A Tool for Sharing Knowledge with Ontologies

Adrian Giurca

University of Craiova,

Faculty of Mathematics and Computer Science,
13 A.I.Cuza street, 1100, Craiova
giurca@int.ucv.ro

ROMANIA

Abstract: The goal of this paper is to present a new tool called HKS that is designed to help users to collect information about various
concepts and their attributes from HTML pages. This version of the tool should facilitate the manual extraction of information from the
visualized pages via a graphical user interface and the use of techniques like drag & drop and copy & paste. The extracted information is
used to populate the Knowledge Base/Data Base. The acquired knowledge is organized as a multiple inheritance graph of concept
descriptions. The tool is also being capable to import/export concept descriptions from existing toplevel ontologies and create/update

ontologies.

Keywords: AMS Classification (2000). Primary: 68130, Secondary: 68P20

1. Introduction

The Semantic Web is the name given to the Internet of the future where inference services are supported.
Tim BernersLee presented the following diagram (Figure 1) during a talk at the XML World 2000
Conference in Boston, Massachusetts to describe the infrastructure of the web which will support this vision.
This diagram has become known as the Semantic Web Layer Cake.

Digitai Signaturs

Figure 1: The Semantic Web Layer Cake (BernersLee,2000)

In the Semantic Web vision, unambiguous sense in a dialog among remote applications or agents can be
achieved through shared reference to the ontologies available on the network, albeit an always changing
combination of upper level and domain ontologies. We just have to assume that each ontology is consensual
and congruent with the other shared ontologies (e.g., ontologies routinely include one another). The result is
a common domain of discourse that can be interpreted further by rules of inference and application logic.

The creation of joint ontologies for a number of agents is a challenging task. Distributed development of
ontologies e.g. needs tools for synchronizing between a number of agents. But to acquire an ontology from
only one agent is also difficult, because is means to make explicit something that is usually just implicit.

An ontology is typically built in more-or-less the following manner:
1. Acquire domain knowledge

Assemble appropriate information resources and expertise that will define, with consensus and consistency,
the terms used formally to describe things in the domain of interest. These definitions must be collected so
that they can be expressed in a commeon language selected for the ontology.

Studies in Informatics and Control, Vol.13, No. 3, September 2004 162

2. Organize the ontology

Design the overall conceptual structure of the domain. This will likely involve identifying the domain's
principal conerete concepts and their properties, identifying the relationships among the concepts, creating
abstract concepts as organizing features, referencing or including supporting ontologies, distinguishing
which concepts have instances, and applying other guidelines of your chosen methodology.

3. Flesh out the ontology
Add concepts, relations, and individuals to the level of detail necessary to satisty the purposes of the ontology.

4. Check your work

Reconcile syntactic, logical, and semantic inconsistencies among the ontology elements. Consistency
checking may also involve automatic classification that defines new concepts based on individual properties
and class relationships.

5. Commit the ontology

Incumbent on any ontology development effort is a final verification of the ontology by domain experts and
the subsequent commitment of the ontology by publishing it within its intended deployment environment.

Our main goal is to provide a tool, which may furnish the main functionality for build ontologies and
populate them with knowledge acquired from the web.

After 2000 there are many tools involved in creation and editing ontologies. Here we present four tools
which are, in our opinion, the most important:

e Protege2000 [10, 24] - an ontology editor and a knowledge-base editor. Protégé is also an open-source, Java
tool that provides an extensible architecture for the creation of customized knowledge-based applications.
Protégé's OWL Plug-in [23] provides support for editing Semantic Web ontologies.

e OilEd [3.4,20] - is an ontology editor allowing the user to build ontologies using DAMLAOIL [8,14]. It does
not provide a full ontology development environment - it will not actively support the development of large-scale
ontologies, the migration and integration of ontologies, versioning, argumentation and many other activities that
are involved in ontology construction. Rather, it is the "NotePad" of ontology editors, offering enough
functionality to allow users to build ontologies and to demonstrate how we can use the FaCT reasoner to check

those ontologies for consistency.

« OntoEdit [21] — is an ontology-engineering environment that uses a powerful ontology model to store the
conceptual model of ontology.

e WehOnto [26] - was designed to support the collaberative browsing, creation and editing of ontologies
without suffering from the interface problems described in the previous section. In particular, WebOnto was
designed to provide a direct manipulation interface displaying ontological expressions using a rich medium,
WebOnto was aimed to be easy-to-use, yet have facilities for scaling up to large ontologies.

For a large survey about ontologies tools the reader can consult the OntoWeb report [22]. In the Section 4
of this paper we present a short comparison between these teols and the HKS tool.

2. Using F-Logic in HKS

In the papers [5] and [6] we proposed a mathematical model for representing knowledge in ontologies. The
base language used is F-Logic, [9]. F-Logic is a deductive, object oriented database language which
combines the declarative semantics and expressiveness of deductive database languages with the rich data
modeling capabilities supported by the object oriented data model. Also I use the experience of the Flond
[15], project at the university of Freiburg. The mathematical definitions of the HKS Model are shortly
described in the Appendix.

This section briefly describes how we use F-Logic in the HKS1.0 system.

170 Studies in Informatics and Control, Vol 13, No. 3, September 2004

2.1 Objects, their Properties and Structure

Objects model real world entities and are internally represented by object identifiers which are independent
of their properties. According to the principles of object oriented systems these object identifiers are mvisible
to the user. To access an object directly the user has to know its object name. Every object name refers to
exactly one object. Following the object oriented paradigm, objects may be organized in classes.
Furthermore, methods represent relationships between objects. Such information about objects is expressed
by F-atoms. Instead of giving several individual atoms, information about an object can be collected in F--
molecules. For example, the following F-molecule denotes that printerlisa printer whose product price
isprintpricel and his name is HP Printer.
printerl:Printer[ProductPrice=>>printpricel;
PrinterName=>>"HP Printer"].

This F-molecule may be split into several F-atoms:

printerl:Printer.
printerl[ProductPrice =>> printpricel] AND
printerl[PrinterName=>>"HP Printer"].

For F-molecules containing a multivalued method, the set of result objects can be divided into singleton sets
(recall that our semantics is multivalued, not setvalued). For singleton sets, it is allowed to omit the curly

braces enclosing the result set.

procesorl:Procesor. procesorl [isModel=>>{"AMD", "INTEL"}].

has the same semantics with

procesorl:Procesor.
procesorl [isModel=>>"AMD"]. procesorl[isModel=>>"INTEL"].

2.2. Classes and Methods

Isa-F-atoms state that an object belongs o a class, subclass-F-atoms express the subclass relationship
between two classes. A single colon and a double colon denote class membership and the subclass relation,
respectively. The following example defines a Printer class and two instances printerl and
printer2. The Printer class is a subclass of Product class. The Printer class has the multivalued
method hasDummyPrinter which return a set of objects from the Printer class.

Printer::Product.

Printer [

hasDummyPrinter=>>Printer;
PrintingResolution=>>PrinterResolution;

PrinterName=>>3TRING]. printerl:Printer. printer2: Printer.

2.3. Predicate Symbols

In our model, predicate symbols are used in the same way as in predicate logic, e.g., in Datalog, thus
preserving upward compatibility from Datalog to F-Logic. A predicate symbol followed by one or more id-
terms separated by commas and included in parentheses is called a P-atom to distinguish it from F-atoms.
Next example shows some predicates. The last predicate consists solely of a Oary predicate symbol. Those
are always used without parentheses.

office system{computerl, printerl).
peripheral (printerl).

true.

Studies in Informatics and Control, Vol.13, No. 3, September 2004 &l

3. Architecture Overview

This section is devoted to describe the architecture of the HKS tool. Mainly, we describe the core packages
of the HKS and the analysis level of UML class-diagrams. The Figure 5 is a snapshot of the HKS1.0 tool.

"
S o
%

H

f‘.‘?ﬁt;&«:‘@;@!)’

N T 1 - e Deity D
Dofiee Dhwadirds ‘ lla 13

o s
Suling

S

=

i -
{5558 oo mudle o

o 5 I3
”f SOHd BRR Beure

S :

- S b
Faosd wli PEOYE
O L
w dudneare

b
pel
2
¥

A
5
o

Frans

Al Ragions and <Uells Dunard =
terdd
24,

«Drofta Dunss » o9

&

3

Figure 2: HKS1.0 Ontology tool snapshot

3.1. Packages

This section present the main architecture of the tool. This tool is developed on a four core packages

s The ONTOMODEL package business knowledge representation

e The MODEL package low level knowledge representation

¢ The BROWSER package a HTTP browser with drag and drop capabilities,
[]

The GUI package user interface, with drag and drop capabilities

We use also some additional libraries packages:

JAXP [16] - The Java API for XML Processing (JAXP) th@t applications to parse and transform XML
documents independent of a particular XML processing implementation.

172 Studies in Informatics and Control, Vol. 13, No. 3. September 2004

e CUP [13]- LALR parser generator for java.
o LOGA4J [18]- Apache Logging Services Project an extensible logging library project for Java.
3.2. Knowledge Representation Layer. The Model/OntoModel core packages

The aim of this section is to describe the main concepts that are used to completely describing compositional
structures like Product, Printer etc

3.2.1 Definitions
We use a knowledge representation based on a directed graph structure.

Definition 1. Let Nodes a nonempty set of elements called nodes (like in a graph representation). The
structure of a node is:

(id, name)
where id is an unique ID for each node and name is the name of the node (its label). There are two kinds of nodes:

(1) OntoNode - a node used to represent a class description of our ontology. Let OntoNodes be the set of all
ontonodes.

(2) Ontolnstance - a node used to represent an instance of a class in our ontology. Every Ontolnstance node
has a correspondent OntoNode. Let Ontolnstances be the set of all ontoinstances.

For convenience we assume that Nodes = OntoNodes \ Ontalnstances and OntoNodes, Onlolnstances are
disjoints sets.

Definition 2. Let Relations be a nonempty set of elements (directed edges in a graph representation) called
relations. A relation has the structure: (id, name, lef 1Arg, rightdrg), where id is the unique ID for each
relation, name is the name of the relation, lefidrg and rightdrg are nodes, respectively the left and the right
argument of the relation. There are three kinds of relations:

(1) ROntoNode relation a relation where lefidrg, rightdrg € OntoNodes.

(2) RontoNodelnstance relation a relation where leftdrg € OntoNodes and rightdrg € Ontolnstances.

(3) ROmntolnstance relation a relation where leftdrg, rightdrge Ontolnstances.

Clearly, all kinds of relations are two pair disjoints.

Studies in Informatics and Control, Vol.13, No. 3, September 2004 L3

In the Figures 3 below we present the MODEL package which represent nodes and relations.

Concept Node OntoInstance
contor name
id ontolInstance
getId getName setName
generatelID
3 T8
.E‘ i

[<{ROntoInstance]?

{Z[ROntoNodeInstance}EJ

rightArg|leftArg

Relation

6

Test

name
leftArg OntoNode

main

rightArg
setName OntoNode

setLeftArg setName
setRightArg
getName
getLeftArg

getRightArg [<{ROntoNode}>
getOntoNodeLeftArg

L

0% Al

ROntoInstance ROntoNodeInstance ROntoNode

ROntolnstance ROntoNodelInstance ROntoNode

getOntoInstancelLeftArg getOntoInstanceRightArg getOntoNodelLeftArg
getOntolInstanceRightArg getOntoNodeRightArg

Figure 3: UML Class Diagram: Model Package
The Figure 4 presents a summary of the ONTOMODEL package.

174 Studies in Informatics and Control, Vol. 13, No. 3. September 2004

SOntoModel

-ncdes:Map

+
t

-instances:Lis

-subclass0is:

SontoNode

OntoNg

151

ont

SOntolInstandg

-subclassOfs:Li

-invSubclassOfs

-invInstanceC

-iComponentOf

+50ntoNode

+50ntolode

+getInvSubclassOfs:Lis

getSuperClasses:List

+

+getSubClasses:List
+getComponentOfs:List
+getInvComponentOfs: L]
+get5uperComponents: L:
+getInvIComponentOf: 3
+getIComponentOfs:List
+getRootlnstances: List
+izsRoct:boolean
+getInstanceOfs:List
+getInvinstanceOf:SIns
+getInstanceClass:S0nt
+getInstancePrimitive:
+getInstances:List
+getInheritedComponent
+getAllUninstanciated(
+getAllComponentOfs: L
+getMatchedComponentOl
+getMatchedComponentOl
+getAllSuperClasses:L:
+getAllSubClasses:List
+getComponentOfsForlng
+getRoot : SOntoNode
+isSuperclass:boolean
+izSubclass:boolean

+isSubComponentOf :boo!

+isReadOnly:bco
+getSuperClasse
+getSubClasses:
+getSubclass0is

+getInvSubclass

+5S0Ontolnstanc
+SOntolInstanc
+isReadOnly:k
+getInstanceC
+getInstanceC
+getInvinstan

+getPrimitive

+getIComponen

ROntoNd
SSubclassOf

-relName:String

ROntoNdg

SComponentO

:Stri

+3ComponentCt
+isMultivalue
+zetMutivalue
+getLlabel:Str
+getParent:5C

+getFrimitive

RCntoNodeln
SInstanceOf

+getChild:50n

—

-relName:String
-label:5tring

-multivalued:bools

+55ubclass0ot -relName:String +toString:Str
+getParent:50nto +SInstance0f
+getChild: SOntoN +STnstance0f
; N T OntoNg
+isReadOnly:bool +getInstance:50ntc
) . Ao SPrimitive
+toString:String +getPrimitive:SFri
-string:String
+getNode : 50ntoNode) s
~integer:strine
+isReadOnly:kboolea
Test Y -bocl:String
+toString:S5trin g
“ie 2 -fLype:5tring
+testSOntoMoc
-SFrimiftive =
+testFLoglcln .
Rentolns +isValid:bocle
+main:void
T SIComponentOf +equalsiboclea

+getFrimitive:

event

+30ntoModel.
+50OntoMedelk

Except

SOontoModelExd

+S0ntoModelEx

4
+isMultivalued:boc
+getlabkel:5tring

+getChild:SOntelns
+getParent:S0ntalr
+isReadOnly:bocles

+toString:String

SIComponentOf

4 HKS functionality

Figure 4: UML Class Diagram: OntoModel

[n a nutshell, you can use HKS for the following:

* Class modeling. HKS provides a graphical user interface (GUI) that models classes (domain concepts) and

their attributes and relationships.

* Instance editing. From these classes, HKS enable you or domain experts to enter valid instances.

Studies in Informatics and Control, Vol.13, No. 3, September 2004

175

e Model processing. FIKS has an internal model that helps you to capture semantics and obtain a logical
behavior.

e Model exchange. The resulting models (classes and instances) can be loaded from F-Logic and saved i F-
Logic and RDF.

The most important panel when you start a project is OntoBrowser, shown in Figure 2. In HKS and many
other knowledge-modeling tools, classes are named concepts from the domain that can have attributes and
relations. HKS classes are comparable to Java or UML classes, but without attached methods. Classes can be
arranged in an inheritance hierarchy, which displays in the tree panel in the left part of the OntoBrowser
panel. The properties of the tree's selected class display in the right part of the OntoBrowser panel. HKS
supports multiple inheritance, and classes are imported (cannot be modified) or manually created (can be
modified). Unlike in Java, both classes can have instances.

In HKS, classes attributes and their relations are all relations. A relation has a name and a value type. HKS
supports the primitive value types BOOLEAN, INTEGER, FLOAT, and STRING, which are handled, like
they are in Java. For example, you can define the class Printer and assign a relation called name to it with
STRING as the value type. Additionally, a relation has cardinality — now just single-valued relation or multi-
valued relation. Apart from primitive values, relations can also refer to the model's classes. A simple search
facility is provided (at the bottom of the OntoBrowser panel) both for classes, instances and relations.

So the HKS relations are very similar to conventional object-oriented attributes and relations. However,
some important details make HKS relation definitions richer than most object-oriented concepts. A main
difference is that a HKS relation can attach to multiple classes.

Another major difference is that you can specify constraints on HKS relation values. Constraints restrict a
relation's range of allowed values. One of these constraints restricts a relation's cardinality. You can specify
single (i.e. a single value is accepted) or multiple (a list of values 1s accepted). This feature is similar in UML,
where you can define cardinalities like [0.. 1] or [0..*]. HKS also allows you to define inverse of a relation. Also
it provide an internal reasoning module using the reflexivity and role-hierarchy axioms. All these constraints
help vou build correct domain models, because HKS can display an instance's invalid values,

In HKS the user can acquire values, using drag and drop facilities, directly from the web via the HKS HTTP
Rrowser. Of course, it is possible to acquire values manually.

A storage plug-in is a nonvisual module that saves and loads models in a certain file format. HKS currently
supports F-logic and RDF file storage formats. As a plus, in HKS it is possible to include an ontology fragment
written in F-Logic in the current ontology. Below we present a summary of the functions of the HKS tool.

Function 1: Creating/Open a new Ontology

This function is part of scenario KAl in [1] and part of scene 1 in [7]. The knowledge engineer (KI5 will use
this function to create a new ontology i.e. a Hierarchical Knowledge Base (HKB) for a new e-commerce
domain. The new ontology will be created either from scratch (not very often) or using a library of existing,
toplevel ontologies (most often). This function will allow the KE to select the toplevel ontology on which the

new HKB is based.

Function 2: Open an Ontology

The KE might decide to temporary save his work on the current HKB and continue 1t at a later time. So he 1s
faced with the problem of loading a previously saved HKB. This function will allow the KE to select a
previously saved HKB and load it into HKS. This function is not mentioned in documents [1] and [7].

Function 3: Managing Classes

This group of subfunctions will allow the KE to select/create/edit/delete classes.

176 Studies in Informatics and Control, Vol.13. No. 3, September 2004

Subfunction 3.1.: Select a class

The KE is faced with the problem of selecting a class from the HKB to perform some actions on it (1.e. edit,
add instance, delete, add a new class as subclass...). This subfunction will allow the KE to perform this
selection. In the selection process he must distinguish between own classes and imported classes. The

imported classes cannot be modified.
Subfunction 3.2.: Create a new class
The KE can manually create new classes. A class has exactly one parent class (either an imported class or an

own class). The KE will first select the parent class and then create the new class. The KE must provide a
unique name for the new class. The HKS tool will provide a default name. This subfunction is necessary as

in scenario KAZ2 from [1].
Subfunction 3.3: Edit a class
The KE can manually add, update or delete components to/from a selected own class. The KE will first select

the class and then perform the desired actions. Also, when a new class is created the user can perform any of
the above actions.

Subfunction 3.4: Delete an own class
The KE can delete an own class (again, not imported) from the HKB. The deletion will cause the removal

from the HKB of the subtree rooted at this class. This subtree includes also the instances of the classes,
which are member of the subtree.

Function 4: Manage Instances

This group of subfunctions will allow the KE to select/create instances and fillin them by manual acquisition
from the Web, also, edit/delete the instances.

Subfunction 4.1.: Select an instance

The KE is faced with the problem of selecting an instance from the HKB to perform some actions on it (i.e.
edit or delete). This subfunction will allow the KE to perform this selection. In the selection process he must

distinguish between own instances and imported instances. Note that this subfunction was not addressed in
the documents [1] and [7].

Subfunction 4.2.: Create a new instance

The KE wants to create a new instance of a given class (either an imported or an own class). The KE will
first select the class and then create a new instance for it. The KE can then fill in the relations of the new
instance with values acquired from the Web. The acquired values must satisfy the type constraints of the
corresponding relation.

Subfunction 4.3.: Manually edit an instance

The KE can manually update the relation values of an instance or create by manually editing new relation
values for an instance. Note that the KE is not allowed to update or delete imported instances.

Subfunction 4.4: Delete an instance

The KE delete a non-imported instance from the HKB. The KE will select the instance using subtunction 4.1
and then delete it.

Function 5: Save the HKB

Ti_le KE may decide to save his current work on a HKB such that it would be possible to continue it later. For
this purpose he will save the current HKB.

Function 6 Include/Import/Export an ontology

At definite moments in time the KE may include an existing ontology fragment (which will be imported) or
export the HKB. Thus, when next time the KE will create a new HKB based on importing, the old HKB

Studies i formati
udies in Informatics and Control, Vol.13, No. 3, September 2004 177

classes and instances will be considered in the new HKB as imported. This function is needed in scenario
KA10 from [1].

Subfunction 6.1 Include/Tmport an Ontology

At definite moments in time the KE may include an existing ontology fragment in the existent open ontology.
All included classes and instances will be treated as imported i.e. no update or delete operation is not allowed.
This tool version can include ontologies which was written in F-Logic and RDF. The import subfunction of the
tool is definite necessary because in the most of cases the KE use a toplevel ontology for creating his HKB.
‘When we import an ontology the already open ontology must be closed (and eventually saved).

Subfunction 6.2 Export an Ontology

The export subfunction of the tool assumes an open ontology and provides a file in F-Logic or RDF format.

4. A Short Comparison and Future Work

This section is devoted to a short comparison between the HKS tool and the tools already presented in the
first section of the paper.

We propose the following criteria of comparison:

CRITERIA 1: M&deling Features/Limitations - The representational and logical qualities that can be
expressed in the built ontology.

,‘ Built in inference with three F-Logic axioms on relations: reflexivity, inverse and
role-hierarchy. Equivalent instances.

OQilEd 4/12/02 DAML constraint axioms; same-class-as; limited XML Schema datatypes; creation

metadata; allows arbitrary expressions as fillers and in constraint axioms; explicit use

of quantifiers; one-of lists of individuals; no hierarchical property view.

OntoEdit 8/6/02 | F-Logic axioms on classes and relations; algebraic properties of relations; creation of

metadata; limited DAML property constraints and datatypes; no class combinations,

equivalent instances.

Protégé-2000 Multiple inheritance concept and relation hierarchies (but single class for instance).

4/10/02, 10/22/02 | meta-classes; instances specification support, constraint axioms ala Prolog, F-Logic,

OIL and general axiom language (PAL) wia plug-ins.

WebOnto Multiple inheritance and exact coverings; meta-classes; class level support for
5/1/02 prolog-like inference.
CRITERIA 2: Base Language — The native or primary language used to encode the ontology.
F-Logic
OilEd 4/12/02 DAMLA+OIL
OntoEdit 8/6/02 F-Logic
Protégé-2000 4/10/02, 10/22/02 | OKBC model
WebOnto 5/1/02 OCML

CRITERIA 3:Web Support & {Use} - Support for Web-compliant ontologies (e.g., URIs), and {use of the
software over the Web (e.g., browser client)}.

No. It has a built in browser (with limited capabilities) for knowledge
aquisition

QilEd 4/12/02 RDF URIs; limited namespaces; very limited XML Schema

OntoEdit 8/6/02 Resource URIs

Protégé-2000 4/10/02, Limited namespaces; {can run as applet; access through servlets}

10/22/02

WebOnto 5/1/02 {Web service deployment site}

178 Studies in Informatics and Control, Vol. 13, No. 3, September 2004

CRITERIA 4: Import Export Formats - Other languages the built ontelogy can be serialized in.

This version only cans import/include from F-Logic and export to

RDF, F-Logic.
OilEd 4/12/02 RDFS; SHIQ
OntoEdit 8/6/02 RDFS; F-Logic, DAML~+OIL (limited); RDB

Protégé-2000 4/10/02, 10/22/02 | RDF(S); XML Schema; RDB schema via Data Genie plug-in;
(DAML+OIL backend due 4Q'02 from SRI)
WebOnto 5/1/02 Import: RDF; Export: RDFS, Ontolingua, OIL

CRITERIA 5: Graph View - The extent to which the built ontology can be created, debugged, edited
and/or compared directly in graphic form.

Graphical browsing of classes instances and relations. No graph view
OilEd 4/12/02 Browsing Graphviz files of class subsumption only.

OntoEdit 8/6/02 Yes, via plug-in

Protége-2000 4/10/02, 10/22/02 | Browsing classes & global properties via GraphViz plug-in; nested
graph views with editing via Jambalaya plug-in.

WebOnto 5/1/02 Native graph view of class relationships.

CRITERIA 6: Consistency Checks - The degree to which the syntactic, referential and/or logical
correctness of the ontology can be verified automatically.

Full consistency check. Every import and/or include resolve the
consistency in the internal model of the ontology.

OilEd 4/12/02 Subsumption and satisfiability (FaCT)

OntoEdit 8/6/02 Yes, via OntoBroker

Protégé-2000 4/10/02, 10/22/02 | Plug-ins for adding & checking constraint axioms: PAL: FaCT.
WebOnto 5/1/02 For OCML code

CRITERIA 7: Merging - Support for easily comparing and merging independent built ontologies.

Accept including of the fragments ontology from F-Logic

OilEd 4/12/02 No

OntoEdit 8/6/02 Yes

Protégé-2000 4/10/02, 10/22/02 | Semi-automated via Anchor-PROMPT.
WebOnto 5/1/02 No

CRITERIA 8: Information Extraction - Capabilities for ontology-directed capture of target information
from content and possibly subsequent elaboration of the ontology.

No. The knowledge acquisition is made via browser with drag and drop

capabilities.
OilEd 4/12/02 No
OntoEdit 8/6/02 No
Protégé-2000 4/10/02, 10/22/02 | No
WebOnto 5/1/02 (Available from OCML based tool MnM.)

The future work will be devoted to two main objectives:

¢ To define a general reasoning mechanism that can be implemented in inference engine. There is some
research in this direction conceming the type of logic to modeling the semantic but we still have some
uncertainties about a good inference engine.

e To obtain representations in various knowledge formats such as OIL, [3, 4, 8] and DAMLA+OIL, [14].

S. Appendix — The Mathematical Model of HKS

The HKS Knowledge Model, [3, 6] assumes a universe of disceurse consisting of all entities about which
knowledge is to be expressed. Each knowledge base may have a different universe of discourse. However,
HKS assumes that the universe of discourse always includes the following Data Types: BOOLEAN,
STRING, INTEGER, FLOAT and all Data Type Objects (i.c. constants) of these data types. Let T be the set
of data types. To provide a precise and succinct description of the HKS Knowledge Model, we use the

Studies in Informatics and Control, Vol.13, No. 3, September 2004 179

Knowledge Interchange Format (KIF) [17] as a formal specification language. KIF is a first-order predicate
logic language with set theory, and has linear prefix syntax.

Let C be the set of classes.

Definition 1 (Class and Class-Object). Classes are sets of entities. Each of the entities in a class 1s said to
be a class-object of the class. An entity can be a class-object of multiple classes, which are called its types or
parents. A class cannot be a class-object of a class.

Thus, the domain of discourse consists of class-objects and classes. The unary relation class is true if and

only if its argument is a class and the unary relation class-object is true if and only if its argument is an
individual. The following axiom holds:

{< (class 7X) (not {class—object 7X)))
Definition 2 (instance-of, type-of). The class membership relation called instance-of that holds between an

class-object and a class is a binary relation that maps entities to classes. A class is considered to be a unary
relation that is true for each instance of the class. That is:

(& (holds 7C) (instance—of ?1 7C))

The relation fype-of is defined as the inverse of relation instance-of. That is,

(& (type—of 2C 1) (instance—of ?1 7C))
Definition 3 (subclass-of, superclass-of). The subclass-of relation for classes is defined in terms of the
relation instance-of, as follows. A class C; is a subclass of ¢lass Cs if and only if all instances of C; are also
instances of Cg. That is,

(& (subclass—of ?7C, 7Cs Yforall ?1 (=(instance—of ?1 7C;) (instance—of 71 "Cs))))
The relation superclass-of is defined as the inverse of the relation subclass-of. That is,
(< (superclass—of ?Cs ?C,) (subclass—of 7C; 7Cs))

The subclass-of relation is transitive (Le., If A is a subclass of B and B is a subclass of C, then A is a subclass of C.).
Properties are binary relations involving classes and/or data types.

Definition 4 (HKS Relation). A HKS relation is a binary relation between two classes or between a class
and a data type. So, if p denote a HKS relation, then p < CxC or p ¢ CxT. A HKS relation has associated a
set of meta-relations: Cardinality, Inverse, Role Hierarchy.

The cardinality meta-relation specifies the number of values that may be asserted for a component on a class.
Our framework supports two cardinalities: single cardinality and multiple cardinality.

e Ifa HKS relation p has single cardinality, then WA.B, (A,B) € p we can assert exact one class-object of B.

e Ifa HKS relation p has single cardinality, then VA.B, (A.B) € p we can assert one or more class-objects of B.
The inverse meta-relation is a binary relation between properties, that
is inverse — P xP. Here is the axiom that define inverse relation:
(=(and (class-object-component ?A 7P 7B)
(inverse 7P 7Q)(class-object 7B)) (class-object-component 7B 2Q 7AY)

We assume that the inverse relation is symmetric.

i Studies in Informatics and Control, Vol.13, No. 3, September 2004

The role-hierarchy meta-relation is a binary relation between HKS relations, that is role—hierarchy < PxP.
Here is the axiom that define role-hierarchy relation:

(<= (class—object—component 7A 7U 7X))and(role-hierarchy U 2V)
(class—object—component ?A 7V 7X))

We assume that the role-hierarchy relation is reflexive. Also it can be proved that role-hierarchy transitive.

Let P be the set of all properties.

Definition 5 (Class Component, Class-Object Component). A class has associated with it a collection of
components that describe own values considered to hold for each class object of the class. Let Comp(C) be
the set of components for a class C.

Let A be u class and p be a HKS relation. If (A,B) & p then the triple (A, p,B) is called a component of class A.

A class-object has associated with it a collection of class-object components. Let OComp(o) be the set of
class-object components of class object o. If a is a class-object of A, (A, p,B) is a component of A, b is a

class-object of B, then the triple (a, p, b) can be a class-object-component of a.

Definition 6 (Root). There exist an unique special class called Root that cannot have superclasses and cannot
have any components. Root can have subclasses.

Definition 7 (Knowledge Base). A Hierarchical Knowledge Base - HKE is a tuple
HKB = (T, C,O,P,R)
where T is the set of data types, C is the set of classes, O is the set of class objects and
R = {subclass—of, instance—of, inverse, role—hierarchy)

is the set of relations defined above.

REFERENCES

1. *** CUP, http://www.cs.princeton.edw/~appel/modem/java/CUP/

2. *** Florid, http://www.informatik unifreiburg. de/~dbis/florid.

3. *** http://ontoknowledge. org

4. *** JAXP, http://java.sun.com/xml/jaxp/

5. *** Knowledge Interchange Format (KIF), http:/logic.stanford.eduw/kit/kif. html
6. *** LOG4], http://jakarta.apache.org/, Apache Logging Services Project

7. *** OIL, http://www.ontoknowledge org/oil

8. *** QIlEd, http://oiled man.ac.uk

9. *** Ontoedit , http://www.ontoprise.de

10. *** OntoWeb report on a comparative study of 11 ontology editors plus several other ontology tools,
May, 2002 at (http://ontoweb.aitb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip).

Studies in Informatics and Control, Vol.13, No. 3, September 2004 181

182

12.

13.

14.

16.

17.

18.

19.

20.

21

22.

23

24,

25.

26.

27.

28.

= OWL — Web Ontology Language, http://www.w3.org/2004/OWL
% Protége , http://protégé. stanford,edu
#xx RDF (W3C Recommendation), http:/fwww. w3 org/RDE/

#+% Gchema Specification 1.0. Candidate recommendation, World Wide Web Consortium, Mar.
2000. See http:/."www.w3.org/TRJ’ZOOO/CRIdfschcmaZ0000327.

_ #%x The DARPA Agent Markup Language http://www.damlerg/ZOO]/03/daml+0ilin{lex

#+* WebOnto, http://kmi.open.ac.uk_/projects."webonto/

BRICKLEY, D and R, GUHA. Resource Description Framework (RDF), 2000.

FENSEL, D. et al : OIL in a nutshell In: Knowledge Acquisition, Modeling, and Management,
Proceedings of the European Knowledge Acquisition Conference (EKAW2000), R. Dieng et al.
(eds.), Lecture Notes in Artificial Intelligence, LNAI, SpringerVerlag, October 2000.

FENSEL, D. FRANK VAN HARMELEN, and L. HORROCKS. OIL: A Standard Proposal for the
Semantic Web. Deliverable in the European IST project OnToKnowledge, 2001.

GIURCA. A. A Basic Framework for Representing Ontology , 1st National Conference on
Artificial Intelligence and Digital Communication, June 2001, pp. 27-35 (hosted by Research Center

in Artificial Intelligence, Craiova)

GIURCA, A. A Java API for Representing Hierarchical Knowledge, KickOff Meeting, OntoWeb
European Project, SIG3 on EnterpriseStandard Ontology Environments, Crete, Greece, workshop,
June 2001

GREGORY. J, Story Outline for Knowledge Acquisition Tool (Self Running Demonstrator)
HORROCKS, L et al : The Ontology Inference Layer OIL , unpublished paper, 2001.

M. KIFER, G. LAUSEN, and J. WU. Logical foundations of object oriented and framebased
languages. Journal of ACM, May 1995

MIKE BROWN, Scenarios for the Knowwledge Base Video, Interprise Gmbl, German, 2001.
NOY, N. F., R W. FERGERSON, M. A. MUSEN. The knowledge model of Protégeé 2000:
Combining interoperability and flexibility. 2th Intemnational Conference on Knowledge
Engineering and Knowledge Management (EKAW2000), Juan les Pins, France, 2000.

RAY, FRIK T. Learning XML. Sebastopol, California: OReilly & Associates, 2001.

STAAB, S., A. MADCHE. Ontology Engineering beyond the Modeling of Concepts and
Relations, http://citeseer.nj.nec_com;’staab(]()ontology.hlml, 2000.

Studies in Informatics and Control, Vol.13, No. 3, September 2004

