserved

B2S4B: A Platform for Smart City Business Processes Management and Adaptation

Figure 5. Components of B2S4B and data flow

When it comes to reusability, the SCO definition
is general by virtue of its structure and could be
defined by a domain expert (that does not need
to be a technical person) for any other use case,
such as smart homes, or environment protection,
since there is no need to modify the programming
code or the architecture. In that way SCOs and
the whole platform could be easily deployed
and integrated in any BP that runs within the
ecosystems of a smart city. Table 1 illustrates the
comparison between the B2S4B platform and the
existing smart city platforms.

Table 1. Comparison of smart city platforms

CityPulse FIWARE CiDAP B2S4B

IoT    R

Social networks   R 

Modular
architecture   - R

Creates BP - - - 

Allows
reconfiguration - - - 

7. Conclusion

This paper continues the previous efforts for
bridging business processes with IoT and Social
world into B2S4B platform capable to support
Smart City so that it could use the full potential

of its resources and allow its managers to react fast
to unplanned situations.

This paper introduced the concept of SCO that
observes surroundings, detects events, and
performs action(s) when conditions are satisfied.
A SCO could be a part of a SCO chain that
represents a BP, and by changing SCO definition
used for SCO initiation, the whole BP is changed.

This paper also presented Designer, a user-friendly
dashboard that helps any non-technical person to
easily create SCO definitions and manage existing
SCOs or deploy new ones. The architecture of a
SCO is very flexible and allows a high degree of
freedom in defining scenarios.

One social connector and one IoT connector were
created in order to communicate with both the IoT
and social world, but B2S4B platform is not limited
to those, and could use any 3rd party service as a
connector as long as it follows SCO guidelines.

By simulating traffic conditions, it was proved
that SCOs can be chained and used in a real
Smart City environment and act as valuable tool
for managers and decision makers. Future work
will focus on automatic SCOs reconfiguration
and self-adaption conditions and on solving
potential conflicting situations.

As security is concerned, as a big issue and it will
also be taken into account in future research. The
research agenda would focus on two issues, the
first one would be related to vetting the IoT prior
to deployment on specific network layer (e.g. fog
or cloud), as per the recommendations given in
(Masmoudi et. al., 2020), and the second one to
securing communications between things, fog and
cloud including secure offloading.

Data privacy is an important aspect of this
platform, especially when it comes to interacting
with Social World. All the data that is considered
is publicly available and is the result of public
interaction with citizens.

REFERENCES

Anon (n.d.-a) Available at: <http://b2s4b.connect.rs>.

Anon (n.d.-b) Available at: <http://connector.connect.rs>.

Araujo, V., Mitra, K., Saguna, S. & Åhlund, C. (2019).
Performance evaluation of FIWARE: A cloud-based
IoT platform for smart cities, Journal of Parallel and
Distributed Computing, 132, 250-261.

Banks, J. (1999). Introduction to simulation. In
Proceedings of the 31st conference on Winter simulation:
Simulation - bridge to the future, 1, (pp. 7-13).

Bauman, K., Tuzhilin, A. & Zaczynski, R. (2017).
Using social sensors for detecting emergency events: a
case of power outages in the electrical utility industry,
ACM Transactions on Management Information
Systems (TMIS), 8(2-3), 1-20.

http://b2s4b.connect.rs

https://www.sic.ici.ro

86 Emir Ugljanin, Dragan Stojanović, Ejub Kajan, Zakaria Maamar

Chamoso, P., González-Briones, A., De La Prieta, F.,
Venyagamoorthy, G. K. & Corchado, J. M. (2020).
Smart city as a distributed platform: Toward a
system for citizen-oriented management, Computer
Communications, 152, 323-332.

d’Hondt, T., Wilbik, A., Grefen, P., Ludwig, H.,
Baracaldo, N. & Anwar, A. (2019). Using BPM
technology to deploy and manage distributed analytics
in collaborative IoT-driven business scenarios. In
Proceedings of the 9th International Conference on
the Internet of Things (pp. 1-8).

DOCKER (n.d.) Available at: <http://docker.com>.

Dumas, M., La Rosa, M., Mendling, J. & Reijers,
H. A. (2013). Fundamentals of Business Process
Management, Springer.

European Commission for Information Society and
Media (2008). Internet of Things in 2020: Roadmap for
the Future. INFSO D.4 Networked Enterprise & RFID
INFSO G.2 Micro & Nanosystems in co-operation with
the Working Group RFID of the ETP EPoSS.

Faci, N., Maamar, Z., Baker, T., Ugljanin, E. &
Sellami, M. (2018). In Situ Mutation for Active Things
in the IoT Context. In 13th International Conference
on Software Technologies (ICSOFT), (pp. 759-766).

Gavrilović, N. & Mishra, A. (2021). Software
architecture of the internet of things (IoT) for smart city,
healthcare and agriculture: analysis and improvement
directions, Journal of Ambient Intelligence and
Humanized Computing, 12(1), 1315-1336.

Gharaibeh, A., Salahuddin, M.A., Hussini, S.J.,
Khreishah, A., Khalil, I., Guizani, M. & Al-
Fuqaha, A. (2017). Smart cities: A survey on data
management, security, and enabling technologies,
IEEE Communications Surveys & Tutorials, 19(4),
2456-2501.

Giatsoglou, M., Chatzakou, D., Gkatziaki, V., Vakali,
A. & Anthopoulos, L. (2016). CityPulse: A platform
prototype for smart city social data mining, Journal of
the Knowledge Economy, 7(2), 344-372

GITHUB (n.d.-a). Available at: <https://github.com/
ugljanin/iot-executor>.

GITHUB (n.d.-b). Available at: <https://github.com/
CacheControl/json-rules-engine>.

GOJS (n.d.). Available at: <https://gojs.net>.

Janiesch, C., Koschmider, A., Mecella, M., Weber,
B., Burattin, A., Di Ciccio, C., Fortino, G., Gal,
A., Kannengiesser, U., Leotta, F., Mannhardt, F.,
Marrella, A., Mendling, J., Oberweis, A., Reichert,
M., Rinderle-Ma, S., Serral, E., Song, W., Su, J.,
Torres, V., Weidlich, M., Weske, M. & Zhang, L.
(2020). The Internet of Things Meets Business Process
Management: A Manifesto, IEEE Systems, Man, and
Cybernetics Magazine, 6(4), 34-44.

Kajan, E., Faci, N., Maamar, Z., Sellami, M., Ugljanin,
E., Kheddouci, H., Stojanović, D. H. & Benslimane,

D. (2020). Real-time tracking and mining of users’
actions over social media, Computer Science and
Information Systems, 17(2), 403-426.

Kaplan, A. M. & Haenlein, M. (2010). Users of the
world, unite! The challenges and opportunities of
Social Media, Business Horizons, 53(1), 59-68.

Kourtit, K., Nijkamp, P. & Arribas, D. (2012). Smart
cities in perspective – a comparative European study
by means of self-organizing maps, Innovation – The
European journal of social science research, 25(2),
229-246.

Maamar, Z., Burégio, V. & Sellami, M. (2015).
Collaborative enterprise applications based on business
and social artifacts. In IEEE 24th International
Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (pp. 150-155). IEEE.

Maamar, Z., Kajan, E., Guidara, I., Moctar-M’Baba,
L. & Sellami, M. (2020). Bridging the gap between
business processes and IoT. In Proceedings of the 24th
Symposium on International Database Engineering &
Applications (pp. 1-10).

Masmoudi, F, Zakaria Maamar, Z, Sellami, M., Awad,
A.I. & Burégio, V. (2020). A Guiding Framework for
Vetting the Internet of Things, Journal of Information
Security and Applications, 55, 102644.

Mosquitto (n.d.). Available at:
<https://www.mosquitto.org/>.

MQTT (n.d.). Available at: <https://mqtt.org>.

Neuman, S. (2015). Building microservices: Designing
fine-grained systems. O`Reilly & Associates, Inc.

Nigam, A. & Caswell, N. S. (2003). Business artifacts:
An approach to operational specification, IBM Systems
Journal, 42(3), 428-445.

Portainer (n.d.). Available at: <http://portrainer.io>.

Sánchez, J. R., Campo-Archbold, A., Rozo, A. Z.,
Díaz-López, D., Pastor-Galindo, J., Mármol, F. G. &
Díaz, J. A. (2022). On the power of social networks to
analyze threatening trends, IEEE Internet Computing,
26(2), 19-26.

Ugljanin, E., Faci, N., Sellami, M. & Maamar, Z.
(2016). Tracking users’ actions over social media:
Application to Facebook. In 25th International
Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE), (pp. 255-
256). IEEE.

Ugljanin, E., Stojanović, D., Kajan, E. & Maamar,
Z. (2017). Re-engineering of smart city’s business
processes based on social networks and Internet
of Things, Facta Universitatis, Series: Automatic
Control and Robotics, 16(3), 275-288

Ugljanin, E., Kajan, E., Maamar, Z., Asim, M. &
Burégio, V. (2020). Immersing citizens and things into
smart cities: a social machine-based and data artifact-
driven approach, Computing, 102(7), 1567-1586.

	_Hlk109639896
	_Hlk103188241
	MTBlankEqn
	_Hlk103333977
	_Hlk103614426
	_Hlk109992472
	_Hlk87038628
	_Hlk87204837
	_Hlk87204642
	_Hlk111034883
	_Hlk113302784
	_Hlk102597455
	_Hlk112224558
	_Ref104472317
	_Ref104472397
	OLE_LINK207
	OLE_LINK206
	OLE_LINK171
	OLE_LINK172
	OLE_LINK177
	OLE_LINK178
	OLE_LINK185
	OLE_LINK186
	OLE_LINK194
	_Ref104301423
	_Ref104301498
	OLE_LINK7
	OLE_LINK6
	OLE_LINK2
	OLE_LINK3
	_Ref104494086

