
Studies in Informatics and Control, Vol.14,No.1, March 2005 15

Generalized Decision Trees Built With Evolutionary
Techniques

D. Dumitrescu

Department of Computer Science

Babes-Bolyai University, Cluj,

ROMANIA

JOÓ András

Department of Mathematics and Information Sciences

Sapientia University, Targu Mures,

ROMANIA

Abstract: This paper proposes a new decision tree type: Generalized Decision Tree (GDT). These trees contain completely
generalized tests in their internal nodes, hence they describe much better the data than their traditional counterparts. An evolutionary
method to build such decision trees is presented.

Keywords: decision tree, evolutionary algorithm, genetic programming, multi-expression programming

D. Dumitrescu obtained his PhD in 1990 from University of Cluj, Romania, in Mathematics and Computer Science. During the
period 1998-2000 he was invited professor and researcher at the University of Pisa , Italy. Presently he is full professor in the
Department of Computer Science, University Babes- Bolyai, Cluj. His main research fields are Natural Computing, Evolutionary
Computing, Computational Intelligence and Fuzzy Systems.

Joo Andras obtained his Mathematics and Information Sciences degree from Petru Maior University, Târgu Mureş, Romania, in
2002. From October 2002 he is a assistant at the Sapientia University, Târgu Mureş. In 2003 he obtained a MSC degree in
Intelligent Systems from the Babes-Bolyai University, Cluj. Currently he is a PHD student. His main research fields are
evolutionary techniques and decision mechanisms.

1. Introduction
Decision tree building is an intensively studied field of the machine learning. The research has been
focused for long time mainly on the greedy induction of the univariate decision trees. Famous algorithms
of this kind are the ID3 and its descendant C4.5. [10]. In both algorithms the internal nodes test a given
instance against a single attribute. This kind of test splits the search space parallel with the axis of the
search space. Sometimes this is not the most adequate approach and one or more of the tests have to be
repeated, in order to obtain a good classification ratio. This leads to replication of subtrees.

The univariate decision tree inducers usually use measures derived from information theory to decide on
which attribute to split on. The main task is to build the smallest decision tree still consistent with the
training data. This problem is known to be NP hard.

Figure 1: This Problem Needs Oblique Splits.

16 Studies in Informatics and Control, Vol.14,No.1, March 2005

Also much research has been done on the induction of oblique decision trees. These contain linear
combinations of the instance values in their internal nodes, hence they split the search space in an oblique
way (See Figure 1). A well known algorithm is the OC1([10]). In these the main problem is to find the
coefficients of the linear combinations. This problem is also NP hard.

Standard decision tree types split the search space linearly. There are problems where the perfect split is
not linear at all. A well known example is the two spirals problem (See Figure 2). A further step in the
generalization are the non-linear multivariate decision trees. The test in these trees usually split the search
space along some second degree curved hyper surface.[4]

Figure 2. This Spiral Problem Needs non-linear Splits.

The concept of generalized decision tree (GDT) is proposed. A GDT contains in its internal nodes general tests
which involve one or more attributes. GDTs give a more compact representation of data than their orthogonal
or oblique counterparts, although their interpretation might be difficult. To describe such a general test we use
trees, so the final decision tree is a tree which contains internal trees in its non-terminal nodes.

The paper is organized as follows: section 2 explains the need for GDTs. Section 3 describes the basis of
the used encoding, MEP. Section 4 extends MEP codification scheme to fit GDT requirements. The next
three sections describes the details of the used evolutionary technique: search operators, fitness
measuring, and the evolutionary algorithm itself. Finally some preliminary results are presented and
further research directions are drafted.

2. Why Generalized Decision Trees?

The reason for using generalized tests in the internal nodes of the decision trees is motivated by the
following observation: the more precise the tests in the internal nodes are, the smaller the tree becomes.
Our aim is to find the most suitable tests for the internal nodes of the tree. The complexity of these tests
can vary from a simple inequality to very complex expressions. To represent the internal tests, we have
chosen trees, which have in their internal nodes predefined operators (logical, relational, trigonometrical,
etc functions), and in their leaves different values which are derived from the input data. Such of
expression evaluates to a numerical value. If this value is non-null, we say that the test is satisfied,
otherwise it is not. We call these tests generalized tests.

The generalized decision trees have the big advantage that cover all the classic decision tree types
developed until now. On one hand, if the general tests consist of testing single attributes then we deal
with an univariate decision tree. On the other hand, if the whole tree is a single big test then we deal with
genetic programming expressions (see [6]).

Studies in Informatics and Control, Vol.14,No.1, March 2005 17

However, there are some drawbacks: the more complicated tests are in the internal nodes, the the less
comprehensible are by humans. This, and the increased computational effort needed to find the exact
general tests are the price that usually have to be paid for the compactness. Also, the more compact the
tree is, the greater the probability that over-fits the data [2].

One might ask how to find the exact expressions for the internal nodes. Going through all the possible
expressions is infeasible, so we need some heuristic method. The evolutionary method was selected since
it has proved its capabilities in similar situations. ([1,5,6,9,11])

First a number of decision trees are generated randomly. Those who perform well (meaning that their
classification capabilities are good) are allowed to mate and have children. Bad individuals are removed
from population, they are replaced by the offspring of the parents selected in the previous steps. This
procedure is continued until the best individual reaches a given level of goodness, or a given number of
generations have passed. Then the best individual is used for classification tasks.

To do the evolution, first we need an adequate codification of the possible solutions, we need
evolutionary operators, some goodness measure, and a concrete evolutionary algorithm.

3. MEP Encoding

Encoding is a method which converts a possible solution, called phenotype, into a structure (genotype)
that will undergo adaptation during the evolutionary process . In our case the genotype will consist of a
single chromosome, built up by genes (see details later).

MEP encoding (Multi Expression Programming, see [9]) allows to rewrite a given tree in a linear fashion.
The first elements of the MEP structure are atomic. The rest are either atomic or compound elements.
Compound elements contain functions that take as arguments the indexes of other elements. To avoid
recursion the index of a compound node must be greater than any of the parameters’ indexes it contains.

Let us give an example for the MEP codification. Consider chromosome C defined below:

1: a
2: b
3: + 1, 2
4: sqr 3
5: c
6: - 4, 5

This linear structure encodes the tree presented on Figure 3.

Figure 3. The Tree Corresponding to Chromosome C.

The interesting thing about this encoding type is that the evaluation depends on the entry point, ie. the
point the evaluation starts from. For example if we take the entry point 6, we will get the expression
(a+b)2 . But if the evaluation starts at point 3, we will get a simpler expression: (a+b). This property is
very useful in evolutionary algorithms, since a genome encoded by a MEP structure will have multiple
phenotypic transcriptions. To find the best phenotypic transcription all of the entry points have to be
checked. This introduces an extra computational cost.

18 Studies in Informatics and Control, Vol.14,No.1, March 2005

4. GDT Encoding

The GDT encoding scheme is a modified version of the MEP codification designed to hold generalized
decision trees. It contains on its first positions the possible classes an instance can be classified. The rest
of the elements are tests which test the instance regarding to one or more attributes. The general form of a
GDT structure containing n classes and m tests is presented in Figure 4. The result of every test is either
true (non-zero) or false (zero), hence the corresponding decision tree is a binary. For simplicity we have
restricted the usage of atomic elements (classes) by means that they must occupy the first n positions of
the chromosome.

Figure 4: Logical view of a GDT chromosome. A chromosome is made up by genes: class-genes in
front, followed by condition-genes. Every gene has a number, a so called entry point, which

identifies the gene. A condition contains a test (a tree) and two jump points: the first one is used if
the test evaluates to true, the second is used if the test evaluates to false.

Every test_i, i=1...m is a tree having in its internal nodes operators or functions, and in its leaves values
derived from instance or attribute values. We call these tests internal trees. An example for such of
internal tree written in infixed Polish form is the following:

((ABS(temperature))/(COS(0.85841)))

Here temperature is an attribute, and 0.85841 is a randomly generated value from a possible value of an
attribute. It is permitted to an operator to have as parameters both exact values or attributes. Thus the
following expressions are also correct:

(0.819752&&0.870315)
or

(LN(temperature/humidity))

In the internal trees the following operators and functions are used:

 logical operators: and, or, not
 relational operators: <, >, <=, >=, ==, ! =
 arithmetical operators: +, -, *, /
 trigonometric functions: SIN, COS
 exponential and logarithm functions: EXP, LN
 absolute value: ABS
 square and square root functions: SQR, SQRT

Some of the operators and functions have been rewritten to assure that the program will not crash in the
case of illegal or unusual operands. Thus:

 the logical and the relational operators return 0 or 1, depending whether the condition is satisfied or not
 the natural logarithm in fact is the natural logarithm of the absolute value of the operand, ie. ln(x) is

mapped to ln(abs(x))
 the square root is the square root of the absolute value of the operand, ie. sqrt(x) is mapped to

sqrt(abs(x))
 the division is rewritten so that if the divisor is null, it is replaced by a very small positive value
It has to be mentioned that because the tree corresponding to a GDT chromosome is binary, and the
function set used in tests doesn’t contain loops, if-else structures, neither the assignment operator (=),
GDTI (Generalized Decision Tree Inducer) is not a fully implementation of a generalized decision tree.

Studies in Informatics and Control, Vol.14,No.1, March 2005 19

5. Calculating the Fitness

The fitness of an individual must reflect its classification ability. Hence it is calculated as the percent of
well classified instances from the test set. Since a GDT chromosome has multiple phenotypic
transcriptions, an individual has multiple fitness values. The selection operator will work only with the
best fitness value the individual got. In the following we give the pseudocode for calculating the fitness of
a GDT chromosome:

function CalculateFitness(chromosome, testSet)

fitness = 0

for every non-class entry point e from chromosome

sum = 0

for every instance ins from testSet

i = e

while (i is not a class)

if (test_i.eval(ins) == true) i = x_i

else i = y_i

end

if (class_i == ins.class) sum++

end

sum /= testSet.length

if (fitness < sum) fitness = sum

end

return fitness

Now let us explain the steps of fitness calculation. First we have to check all the non-class entry points
the chromosome has. We pick instances from the test set, and propagate through the chromosome starting
from entry point i=e. Depending on whether the test at entry point i (test_i) is true or false, we jump to
x_i or y_i. When an entry point containing a class has been reached, it is compared with the correct
classification of the instance (ins.class). If they match, a counter (sum) is increased. After all the instances
has been tested, the counter is divided by the number of instances from the test set (testSet.length), to find
the ratio of well classified instances for entry point e. Finally the global fitness (fitness) is compared with
the fitness of the entry point (stored now in sum), and it is updated if necessary.

6. Search Operators

In the following we will describe the details of the used search operators.

Mutation

Mutation makes little modification in the involved chromosome. Mutation usually helps to maintain the
diversity of the population by inserting individuals which could not have been “made” just by crossover.
There are several levels where mutation can be applied. The level on wich actually the mutation will
occur is selected in a random manner.

 Chromosome level: one gene is inserted/deleted randomly, or the mutation is propagated to a lower level.
 Gene level: has meaning only in the case of non-class genes. The condition is replaced randomly or

the mutation is propagated to a lower level.
 Condition level: the contained tree is replaced, one of the jump points is altered or the mutation is

propagated to a lower level.
 Tree level: a subtree is selected and replaced randomly.

Crossover

Crossover takes usually two individuals called parents, and produces one or more offspring. Offspring
inherit parts of their parents’ genetic material. The crossover operator also works on different levels:

 Chromosome level. Since chromosomes are linear structures the typical one- or two-point or uniform
crossover can be used. The crossover point must point above the class-genes. In contrast with the

20 Studies in Informatics and Control, Vol.14,No.1, March 2005

usual genetic crossover, where the genes were atomic elements, a GDT gene can be split by the
crossover operator. If the crossover point points between to genes, the traditional crossover is used. If
it points to a gene, then the corresponding genes are split. This is achieved by calling a lower level
crossover method.

 Gene level. The condition-level crossover is called.
 Condition level. Condition is also a linear structure having three elements: the tree and the two jump

points. One-point crossover is used at this level. If the crossover point points to the tree, then a lower
level (tree level) crossover is made.

 Tree level. Tree needs specialized crossover operator, so we used one borrowed from genetic programming:
two nodes are selected randomly on both trees and the subtrees defined by these are swapped.

The different crossover types are illustrated on Figure 5.

Figure 5. Different crossover types in GDTI. The Figure illustrates the different crossover types available
at different levels. The upper bars on top represent the chromosomes which will suffer crossover, every

slice being a gene. The dark parts at the fronts of the bars are the class-genes, which do not enter the game.
The upper-left part of the Figure presents the traditional one-point crossover. The right part of the Figure
shows a non-orthodox crossover, where a gene is split in two. There are three different possible results, as
shown. The right-most is also unusual, since the ith tests are split. This is a tree crossover, where two nodes

are selected randomly on both trees and the subtrees defined by these are swapped.

Selection

Selection is used to select individuals for some events like mutation, crossover, or elimination from the
current population. GDTI uses tournament selection as selection for crossover: two or more individuals
are selected randomly from population and the one with the greatest fitness wins the “tournament”. The
more individuals enter the contest, the higher the selection pressure is. For mutation we use random
selection, meaning that every individual has the same probability for being selected.

Steady-state selection is used as population replacement strategy. This enables the survival of the fits, and
the competition of old and new individuals.

6. Evolution
Having all the operators necessary to evolve decision trees we can now give the evolutionary algorithm.

ALGORITHM GDTI

time = 0

Initialize(population)

while(time < generations)

CalculateFitness(population)

matingPool = TournamentSelection(population)

offspring = Crossover(matingPool)

offspring = Mutate(offspring)

UpdatePopulation(population, offspring)

time ++

end

Studies in Informatics and Control, Vol.14,No.1, March 2005 21

Let us explain the presented algorithm. First the population is initialized with random data derived from
the training set. Then follows the evolutionary loop, which lasts until the time variable has reached a
previously fixed limit (the number of generations). The evolutionary loop starts with calculating the
fitness of the individuals. The individuals with the best fitness are selected using the tournament selection
scheme into an intermediate location, called the mating pool. Offspring are produced by pairwise
crossover of parents chosen randomly from the mating pool. Mutation is applied to offspring, then the
offspring replace the bad individuals from the original population. The evolutionary loop ends with the
increment of the time variable.

7. Results

Data Preparation

The training and test data were taken from the UCI Machine Learning Repository1 . The data files have
been parsed and the numeric values have been normalized to mean 0 and deviation 1.

In the current version of GDTI the symbolic attributes are left out from the game, ie. they are not used in
the internal tests.

To handle the missing values we have chosen the fastest (but not necessarily the best) method: if an
instance has a missing value at some attribute then the most common value among the other instances at
same attribute is put in the place of it. If in the training set all the values are missing at some attribute then
the respective attribute is removed.

Results

The results are quite positive, although there are datasets where we had expected better classification
ratios. Table 1 contains a comparation with some standard algorithms (C4.5, CN2, BGP). (MEPDTI is an
evolutionary, orthogonal decision tree inducer([5])).

Data set Number

of classes

Number

of

attributes

GDTI MEPDTI CN2 C4.5 BGP

breast-

cancer

2 10 0.979 n.a. n.a. n.a. n.a.

glass 7 9 0.767 n.a. n.a. n.a. n.a.

ionospher

e

2 33 0.957 0.910 0.920 0.930 0.890

iris 3 4 0.987 0.950 0.940 0.940 0.940

monk1 2 6 1.000 0.850 1.000 1.000 0.990

monk2 2 6 0.816 0.640 0.620 0.630 0.680

monk3 2 6 0.959 0.970 0.900 0.960 0.970

pima 2 8 0.807 0.770 0.720 0.730 0.720

spirals 2 2 0.823 n.a. n.a. n.a. n.a.

tic-tac-toe 2 9 0.863 0.750 n.a. n.a. n.a.

wine 3 13 0.977 n.a. n.a. n.a. n.a.

Table 1. Results obtained with the Genarailzed Decision Tree Inducer (GDTI).

1ftp.ics.uci.edu:pub/machine-learning-databases

22 Studies in Informatics and Control, Vol.14,No.1, March 2005

8. Further Work

Among of our plans are the fine-tuning the algorithm to give a better solution for the highly non-linear
problems, like the spirals problem. Also, we are planning to investigate the effect of the used search
operators, and if there is true need for the strong parallelism given by the MEP encoding.

REFERENCES

1. BALA J., HUANG J., VAFAIE H., DEJONG K., WECHSLER H., Learning Using Genetic
Algorithms and Decision Trees for Pattern Classification. IJCAI Conference, Montreal, 1995.

2. BENETT K.P, CRISTIANINI N., SHAWE-TAYLOR J., WU D., Enlarging the Margins in
Perceptron Decision Trees, 1999

3. BREIMAN L., FREIDMAN J.H, OLSHEN R.A., STONE CH.J, Classification and Regression
Trees, Chapman&Hall, 1984

4. ITTNER A., SCHLOSSER M., Non-Linear Decision Trees - NDT, Proceedings of 13 International
Conference on Machine Learning - IML96, Lorenza Saitta, 1996

5. JOÓ A., DUMITRESCU D., Evolving Orthogonal Decision Trees, Studia Universitatis Babes
Bolyai, Cluj, 2003

6. KOZA J., Genetic Programming: On The Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA, 1992

7. LLORA X., GARREL J.M, Evolution of Decision Trees, Proceeding of the 4th Catalan
Conference on AI, ACIA Press, 2001

8. MURTHY S.K, KASIF S., SALZBERG S. A System for Induction of Oblique Decision Trees,
OC1, Journal of Artificial Intelligence Research 2, 1994

9. OLTEAN M., DUMITRESCU D., Multi Expression Programming, submitted to Journal of
Genetic Programming, 2003

10. QUINLAN R., C4.5: Programs for Machine Learning, Morgan Kaufmann, San Meteo, CA, 1993

11. ROUWHOST S.E, ENGELBRECHT A.P., Searching the Forest: Using Decision Trees as
Building Blocks for Evolutionary Search in Classification Databases, Proc. Congress on
Evolutionary Computation (CEC-2000), 633-638 La Jolla, CA, USA, 2000

