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1. Introduction 
Decision tree building is an intensively studied field of the machine learning. The research has been 
focused for long time mainly on the greedy induction of the univariate decision trees. Famous algorithms 
of this kind are the ID3 and its descendant C4.5. [10]. In both algorithms the internal nodes test a given 
instance against a single attribute. This kind of test splits the search space parallel with the axis of the 
search space. Sometimes this is not the most adequate approach and one or more of the tests have to be 
repeated, in order to obtain a good classification ratio. This leads to replication of subtrees. 

The univariate decision tree inducers usually use measures derived from information theory to decide on 
which attribute to split on. The main task is to build the smallest decision tree still consistent with the 
training data. This problem is known to be NP hard. 

 

Figure 1: This Problem Needs Oblique Splits. 
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Also much research has been done on the induction of oblique decision trees. These contain linear 
combinations of the instance values in their internal nodes, hence they split the search space in an oblique 
way (See Figure 1). A well known algorithm is the OC1([10]). In these the main problem is to find the 
coefficients of the linear combinations. This problem is also NP hard. 

Standard decision tree types split the search space linearly. There are problems where the perfect split is 
not linear at all. A well known example is the two spirals problem (See Figure 2). A further step in the 
generalization are the non-linear multivariate decision trees. The test in these trees usually split the search 
space along some second degree curved hyper surface.[4] 

 

Figure 2. This Spiral Problem Needs non-linear Splits. 

The concept of generalized decision tree (GDT) is proposed. A GDT contains in its internal nodes general tests 
which involve one or more attributes. GDTs give a more compact representation of data than their orthogonal 
or oblique counterparts, although their interpretation might be difficult. To describe such a general test we use 
trees, so the final decision tree is a tree which contains internal trees in its non-terminal nodes.  

The paper is organized as follows: section 2 explains the need for GDTs. Section 3 describes the basis of 
the used encoding, MEP. Section 4 extends MEP codification scheme to fit GDT requirements. The next 
three sections describes the details of the used evolutionary technique: search operators, fitness 
measuring, and the evolutionary algorithm itself. Finally some preliminary results are presented and 
further research directions are drafted. 

2. Why Generalized Decision Trees? 

The reason for using generalized tests in the internal nodes of the decision trees is motivated by the 
following observation: the more precise the tests in the internal nodes are, the smaller the tree becomes. 
Our aim is to find the most suitable tests for the internal nodes of the tree. The complexity of these tests 
can vary from a simple inequality to very complex expressions. To represent the internal tests, we have 
chosen trees, which have in their internal nodes predefined operators (logical, relational, trigonometrical, 
etc functions), and in their leaves different values which are derived from the input data. Such of 
expression evaluates to a numerical value. If this value is non-null, we say that the test is satisfied, 
otherwise it is not. We call these tests generalized tests. 

The generalized decision trees have the big advantage that cover all the classic decision tree types 
developed until now. On one hand, if the general tests consist of testing single attributes then we deal 
with an univariate decision tree. On the other hand, if the whole tree is a single big test then we deal with 
genetic programming expressions (see [6]). 
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However, there are some drawbacks: the more complicated tests are in the internal nodes, the the less 
comprehensible are by humans. This, and the increased computational effort needed to find the exact 
general tests are the price that usually have to be paid for the compactness. Also, the more compact the 
tree is, the greater the probability that over-fits the data [2]. 

One might ask how to find the exact expressions for the internal nodes. Going through all the possible 
expressions is infeasible, so we need some heuristic method. The evolutionary method was selected since 
it has proved its capabilities in similar situations. ([1,5,6,9,11]) 

First a number of decision trees are generated randomly. Those who perform well (meaning that their 
classification capabilities are good) are allowed to mate and have children. Bad individuals are removed 
from population, they are replaced by the offspring of the parents selected in the previous steps. This 
procedure is continued until the best individual reaches a given level of goodness, or a given number of 
generations have passed. Then the best individual is used for classification tasks. 

To do the evolution, first we need an adequate codification of the possible solutions, we need 
evolutionary operators, some goodness measure, and a concrete evolutionary algorithm. 

3. MEP Encoding 

Encoding is a method which converts a possible solution, called phenotype, into a structure (genotype) 
that will undergo adaptation during the evolutionary process . In our case the genotype will consist of a 
single chromosome, built up by genes (see details later). 

MEP encoding (Multi Expression Programming, see [9]) allows to rewrite a given tree in a linear fashion. 
The first elements of the MEP structure are atomic. The rest are either atomic or compound elements. 
Compound elements contain functions that take as arguments the indexes of other elements. To avoid 
recursion the index of a compound node must be greater than any of the parameters’ indexes it contains.  

Let us give an example for the MEP codification. Consider chromosome C defined below: 

1: a 
2: b 
3: + 1, 2 
4: sqr 3 
5: c 
6: - 4, 5  

This linear structure encodes the tree presented on Figure 3. 

 

Figure 3. The Tree Corresponding to Chromosome C. 

The interesting thing about this encoding type is that the evaluation depends on the entry point, ie. the 
point the evaluation starts from. For example if we take the entry point 6, we will get the expression 
(a+b)2 . But if the evaluation starts at point 3, we will get a simpler expression: (a+b). This property is 
very useful in evolutionary algorithms, since a genome encoded by a MEP structure will have multiple 
phenotypic transcriptions. To find the best phenotypic transcription all of the entry points have to be 
checked. This introduces an extra computational cost. 

 

 



18  Studies in Informatics and Control, Vol.14,No.1, March 2005 

4. GDT Encoding 

The GDT encoding scheme is a modified version of the MEP codification designed to hold generalized 
decision trees. It contains on its first positions the possible classes an instance can be classified. The rest 
of the elements are tests which test the instance regarding to one or more attributes. The general form of a 
GDT structure containing n classes and m tests is presented in Figure 4. The result of every test is either 
true (non-zero) or false (zero), hence the corresponding decision tree is a binary. For simplicity we have 
restricted the usage of atomic elements (classes) by means that they must occupy the first n positions of 
the chromosome. 

 

Figure 4: Logical view of a GDT chromosome. A chromosome is made up by genes: class-genes in 
front, followed by condition-genes. Every gene has a number, a so called entry point, which 

identifies the gene. A condition contains a test (a tree) and two jump points: the first one is used if 
the test evaluates to true, the second is used if the test evaluates to false. 

Every test_i, i=1...m is a tree having in its internal nodes operators or functions, and in its leaves values 
derived from instance or attribute values. We call these tests internal trees. An example for such of 
internal tree written in infixed Polish form is the following:    

((ABS(temperature))/(COS(0.85841))) 

Here temperature is an attribute, and 0.85841 is a randomly generated value from a possible value of an 
attribute. It is permitted to an operator to have as parameters both exact values or attributes. Thus the 
following expressions are also correct:  

(0.819752&&0.870315)   
or  

(LN(temperature/humidity))  

In the internal trees the following operators and functions are used: 

 logical operators: and, or, not  
 relational operators: <, >, <=, >=, ==, ! =  
 arithmetical operators: +, -, *, /  
 trigonometric functions: SIN, COS  
 exponential and logarithm functions: EXP, LN  
 absolute value: ABS  
 square and square root functions: SQR, SQRT  

Some of the operators and functions have been rewritten to assure that the program will not crash in the 
case of illegal or unusual operands. Thus: 

 the logical and the relational operators return 0 or 1, depending whether the condition is satisfied or not  
 the natural logarithm in fact is the natural logarithm of the absolute value of the operand, ie. ln(x) is 

mapped to ln(abs(x))  
 the square root is the square root of the absolute value of the operand, ie. sqrt(x) is mapped to 

sqrt(abs(x))  
 the division is rewritten so that if the divisor is null, it is replaced by a very small positive value  
It has to be mentioned that because the tree corresponding to a GDT chromosome is binary, and the 
function set used in tests doesn’t contain loops, if-else structures, neither the assignment operator (=), 
GDTI (Generalized Decision Tree Inducer) is not a fully implementation of a generalized decision tree. 
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5. Calculating the Fitness 

The fitness of an individual must reflect its classification ability. Hence it is calculated as the percent of 
well classified instances from the test set. Since a GDT chromosome has multiple phenotypic 
transcriptions, an individual has multiple fitness values. The selection operator will work only with the 
best fitness value the individual got. In the following we give the pseudocode for calculating the fitness of 
a GDT chromosome: 

function CalculateFitness(chromosome, testSet) 

fitness = 0 

for every non-class entry point e from chromosome 

sum = 0 

for every instance ins from testSet 

i = e 

while (i is not a class) 

if (test_i.eval(ins) == true) i = x_i 

else i = y_i 

end 

if (class_i == ins.class) sum++ 

end 

sum /= testSet.length 

if (fitness < sum) fitness = sum 

end 

return fitness 

Now let us explain the steps of fitness calculation. First we have to check all the non-class entry points 
the chromosome has. We pick instances from the test set, and propagate through the chromosome starting 
from entry point i=e. Depending on whether the test at entry point i (test_i) is true or false, we jump to 
x_i or y_i. When an entry point containing a class has been reached, it is compared with the correct 
classification of the instance (ins.class). If they match, a counter (sum) is increased. After all the instances 
has been tested, the counter is divided by the number of instances from the test set (testSet.length), to find 
the ratio of well classified instances for entry point e. Finally the global fitness (fitness) is compared with 
the fitness of the entry point (stored now in sum), and it is updated if necessary. 

6. Search Operators 

In the following we will describe the details of the used search operators. 

Mutation 

Mutation makes little modification in the involved chromosome. Mutation usually helps to maintain the 
diversity of the population by inserting individuals which could not have been “made” just by crossover. 
There are several levels where mutation can be applied. The level on wich actually the mutation will 
occur is selected in a random manner.  

 Chromosome level: one gene is inserted/deleted randomly, or the mutation is propagated to a lower level.  
 Gene level: has meaning only in the case of non-class genes. The condition is replaced randomly or 

the mutation is propagated to a lower level.  
 Condition level: the contained tree is replaced, one of the jump points is altered or the mutation is 

propagated to a lower level.  
 Tree level: a subtree is selected and replaced randomly.  

Crossover 

Crossover takes usually two individuals called parents, and produces one or more offspring. Offspring 
inherit parts of their parents’ genetic material. The crossover operator also works on different levels: 

 Chromosome level. Since chromosomes are linear structures the typical one- or two-point or uniform 
crossover can be used. The crossover point must point above the class-genes. In contrast with the 



20  Studies in Informatics and Control, Vol.14,No.1, March 2005 

usual genetic crossover, where the genes were atomic elements, a GDT gene can be split by the 
crossover operator. If the crossover point points between to genes, the traditional crossover is used. If 
it points to a gene, then the corresponding genes are split. This is achieved by calling a lower level 
crossover method.  

 Gene level. The condition-level crossover is called.  
 Condition level. Condition is also a linear structure having three elements: the tree and the two jump 

points. One-point crossover is used at this level. If the crossover point points to the tree, then a lower 
level (tree level) crossover is made.  

 Tree level. Tree needs specialized crossover operator, so we used one borrowed from genetic programming: 
two nodes are selected randomly on both trees and the subtrees defined by these are swapped.  

The different crossover types are illustrated on Figure 5. 

 

Figure 5. Different crossover types in GDTI. The Figure illustrates the different crossover types available 
at different levels. The upper bars on top represent the chromosomes which will suffer crossover, every 

slice being a gene. The dark parts at the fronts of the bars are the class-genes, which do not enter the game. 
The upper-left part of the Figure presents the traditional one-point crossover. The right part of the Figure 
shows a non-orthodox crossover, where a gene is split in two. There are three different possible results, as 
shown. The right-most is also unusual, since the ith tests are split. This is a tree crossover, where two nodes 

are selected randomly on both trees and the subtrees defined by these are swapped. 

Selection 

Selection is used to select individuals for some events like mutation, crossover, or elimination from the 
current population. GDTI uses tournament selection as selection for crossover: two or more individuals 
are selected randomly from population and the one with the greatest fitness wins the “tournament”. The 
more individuals enter the contest, the higher the selection pressure is. For mutation we use random 
selection, meaning that every individual has the same probability for being selected.  

Steady-state selection is used as population replacement strategy. This enables the survival of the fits, and 
the competition of old and new individuals. 

6. Evolution 
Having all the operators necessary to evolve decision trees we can now give the evolutionary algorithm. 

ALGORITHM GDTI 

time = 0 

Initialize(population) 

while(time < generations) 

CalculateFitness(population) 

matingPool = TournamentSelection(population) 

offspring = Crossover(matingPool) 

offspring = Mutate(offspring) 

UpdatePopulation(population, offspring) 

time ++ 

end 
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Let us explain the presented algorithm. First the population is initialized with random data derived from 
the training set. Then follows the evolutionary loop, which lasts until the time variable has reached a 
previously fixed limit (the number of generations). The evolutionary loop starts with calculating the 
fitness of the individuals. The individuals with the best fitness are selected using the tournament selection 
scheme into an intermediate location, called the mating pool. Offspring are produced by pairwise 
crossover of parents chosen randomly from the mating pool. Mutation is applied to offspring, then the 
offspring replace the bad individuals from the original population. The evolutionary loop ends with the 
increment of the time variable. 

7. Results 

Data Preparation 

The training and test data were taken from the UCI Machine Learning Repository1 . The data files have 
been parsed and the numeric values have been normalized to mean 0 and deviation 1. 

In the current version of GDTI the symbolic attributes are left out from the game, ie. they are not used in 
the internal tests. 

To handle the missing values we have chosen the fastest (but not necessarily the best) method: if an 
instance has a missing value at some attribute then the most common value among the other instances at 
same attribute is put in the place of it. If in the training set all the values are missing at some attribute then 
the respective attribute is removed. 

Results 

The results are quite positive, although there are datasets where we had expected better classification 
ratios. Table 1 contains a comparation with some standard algorithms (C4.5, CN2, BGP). (MEPDTI is an 
evolutionary, orthogonal decision tree inducer([5])). 
 

Data set Number 

of classes 

Number 

of 

attributes

GDTI MEPDTI CN2 C4.5 BGP 

breast-

cancer 

2 10 0.979 n.a. n.a. n.a. n.a. 

glass 7 9 0.767 n.a. n.a. n.a. n.a. 

ionospher

e 

2 33 0.957 0.910 0.920 0.930 0.890 

iris 3 4 0.987 0.950 0.940 0.940 0.940 

monk1 2 6 1.000 0.850 1.000 1.000 0.990 

monk2 2 6 0.816 0.640 0.620 0.630 0.680 

monk3 2 6 0.959 0.970 0.900 0.960 0.970 

pima 2 8 0.807 0.770 0.720 0.730 0.720 

spirals 2 2 0.823 n.a. n.a. n.a. n.a. 

tic-tac-toe 2 9 0.863 0.750 n.a. n.a. n.a. 

wine 3 13 0.977 n.a. n.a. n.a. n.a. 

Table 1. Results obtained with the Genarailzed Decision Tree Inducer (GDTI). 

                                                           
1ftp.ics.uci.edu:pub/machine-learning-databases 
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8. Further Work 

Among of our plans are the fine-tuning the algorithm to give a better solution for the highly non-linear 
problems, like the spirals problem. Also, we are planning to investigate the effect of the used search 
operators, and if there is true need for the strong parallelism given by the MEP encoding. 
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