
Studies in Informatics and Control, Vol.14, No.1, March 2004 31

An Extension of Maple for Grid and Cluster
Computing

Petcu Dana

Dubu Diana

Western University of Timişoara and Institute e-Austria in Timişoara

ROMANIA

Abstract: Computer Algebra Systems, like Maple, are useful tools for mathematicians and engineers. Extending their facilities with
external specialized codes is a continuous challenge. In order to augment Maple's facilities with dedicated remote services or using
remote computational power, we have design a specific tool. This tool links Maple's interface to grid services or different Maple
kernels thus forming a virtual parallel computing environment. Behind it are Globus, the standard for grid computing, and mpiJava,
a package for message passing programming on parallel or cluster architecture. In this paper we give a shortly description on the
extension design principles and its functionality.

Keywords: grid computing, parallel computing, computer algebra systems.

Dana Petcu is professor at Computer Science Department of the Faculty of Mathematics and Computer Science from Western
University of Timişoara and director of the research institute in computer science, Institute e-Austria in Timişoara. Her current
research interests include parallel, distributed and grid computing, numerical analysis, computer graphics. She is the author of more
than 10 books and 100 papers published in international journals or conference proceedings.

Diana Dubu has finish the master degree in Distributed systems and artificial intelligence at Computer Science Department of the
Faculty of Mathematics and Computer Science from Western University of Timişoara and is young researcher at Institute e-Austria
Timişoara. Her current research interests include grid computing and automated proving.

1. Introduction

Grid computing is emerging as a next generation computing platform for solving large scale problems
through sharing of geographically distributed resources [1]. It is unrealistic to expect the transition of
researchers towards grid computing to be anything but halting and slow if it means abandoning the
scientific computing environments, like computer algebra systems (CAS), which are now rightfully
viewed as a major source of their productivity. Moreover, there are many pieces of functionality which
are implemented in one CAS but not others, as stand-alone programs, or which run best on special
hardware such as parallel machine. Whichever is the case, it is desirable to be able to augment each CAS
with functionality from external systems [11]. A CAS extension to the grid meets not only the need of
interconnecting different solvers, but also opens a way for web-based interaction with large-scale
computational systems.

There are several running projects aiming to link CAS with grids. NetSolve [2] is an example of a grid-
based server that supports Matlab and Mathematica as native clients for grid computing; it automates the
process of looking for computational resources on a network, choosing the best one available, solving a
problem, and returning the answer to the user. MathGridLink [13] permits the full access to any available
web service deployed on the grid, regardless of the language the service is written in, within
Mathematica; with MathGridLink it becomes possible not only to integrate any existing grid web service
in Mathematica's framework, but also to write and deploy new web services entirely from Mathematica,
such that the Mathematica programmer does not need to have detailed knowledge about the grid. The
Geodise toolkit [4] is a suite of tools for grid-enabled codes within the Matlab environment; these grid
services are presented to the design engineer as Matlab functions that conform to the usual syntax of
Matlab, enabling the programmer to access Java classes, to create objects, and to call methods of these
objects within the Matlab environment.

Many scientific and engineering problems are characterized by a considerable run-time expenditure on
one side and a medium-grained logical problem structure on the other side. Often such problems cannot
be solved in a single CAS, but they can be parallelized effectively even on networked computers. For
such problems we do not necessarily need a parallel CAS. Instead we need some methods to integrate the
CAS and other autonomous tools into a parallel virtual system. Several parallel virtual or distributed
systems were constructed on top of three frequently used CAS, Maple, Matlab and Mathematica.
Distributed Mathematica [12] is a public domain system allowing to create concurrent tasks and have
them executed by Mathematica kernels running on different machines on a cluster. Another extension for
Mathematica, gridMathematica [14], allows the parallel distribution of Mathematica tasks among

32 Studies in Informatics and Control, Vol.14, No.1, March 2004

different kernels in a distributed environment, built on a PVM-like architecture; it can be used on
dedicated multiprocessor machines and on clusters. In [3] several tens of parallel Matlab projects have
been identified utilizing different approaches: compile Matlab script into parallel native code, provide a
parallel backend to Matlab by using Matlab as a graphical front-end, or coordinate multiple Matlab
processes to work in parallel.

While there are several parallel and distributed versions of Maple (see [10] for a review of them,
including the one proposed earlier by one of the current paper authors), or network-enabled Maple servers
(see [6]), we are not aware of any current project running and reported in the literature with the aim to
couple Maple to a computational grid. To fill this gap we have designed an extension of Maple allowing
the access to grid services from Maple and the access of Maple as grid service. Moreover, the extension
allows parallel computations using different Maple kernels running on clusters of workstations or on
several nodes of a computational grid.

The paper is organized as follows. The next section enumerates the design approach. The third section
gives details about the functionality of the grid extension, while the fourth section explains the
background of the parallel extension. The last section is dedicated to future developments and
conclusions. Further details are presented in [9].

2. Design Issues

Instead of designing a whole new system for interconnecting several computation services, we can rely on
some already available and viable solutions. We review here some of them.

A client proxy is a process that resides on the client host and acts on behalf of the client to handle all
interactions with a specific kind of grid backend. Each different backend has its own characteristics and
requires its own proxy to shield the client from the details of that interaction. For example, to enable
NetSolve to interact with the Globus system a proxy was built for the NetSolve client that knows how to
interact with and make use of Globus resources [2]. By using proxies that abstract away the details of the
system communication, the client interface can stay consistent while the grid systems it can utilize can
change and grow.

To transform a component system's interface type and syntax in order for it to become part of a
conglomerate system, like a computational grid, a piece of software known as a wrapper must be
implemented. A wrapper [11] presents the desired interface to the operating environment and translate
external interactions to and from the native interface and syntax of the component system. The
construction of wrappers is probably the most difficult part of building conglomerate systems, especially
when the native interface of a system is a user interface, with all the attendant ambiguities of
interpretation of output. Automatic wrapper generators for legacy codes that can operate at varying
degrees of granularity, and can wrap the entire code or sub-routines within codes automatically, are still
not available.

The steps required to add functionality from an external system to a CAS can be conceptualized as
follows:

Step 1: install and maintain the component which performs the computation;
Step 2: write the wrapper for the component with a command-line interface and formal syntax;
Step 3: devise a scheme whereby the wrapper can be invoked from within the CAS.

The difficulty associated with the first step consist in that the user of a CAS usually does not want the
inconvenience of installing and maintaining an external system. The second step is often the most challenging
because it requires disambiguating the user output of the original system into formal output syntax of the wrapper.
The main problem with the third step is the fact that most CASs do not support a programmatic interface to
external programs and must therefore perform all interaction through the command shell and input/output files.
Fortunately, Maple has a sockets library for communicating over the Internet, and a library for parsing XML.
These ingredients suffice to make Maple a client for a computation service available on the Internet.

To achieve a single generic mechanism which could be used for all computation requests with little or no
extra software needing to be loaded into the CAS to interface with each new online service, a problem is
to determine how CASs will phrase requests for computation and how they will interpret the results.
Therefore it is necessary to establish a standard for request-response exchanges. Part of this is a standard
for the representation of the mathematical objects exchanged. MathML [7], also used by Maple, is well
advanced on the path to solving this problem.

Studies in Informatics and Control, Vol.14, No.1, March 2004 33

Another problem is to locate the service providing a particular computation without knowing its location
beforehand. This requires a mechanism for discovery. Globus Toolkit [5] can be used to solve this
problem.

We propose an Maple extension, Maple2g (Maple-to-grid). Maple2g is a prototype of an wrapper for
grid-enabled version of Maple. It has three components:

MGProxy: a Java interface for Maple with the grid/cluster environment;

M2g library: a Maple library of functions allowing the user to interact with the grid/cluster

environment;

Thin client: prototype web interface to access the Maple web/grid/cluster services.

The user exposed functions are implemented in the Maple language, and they call Java classes which
access the Java CoG API [5] for grid services, respectively mpiJava API for parallel computing.

MGProxy has three operating modes:

user mode: activating from Maple, receives the user command from the user's Maple interface via a
socket interface, contacts (at user request) the grid/cluster services, including other
MGProxy in server/parallel modes, queries the user requests to the contacted services, and
at user requests sends to the main Maple interface the queries results.

server mode: activates a Maple twin process (which enters in a infinite cycle of interpreting commands
coming via a socket interface), acts as server waiting for external calls, interprets the
requests, sends the authenticate requests to the Maple twin process, enters in receive mode
of the Maple results, and sends them back to the user.

parallel mode: it is activated from user's Maple interface with several other MGProxy copies; the one
with the rank 0 enters in user mode and normally runs in the user environment, while the
others enter in server mode; the communication between different MGProxy copies is
done via the message passing interface.

MGProxy communicates with Maple via sockets. The Maple commands are circulating in the systems as
strings, and the Maple results are presented in MathML format.

3. Accessing Grid Services from Maple

One approach in grid-enabling the computer algebra system is to make grid services available to the user. The
coupling with the services exposed within the grid has to be performed in a transparent way for the user, such
that the service methods call should be only in the CAS native language syntax. The suite of Maple functions,
incorporated in the package m2g, allows the programmatic access to Globus Grid enabled resources. The m2g
package translates internally the functions from the syntax familiar to the Maple user into commands, allowing
the initiation and further communication with the MGProxy middleware. MGProxy, acting as an intermediary
between Maple and the grid, is written in Java since this platform is portable and libraries specialized for the
grid computing have been already implemented for Java in the Globus Toolkit. Globus is today's "the facto"
tool for the grid architecture. Java CoG (i.e. Commodity Grid) Kit provided by Globus integrates the software
for grid computing developed by Globus and the Java commodity framework, thus facilitating the development
and deployment of grid services, while also permitting the use of web services as parts of the grids.

The procedure is as follows:

Start MGProxy: User commands in Maple syntax, parsed within the m2g package, initiate the
communication with MGProxy intermediary. This is performed via the commands
for external code invocation (including Java) which are already available in the
latest versions of Maple.

Issue commands: The user invokes the remote services by issuing commands in RSL syntax
Job Submission: MGProxy activates GridJob (described bellow), which is a Java class

encapsulating GRAM job that deals with job submission over the grids.
Prompt for results: Results can be requested either during the communication or even after closing the

connection with the grids.

34 Studies in Informatics and Control, Vol.14, No.1, March 2004

The suite of functions incorporated in m2g Maple package for grid services is the following one:

m2g_proxyinit(): Starts Globus grid_proxy_init and returns the text provided by it.

m2g_getservice(c,l): Search for a service c and give a link to it, retrieve its location l.

m2g_jobsubmit(t,c): Allows a job submission in the grid environment labeled with the number t:

the command from the string c is send to the MGProxy which treats it as a

grid-service request.

m2g_status(t): Queries the status of the submitted job labeled t.

m2g_results(t): Retrieve the results of the submitted job labeled t.

A short example of using these functions is shown in Figure 1.

 > with(m2g): m2g_MGProxy(); m2g_proxyinit();

 > m2g_getservice("factor",`service_access`)

 > m2g_jobsubmit(1,cat(service_access,"factor ","234567890"));

 > m2g_results(1);

Figure 1: Accessing in Maple an External Factorization Code, Available as Grid Service

The GridJob class is responsible for the job submission. Requests received from the Maple's user
interface in RSL syntax are send over the grids to remote resources. The underlying framework used is
Java CoG. The connection is established with the remote server, referred to as the 'gatekeeper', which is
responsible for the execution of the job (i.e. a binary executable or command to be run remotely). Both
the host and the gatekeeper must comply with the authentication requirements. The Grid Security
Infrastructure (GSI) is used for enabling secure authentication and communication over an open network.
Globus uses GASS for porting and running the applications requiring I/O files to the Grid environment.
Therefore, GridJob starts a GASS server and submits all GRAM job requests to this server. The request is
formatted accordingly in the RSL format. The output of the processed job is returned through the
MGProxy intermediary to Maple in the user's interface. The communication flow is depicted in Figure 2.

Figure 2: Communication Flow when it is Access a Grid Service (Depicted as Job) from Maple}

4. Cooperative Multiple Maple Kernels

The CAS users are often frustrated by the time to rerun a program for different conditions, parameters or initial
guesses. Such user's problems might be solved by a system that makes it convenient to spawn CAS processes
on multiple processes of a parallel computer or a cluster. In many cases the needs for communication between
the processors are rather small compared with the necessary computations. The computational power given by
a CAS and its running environment can be augmented by using several other CAS kernels (the same or
different CASs) when the problem to be solved is properly split between this kernels and/or a distributed-
memory parallel method is used to solve it. Using a standard message-passing interface for inter-kernel
communication allows the portability of the parallel version of a CAS towards distributed environments, in
particular towards clusters.

The two extreme ways to design the interaction with the message-passing interface are fully versus minimal
access to the functions of a message-passing interface. In the first case it is possible to enhance the CAS with
parallel or distributed computing facilities, allowing the access into a CAS to other parallel codes than the ones

Studies in Informatics and Control, Vol.14, No.1, March 2004 35

written in the CAS language (the message-passing interface can be used as interpreter between parallel codes
written in different languages). In the second case the set of functions is restricted to those allowing to send
commands and receive results from the remote kernels. Distributed Maple [12] uses Java socket library to allow
the execution of concurrent tasks of Maple kernels running on different machines of a network, while PVMaple
[10] uses PVM C library.

Parallel codes using MPICH as message-passing interface can be easily ported to grid environments due
to the existence of a MPICH-G version on top of Globus Toolkit. On other hand, the latest Globus Toolkit
is build on Java, and the Java clients are easier to be written for a computational grid. In this condition,
we selected mpiJava [8] as message-passing interface between Maple kernels.

Only a small number of commands are available to the user, mainly concerning sending commands to
other Maple kernels and receiving their results:

mg_run(p): Starts p processes MGProxy in parallel modes.
mg_send(d,t,c): Send at the destination kernel numbered d a message labeled t containing the

Maple command c; d and t are numbers, c is a string; when 'all' is used in
destination field, the command is send to all Maple kernels accept the current
one.

mg_recv(s,t): Receive from source kernel s a message labeled t containing the results from a
previous command labeled t; s and t are numbers; when s is 'all', a list is
returned with the results from all kernels which have been executed the
command labeled t.

mg_rank: MGProxy rank in the MPI World, can be used in a Maple command.
mg_size: The number of MGProxy processes, can be used in a Maple command.

These facilities are similar to those introduced by PaViS [10]. The communication flow in the case of two
kernels is depicted by Figure 3.

Figure 3: Communication Flow with Remote Maple Kernel Which Execute a Maple Command
(namely c)

Figure 4 shows an example of using Maple2g in order to improve the time response of Maple. In this case
the sequential time necessary to factorize the list of integers increases linearly with the problem
dimension (list length). The sequential execution time reported by Maple is around 100 s for 4000
integers. Splitting the list of integers and the factorization requests between several Maple kernels running
on remote processors (of a cluster of PCs with Intel PIV processors at 1.5 MHz, connected by a Myrinet
network at 2Gbs), we can obtain a shorter response time. Indeed, for the given case, a speed-up factor of
3.2 was registered using 4 kernels of Maple. We expect to obtain higher speed-up values by increasing the
problem dimension since the communication time increases slower with the number of integers than the
computation time.

> with(m2g):
 > intfac=proc(dim,big,p) local n,r,i;
 r:=rand(big); n:=[]; for i to dim do n:=[op(n),r()]; od; nfactor(n,p); end:
 > nfactor:=proc(n,p) local ,mes;
 mes=cat(`readlib(ifactors): n:=`,convert(n,string),`:s:=[]: for i to nops(n) do`,
 `if(i mod`,convert(p,string),`)=m2g_rank-1 then s:=[op(s),ifactors(n[i])]: fi:`,
 `od: s;`); m2g_send(all,10,mes); m2g_recv(all,10) end:
 > m2g_MGProxy(); m2g_run(4): intfac(4000,2^32,nops(m2g_size)-1);

Figure 4: Code for Distributed Integer Factorization Within Maple2g Sessions: 4000 Integers are
Randomly Generated (Intfac Function), Distributed in a Round-robin Fashion to 4 Maple Kernels,

and Factorized (by n Factor Procedure), the Final List of Factors Being Presented in the User's
Maple Interface

36 Studies in Informatics and Control, Vol.14, No.1, March 2004

5. Future Work

The proposed wrapper for grid and parallel computing within Maple is in a prototype phase. Several tests
are planned to be performed on larger grid and cluster environment. The problem database of these tests
must be further developed to provide a real image on the system performance. Further facilities must be
also implemented to align the proposed package to the number and quality of those facilities provided by
Netsolve, Geodise or MathGridLink.

REFERENCES

1. ***Globus Toolkit, http://www.globus.org

2. ***MapleNet, http://www.maplesoft.com/maplenet/

3. ***MathML, The W3C's Math Homepage, http://www.w3.org/Math/

4. ***mpiJava, http://www.npac.syr.edu/projects/pcrc/HPJava/mpiJava.html

5. ***Wolfram Research, gridMathematica, http://www.wolfram.com.

6. BUYYA R., BAKER, M., Preface, Grid Computing 2000, LNCS 1971, 2000.

7. CASANOVA H. AND DONGARRA J., NetSolve: A Network Server for Solving Computational
Science Problems. Internat. Journal of Supercomputer Applications and High Performance
Computing, 11(3):212--223, 1997.

8. CHOY R., EDELMAN A.: Matlab*P 2.0: a unified parallel MATLAB, In Procs. 2nd Singapore-
MIT Alliance Symp. 2003, in print.

9. ERES M. H., POUND G.E., JIAO Z., WASON J.L., XU F., KEANE A.J., AND COX J.S.,
Implementation of a grid-enabled problem solving environment in Matlab. In Procs. WCPSE03
2003, in print, http://iccs03.cs.uwa.edu.au/program/WorkshopsICCS2003Page2.html,
www.geodise.org

10. PETCU D., DUBU D., M. PAPRZYCKI, Towards a Grid-aware Computer Algebra System, In
LNCS 3036, eds. M.Bubak, J.Dongarra, Springer, 2004, 490-494.

11. PETCU D. AND GHEORGHIU D., PAVIS: a parallel virtual environment for solving large
mathematical problems. In Parallel Computing. Advances and Current Issues, eds. G.R. Joubert, A.
Murli, F.J. Peters, M. Vanneschi, Imperial College Press, 2002, 490-497.

12. SOLOMON A.: Distributed computing for conglomerate mathematical systems. In Integration of
Algebra and Geometry Software Systems, eds. M. Joswig, N. Takayama, http://www.illywhacker.net/
papers/webarch.ps

13. SCHREINER W., Developing a distributed system for algebraic geometry, in Procs. {EuroCM-
Par'99}, ed. B. Topping, Civil-Comp. Press, Edinburgh, 1999, 137-146.

14. TEPENEU D. AND IDA T., MathGridLink - A bridge between Mathematica and the Grid. In
Procs. JSSST03, 2003, in print.

