Gray Code Algorithm for Listing k-ary Trees*

H. Ahrabian, A. Nowzari-Dalini

Institute for Studies in Theoretical Physics and Mathematics (1.P.M.),
Teheran, Iran.

ahrabian@ut.ac.ir.

E. Salehi

Department of Mathematics and Computer Science, University of Tehran,

Teheran, [ran.

Abstract: In this paper an efficient algorithm for generating k-ary trees in Gray code order is presented. This algorithm is an
extended form of the constant time algorithm developed by Vajnovszki to enumerate Gray codes for binary trees. In our algorithm
the k-ary trees are represented by bitstring sequences. The generation algorithm is based on moving in a Hamiltonian path of a
graph, which each vertex of it is labeled with a bitstring corresponding to a k-ary tree. Clearly, the Gray code property of the vertices
construct the edges of this graph. The algorithm generates two successor codes in constant delay time.

Keywords: k-ary tree, Gray codes, Constant time generation algorithm.

Hayedeh Ahrabian is an associate professor of Department of Mathematics and Computer Science, University of Tehran and is
currently the director of Graduate studies and director of computer science group in this department. Her research interests include
combinatorial algorithm, parallel algorithms, DNA computing, and genetic algorithms.

Abbas Nowzari-Dalini received his Ph.D. in computer science from University of Tehran in 2004. He is currently an assistant
professor in Department of Mathematics and Computer Science, University of Tehran. His research interests include combinatorial
algorithm, parallel algorithms, DNA computing, neural networks, and computer networks,

Elham Salehi received her M. Sc. in computer science from University of Tehran in 2003 under supervision of Dr. H. Ahrabian.

1. Introduction

Trees are one of the most important data structures in computer science, so it is natural that their
properties be studied in depth. Designing efficient algorithms to generate trees in one method of studying
these objects. There have been many algorithms published for generating k-ary (including binary) trees
[11, 14, 15, 17, 21, 23]. In most algorithms trees are encoded as integer sequences of which subsequent
sequences are generated in a specified order. Few of these known sequences are Zaks’ sequences, P-
sequences, and Ballot sequences, which are generated in lexicographical order [1, 2, 14, 23]. Therefore,
the differences in successively generated trees are not bounded by a constant. When the changes in
successive sequences are constant, mostly one, it is well known that the sequences are in Gray code order
(strongly Gray code is called for only one change). Korsh [8] gave an efficient generating algorithm for k-
ary tree sequences using the rotation operation on trees. This algorithm is the generalization of Roelants
algorithm for generating binary trees [16]. Using a shift operation between two k-ary trees, another
algorithm is developed by Korsh and Lipshutz [10]. Korsh and LaFollette also developed an algorithm for
generating k-ary trees Gray codes [9] and another algorithm discovered by Roelants [17], and Xiang,
Ushijuma, and Tang [22] independently.

Vajonvszki presented a new Gray code for the Zaks’ sequences for binary trees with » nodes [19]. A
constant average time algorithm for generating this Gray code is also given. In this paper, another
algorithm is presented for generating of k-ary trees represented by Zaks’ sequences in Gray code order,
which is based on Vajnovszki’s paper [19]. This algorithm also moves on a Hamiltonian path of a graph,
which each vertex of it is labeled with a Zaks’ sequences corresponding to k-ary trees, and the edges are
constructed with regard to the Gray code property of the codes. It should be mentioned that sequences
corresponding to k-ary trees are generated in many different Gray code orders [8, 9, 10], but the presented
algorithm in this paper generates sequences in a new different Gray code order.

Tr':‘.es have many applications such as database, decision table programming, analysis algorithms [5],
String matching [20], switching theory, and even in the theoretical design of circuits required for VLSI
[18]. In addition, the exhaustive generation of all trees of a certain type is often useful. For example, a list
of all trees with a given number of nodes n, may be used to test, analyze the complexity, prove the

* This research was in part supported by a grant from LP.M. (No. CS1382-4-01).

Studies in Informatics and Control, Vol. 13, No.4, December 2004 243

correctness of an algorithm [5], or data compression in data communication [4]. Trees are also widely
used structures for maintaining data and are used as auxiliary structures when compressing data. In
traditional tree compression for both cases the only operations performed are encoding of a tree to code
sequence and decoding the code sequence back to a tree. Using ranking algorithm, the code sequence can
be represented as an integer which is a compressed form of it. This code sequence can be returned from
its rank by unranking algorithm [13]. Obviously any ranking and unranking algorithm on trees are
designed based on a specific generation algorithm. In generating trees a desirable goal is that the running
time required for producing the representation of trees. Our generation algorithm presented in this paper
produces two consecutive trees in a constant time with Gray code property.

The remaining of this papers is organized a follows. In Section 2, some notations and definitions used
further in this paper are presented. Construction of our Gray code is discussed in Section 3. In Section 4,
we present our generation algorithm. Finally, conclusion is stated in Section 5.

2. Preliminaries

A regular k-ary tree is a rooted, ordered and oriented tree in which every internal node has exactly k
children. A k-ary tree T can also be defined recursively as being either an external (leaf) or an internal

node together with a sequence T,,7,,K ,T, of k-ary trees, which 7, is defined as the ith subtree of T [5].

Tk

An n-node k-ary tree has (k —1)7 +1 leaves, and the total number of k-ary trees with n internal nodes is

1 kn
denoted by C, , and is known to have the value C,.= m(J .
: ’ -Dn+

Let us introduce basic notations used through this paper and a definition of k-ary trees by means of choice
functions of indexed families of sets [3, 7, 12].

Let< A, >, denote an indexed family of sets A, =A , where A ={,K ,m},I ={1,K [}, and
I,m =1. Any mapping f which chooses one element from each set 4,,K ,A4, is called a choice
function of the family <A, > [12]. With additional restrictions we can model by choice functions
various classes of combinatorial objects [3,6].

if A4, ={0,1}and 7 ={LK ,1}, then any choice functiony =<X, >, , that belong to the indexed
family <A, >,.,, is called binary choice function of this family. If / < kn for a given £, each binary

choice function with the number of x, +L +x; 21 / k , for 1< i < kn, is called binary choice function

with k-dominating properties. There exist bijections between set of choice functions ¥ and sets of k-ary
trees with # internal nodes in widely used representations. All k-dominating binary choice functions, with

| = kn and the number of x, +L +x, =n, are bitstring representations of all k-ary trees of the set A
[7]. This bitstring representation is called x-sequence and also known as Zaks’ sequence [23]. By &
dominating definition, in each subscquence {X ; }(1<i <kn) the accumulated numbers of 1’s is at

!eastlri [k —] . Clearly, each sequence has 7 I’s and (k —1)n 0.

For any given choice functionsd =<d,,K ,d, > andy =<g,,K ,g, >, wesaythat 6 andy are
in Gray code order, if they differ by a constant number of changes.

The x-sequence can be obtained directory from k-ary trees. Given a regular k-ary tree with » internal
nodes, we label each internal node with 1 and each external node with 0. Reading tree labels in pre-order
(recursively, visit first root, and then all the subtrees from left to right), we get a bitstring with » 1°s and

(k —=1)n +10s. As the last visited node is an external node, we omit the corresponding 0. For example,
the x-sequence corresponding to the tree presented in Figure 1 is x = 110000100100.

Now, let S be a set of all k-dominating binary choice function with the number of
x,+L +x, =n and m =/ —n, in other words the sets of all bitstrings with a k-dominating property
with m 0s and » 1°s such that m > (k —1)n > 0. In particular case where m = (k —1Dn,S; " is the set

244 Studies in Informatics and Control, Vol. 13, No.4, December 2004

of all x-sequences of length /. As it is mentioned, we call a list of bitstrings in S} " Gray code list if every
two successive bitstrings in the list differ by an interchange of two bits. Also, let & and f§ be two bitstrings
then we denote aff the concatenation of a and f3 . By these definitions, the following lemma shows the

recursion property of the set S7"" , which helps us in the generation schema.

1
1 L 1
0

1
@) @ O
0 0 0 0 0
O O
0 0 0

Figure 1: A 3-ary Trees With 4 Internal Nodes.

Lemma 1. For any k>0, and m, n 20, we have

0" if n=0,
Se* =1187" if m=(k-1n,
osmr ulsytif m>(k -Dn>0.

For example, Tablel shows all bitstrings 52’2 = OS}Z w1S¥. With regard to the recursion property of
the set S]”, we can easily count the number of elements in this set. Let |S7 " | be the number of

bitstrings in S| . According to the above lemma, |S;'”" | can be obtained as follows.

0S83° 185
00100100 11000000
00101000 10100000
00110000 10010000
01100000 10001000
01010000 10000100
01001000
01000100

Table 1: All bitstrings in S5 = 0837 U1SS".

Studies in Informatics and Control, Vol. 13, No.4, December 2004 245

Corollary 1. For any k>0, andm, B >0, we have
1 if n=0,

1S =487 if m=(k—Dn,
|87 |+ |8y if m >(k -Dn>0.

Corollary 2. For any k>0, andm, 1 >0, and m = (k =1)n 20, we have

so +1-(k =Dn (m +n)

m+1 n

With regard to the definition of S7", it should be noted that S§ -Dnn s the set of bitstrings

corresponding to k-ary trees with » internal nodes. Therefore, we can have the following theorem.

Theorem 1. In particular case of Corollary 2 where m =(k =Dn.,

I Sg{k ~n.n |= 1 (kn]
(k -Dn+1{n

Obviously | SE™™" |=C, ; (the number of all k-ary trees with » nodes). This shows that we can use

the Lemma 1 for generating k-ary trees.

3. Gray Code Interchange Operations

In this section, we consecutively prove that the set of sequences in Sy " has a Gray code order and
this property helps us to design our generation algorithm for generating k-ary trees in the next section.

For the bitstring x in S; " we define three operations 4, B, C and their inverse A7, B7'.C ! Wwhich are the
extended form of operations given by Vajnovszki for binary trees in [19] as is shown in Table 2. The operation
A (therefore A4 1y is simply right (lefl) shift of the rightmost one, or these operations interchange two adjacent
positions in the bitstring, and B and C (therefore B -1 and C ") interchange two non-adjacent positions.

Let GI" be the graph with |S7"| vertices and each vertex is labeled with one bitstring from the set

Sy . Two vertices are connected if and only if corresponding bitstrings can be obtained from each
other by applying either operations 4, B, C and inverse of them. It should be noted that the number of
edges in this graph can be more that the number of vertices iS’,:' ”|. In the remaining of this text, for

any graph G and any arbitrary path H in G we use notations xG and xH which means elements
x €{0,1} is connected to each bitstring label of G and H respectively. The existence of a Hamiltonian

path in G} " shows that we can develop an algorithm which generates all bitstrings of S} in a Gray
code order. The following lemmas and theorem help us to see the methodology of obtaining the

Harmiltonian path H in graph G.".

Lemma 2. If H is a Hamiltonian path in Gf"m with end-points x and y, then OH is always a

Hamiltonian path in 0G}"*' with end-points Ox and 0y.

246 Studies in Informatics and Control, Vol. 13, No.4, December 2004

ﬁ Operation Source bitstring Result bitstring Conditions
N a0°10° a 010" a>0,b>k
A7 a0°10 a0°10% azlb =k
B a1102(k+1)+1 (lok —l)a a01102(k—1)(10k—1)a a> 0
B—l a01102(k—1)(10k—1)a al 102(k—1}+1(10k—1)a a > O
C al10”* 0y a010° (1057 azk,bz1
&> a010° (10" al10°* (1047 azk.,bzl

L=

Table 2: The Gray Code Operations.
Lemma 3. If H' is a Hamiltonian path in Gf”’" with end-points x’ and y’, then 1H’ is always a

Hamiltonian path in G} with end-points 1x’and 1y

Lemma 4. If Lemma 2 and 3 are true and 0y is connected with 1y’ then O U {(0y ,1y)} V1H "isa

e ! : :
Hamiltonian in G """ with end-points Ox and 1x"

Lemma 5. If H is a Hamiltonian path in Gg‘ “In+)1 - ith end-points x and y, then 1H is also a

Hamiltonian path in le:‘ RURELRR e Gg‘ DDA+l ith end-points 1x and ly.
Now, consider two special elements of S”” which are labels of two vertices in graph G} :
um =10" (DD (1 (! y-,
ur {1 1020104y if m =(k —Dn,
om0ty if m>(k -Dn.
With regard to the definitions of " and v)" we have the following lemma.
Lemma 6. For any k, m >0, and 1 2 0, uy”" and v;”" have the following properties.
(@) Ou* """ is equal to y & nebn
i) O ™"is equal to v 7"
(i) T XD s equal tov * Dinest
() b " Yisequal to u] ™",
) Oul"*! is obtained from W, 2 by applying operation C,

L o = =
(vi) Ov ¥ s obtained from lu ,Ek Dn+tn=t by applying operation B.

Now, the following theorem shows how to construct the Hamiltonian path H ;" with two end-points u,”" and

m.n
k

v
Theorem 2. Graph G} has a Hamiltonian path H """ with two end-points U P and v

Proof. To prove this theorem we need to show how to construct /7 27 with two end-points uy”" andv;"
such that moving from one vertex to the other is done by one of the operations 4, B, C, or their inverse, and

Studies in Informatics and Control, Vol. 13, No.4, December 2004 247

also the vertices in G'”" are all traversed. This is done by mathematical induction on increasing the values of

m and s

By the definition, H ;"' for all m >k is the path in below with length |Sy:

gt =10 00 K P = R,

This path is obtained by performing m — & + 1 times operation A4 on u""', and it is a Hamiltonian path in G},
H f (k=12 is also a Hamiltonian path with length | Si(k e

u;(k ~1),2 o IOk —11 Ok fljlok —21 Ok ,K 51 loz(k -1) =v;(k ‘1),2.

This path is also obtained by performing & — 1 times operation A7 on uf(k_l)’z and it is also a

Hamiltonian path in G* 2.
Now, we assume that H """ is a Hamiltonian path for all m > (k —1)(n+1)= 0 in Gy"*' and

m+ln+l

H*™ is also a Hamiltonian path for all m 2 (k =Dn >0 in GJ*™". We can construct [7;

as follows.

_ Accordingto Lemma3, LH """ is a Hamiltonian path in 1G ' *"”" with end-points Tu}" ™" and Tv ;"""

_ According to Lemma 2, OH """ is a Hamiltonian path in 0G?"* with end-points Oz, 1 and
Oy st

But, according to case (v) of Lemma 6, 1, M and Ou,""* are connected in H " 1741 Therefore, by

applying Lemma 4, we have
H:r+1,n+l -]H:HI’" U {(lu;nﬂ,n,(}u:,nﬂ)} UOHkm,rH-I,

which it is a Hamiltonian path in G} """ =1G]* WOG} "', The end-points of this path are:
e =u,;"”’"+1 (by case (iv) of Lemma 6), and Ov,’ e 1l by case (ii) of Lemma 6).
Therefore, Hamiltonian path ;" *L2+1 i constructed.
Now, suppose I ék Ne+tal and H ;k D are Hamiltonian paths and we shall see the construction of
H(k -Dr+ln
: .

A + (k-Dn+ln-1 . % . . {(k-Dn+ln-1 . g
— According to lemma 3, 1H, is a Hamiltonian path in 1G} with end-points

IV,EIC -n+ln-1 and Iuik—l)nﬂ,n-l :
_ According to Lemma 2, 0H/* ™" is a Hamiltonian path in 0G{ V""" with end-points Ou(* """ and

(k=Dnn

v,)

According to case (vi) of Lemma 6, lu{* """ is connected to Ov EDr in HED"" Therefore

by applying Lemma 4, we have

H}Ek “Dnsla _ lHék “nstacl {(luék Dn+ta-l Ougkfl)n "YU OH}Ek—l)n "

which it is a Hamiltonian path in

G Eck el _ (G U sl OGS‘ Dnn

The end-points of this path are: Iv ,Ek ~DasA=t = u,&k Dl hy case (iv) of Lemma 6), and
Oy (7Dmn =y D417 oy case (i) of Lemma 6). Therefore, Hamiltonian path 1 =D i constructed.

r HY DDA Hamiltonian path then H £ ™! is also Hamiltonian path. Indeed, by Lemma 5,

248 Studies in Informatics and Control, Vol. 13, No.4, December 2004

e add the prefix 1 to H (kD0 o oy H VOO which is a Hamiltonian path in
w p k k B
Gf - G D+ iy end-points: 1 ¢ Dt gy (k Dt (hy case (iv) of Lemma

6), and lu;{ck DR i ik Dt (by case (iii) of Lemma 6).
According to the above theorem, the generating algorithm of bitstrings in Hamiltonian path H" is

presented in next section.

4. Generating Algorithm

The algorithm gen(m, 7) presented in Figure 2 generates the bitstrings with a given length and k-dominating
property. This algorithm is based on the recurrence relations given in Lemma 1 and Theorem 2, and generates x-
sequences in one dimensional array x with size m + n. WiﬂlregazdtoﬂleTheorem2ir1eachstepofﬂ16 algorithm
one of the operations 4, B, C, and their inversion are employed on the input bitstring to construct the successive

bitstring in Gray code order. For n = 1, gen(m, 1) produces S;‘"'i in lexicographical order if x is initiated
by 0" **'10*”" or in antilexicographical order if x is initiated by 10" . Initializing x = (10°™')" and recalling
gen(m, 1), it produces Sp” form >(k —Dn>0. Finall, for m=(k-1n and
rocalling gen((k —1)n,n) with the same initialization X —(10°™)” , it produces S """ . Therefore, it
generates all x-sequences corresponding to all k-ary trees with » nodes.

In this algorithm d is a global variable and initially is set to nk before performing gen((k —1)n,n),
and swap(i,j) is a procedure for exchange X, with x , . Table 3 shows the x-sequences of length 22

corresponding to 4-ary trees with 3 nodes generated by our algorithm.

Void gen(int m, int n)

{
int u, v;
if (n==1){
if (x[d-m]==1 {
if (m==k-1) return;
swap (d-m, d-m+1); print(x) 7
gen(m-1, 1);
}
else if((x[d-k+1]==1)&& (m!=k)) gen(k, 1);
else {
swap (d-m, d-m+l); print(x) 7
if(x[d-m-1]==) return;
gen(m+l, 1);
}
}
else if(m==(k-1)*n) gen(m, n-1);
else {
u=0; v=1;
if (x[d-m-n+1]==0) {
u=1l; v=0;
1
gen{m-u, n-v);
if (m>(k-1)*n+1) swap (d-m-n+1, d-k* (n-1)+1)
else swap(d-m-n+l, d-m-n+3)
print (x); gen{m-v, n-u) ;
}
}

Figure 2: Generation Algorithm for S

Studies in Informatics and Control, Vol. 13, No.4, December 2004 249

Rank Bitstring Operation Rank Bitstring Operation

1 100010001000 A 12 101001000000 A

2 100010010000 A 13 101000100000 A

3 100010100000 A= 14 101000010000 A

4 100011000000 B! 15 101000001000 O

5 100110000000 A 16 111000000000 A

6 100101000000 A 17 110100000000 A

7 100100100000 A 18 110010000000 A

8 100100010000 A 19 110001000000 A .
9 100100001000 c 20 110000100000 A

10 101100000000 A 21 110000010000 A

11 101010000000 A 22 110000001000 A

Table 3: The 22 x-Sequences of Length 12 for n =3 and £ =4.

In order to analyze the running time of this algorithm we denote 7' (m,n) be the number of calls to
procedure gen(m,n) . Therefore, with regard to the generation algorithm, we can write the following

recursive relation.

m-—k+2 if n=1,
T (m,n)=41+T ((k =Dn,n-1) if m=((k-n,
1+7 (m,n=D)+T (m -1,n) if m>(k -Dn>0.

It can be shown by induction that T (m,n) <2|S;”" | -1, so T (m,n)is proportional to |S;" |,
therefore the generation algorithm presented in this paper is performed in constant average time.

5. Conclusion

We have devised an algorithm for generating n-node k-ary trees represented by x-sequences. The
algorithm is the extended form of algorithm by Vajnovszki for binary trees. The trees are generated by
Gray codes in constant average time.

REFERENCES

1. AHRABIAN, H. and NOWZARI-DALINI, A, Generation of f-ary trees with Ballot
sequences, Intern. J. Comput. Math., 30, 2003, pp. 1243-1249.

2. AHRABIAN, H. and NOWZARI-DALINI, A., On the generation of P-sequences, Adv.
Modeling Optim., 5, 2003, pp. 27-38.

3. KAPRALSKI, A., New methods for the generation of permutations, combinations and other
combinatorial objects in parallel, J. Parallel Distrib. Comput., 17, 1993, pp. 315-329.

4. KATAJAINEN, J. and MAKINEN, E., Tree compression and optimization with application,
Inter. J. Found. Comput. Sci.,1 , 1990, pp. 425-447.

5. KNUTH, D.E., The Art of Computer Programming Vol. 1: Fundamental Algorithms,
ADDISON WESLY, Reading, 2" ed., 1973.

250 Studies in Informatics and Control, Vol. 13, No.4, December 2004

10.

1.

12.

14.

15.
16.

L

18.

19.

20.
21

22

23

KOKOSINSKI, Z., On the generation of permutations through decomposition of symmetric
group into cosets, Bit, 30, 1990, pp. 583-591.

KOKOSINSKI, Z., On parallel generation of t-ary trees in an associative model, Lecture
Notes in Computer Science, 2328, 2002, pp. 228-235.

KORSH, I.F., Loopless generation of k-ary tree sequences, Inform. Process. Lett., 52, 1994,
pp- 243-247.

KORSH, J.F. and LAFOLLETTE, P., Loopless generation of Gray codes for k-ary trees,
Inform. Process. Lett.,, 70, 1999, pp. 7-11.

KORSH, J.F. and LIPSCHUTZ, S., Shift and loopless generation of k-ary trees, Inform.
Process. Lett., 65, 1998, pp. 235-240.

LUCAS, I, ROELANTS VAN BARONAIGIEN, D. and RUSKEY, F., On rotations and the
generation of binary trees, J. Algorithms, 15, 1993, pp. 343-366.

MIRSKY, L., Transversal Theory, ACADEMIC PRESS, Washington, 1971.

. OLARIU, S., SCHWING, J.L., WEN, Z. and ZHANG, 1., Optimal parallel encoding and
decoding algorithms for trees, J. ACM, 38, 1991, pp. 1-10.

PALLO, J. and RACCA, R., A note on generating binary tree in A-order and B-order, Intern.
J. Comput. Math., 18, 1985, pp. 27-39.

PROSKUROWSKI, A. and RUSKEY, F., Binary tree Gray codes, J. Algorithms, 6, 1985, pp. 225-238.

ROELANTS VAN BARONAIGIEN, D., A loopless algorithm for generating binary trees
sequences, Inform. Process. Lett., 39, 1991, pp. 189-194.

ROELANTS VAN BARONAIGIEN, D., A loopless Gray code algorithm for listing k-ary
trees, J. Algorithms, 35 (2000), pp- 100-107.

UEHARA, T. and CLEEMPUT, W.M., Optical layout of CMOS functional arrays, [EEE
Trans. Comput., 7, 1981, PP. 305-312.

VAJNOVSZKI, V., Constant time algorithm for generating binary tree Gray codes, Studies
in Informatics and Control, 5, 1996, pp. 15-21.

WATERMAN, M.S., Introduction to Computational Biology, CRC PRESS, New York, 1995.

XIANG, L., USHIJIMA, K. and AKL, S., Generating regular k-ary trees efficiently, Comput.
1., 43, 2000, pp. 290-300.

XIANG, L., USHIJIMA, K. and TANG, C., Efficient loopless generation of Gray codes for k-
ary trees, Inform. Process. Lett.,, 79, 2000, pp. 169-174.

. ZAKS, S., Lexicographic generation of ordered tree, Theoret. Comput. Sci., 10, 1980, pp. 63-82.

Studies in Informatics and Control, Vol. 13, No.4, December 2004 251

