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Abstract: Several congestion control algorithms have been proposed for use in High-speed networks with large delays. In these
networks the TCP may have problems utilizing the full bandwidth. A suitable protocol should not take away too much bandwidth from
standard TCP flows while utilizing the full bandwidth of high-speed networks. In this paper, besides TCP friendliness and bandwidth
gcalability properties, RTT (round-trip time) unfaimess is considered, that means the situation in which competing flows with different
RTTs may consume vastly unfair bandwidth shares. RTT unfairness for high-speed networks occurs distinctly with drop tail routers for

flows with large congestion windows where packet loss can be highly synchronized. A new congestion control scheme that alleviates
RTT unfaimess is proposed. The simulation results confirm the properties of the proposed protocol.
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1. Introduction

In the context of communication networks, the term ,’congestion control” is generally used to refer to the action of
regulating various flows within a network. Such a control action is needed due to scarcity of network resources,
such as link capacities. There are two main objectives of congestion control. First, the efficient use of the network
resources while keeping the loss rate, and average delay of all *connections’ at some reasonable level. Second, it is
desirable to maintain some notion of *faimess’ between sources sharing a communication link [1].

In contrast to the traditional, low-bandwidth, voice-based telephone network, high-speed networks, such as
B-ISDN (Broadband Integrated Service Digital Network), allow several types of network traffic (such as,
voice and video) to coexist in the same transmission medium. The traffic in such networks can be broadly
classified as guaranteed-service traffic and best-effort service traffic. Guaranteed service refers to a contract
between the network service provider and the end user which requires the network to provide fixed QoS
(Quality of Service) to the traffic. The QoS guarantees can be in the form of upper bounds on packet loss
probability, delay, etc. In contrast, best-effort traffic is guaranteed very little a priori.

In the context of ATM (Asynchronous Transfer Mode) networks, the best effort traffic may be guaranteed a
minimum rate, and a bound on the loss rate. Instead of guaranteeing fixed QoS parameters, the idea is to fairly
allocate network resources to competing users. In the Intemet today, most users can be thought of generating best-
effort type traffic, too. For instance, no traffic related service guarantees are made in advance when browsing a
web page, or sending an email (unless the connection uses a leased line). Thus, in general, best-effort sources can
adjust their rates to the level of available service, making it possible to control the congestion in the network.

For a best effort source to adapt its rate to changing network conditions, there must be a mechanism through which
information about the state of the network is conveyed to the source. This information can be in the form of
bandwidth availability, state of congestion, or impending congestion. In ATM networks, this 1s achieved via
explicit rate control messages. In the Internet, however, no explicit feedback from the routers is available. TCP/IP
(th.e current Internet protocol) uses a window-based congestion control mechanism, where the sources dynarmically
ac_l_l ust their window sizes using packet losses and timeouts as congestion indicators [2]. Although TCP has several
nice ﬂ_zatures, such as being self-clocking, easy-to-implement, etc., it does not perform well under VATIous
scenarios. Several new protocols which address the TCP limitations have been put forward including XCP [10],
SABUL [11], FAST [12], High Speed TCP (HSTCP) [7, 8], and Scalable TCP (STCP) [9]. Except XCP, these
protocols adaptively adjust their increase rates based on the current window size.

The work presented here began as an attempt to assess the performance of high-speed congestion control
protocols in under “realistic” network operation: i.e., to assess their impact on overall network performance
in the presence of heterogeneous, competing flows. We focus on HSTCP and STCP, which are window-
based, self-clocking protocols known for safer incremental deployment [14].
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The rest of this paper is organized as follows. In the next section, the TCP performance problems n HS
networks are addressed. A HSTCP protocol version is presented in Section 3. In Section 4 a new version of
an incremented congestion control is presented. Section 5 contains simulation results, and the paper ends
with the concluding remarks of Section 6, which identifies some challenges for future research.

2. TCP Performance Problems in High-Speed Links

TCP was first designed in the early 1970s. Many research, development and standardization etforts have
been devoted to the TCP/IP technology since then. It is widely used in the current Internet and it is the
standard transport-layer protocol.

Congestion management allows the protocol to react to and recover from congestion and operate in a state of
high throughput sharing the link fairly with other traffic. In [2] the original TCP congestion management
algorithms were proposed. TCP’s congestion management is composed of two important algorithms. The
slow-start and congestion avoidance algorithms allow TCP to increase the data transmission rate without
overwhelming the network. They use a variable called CWND (Congestion Window). TCP’s congestion
window is the size of the sliding window used by the sender. TCP cannot inject more than CWND segments
of unacknowledged data into the network.

The general characteristics of the TCP algorithm are an initial relatively fast scan of the network capacity
followed by a cyclic adaptive behavior that reacts quickly to congestion by reducing its sending rate, and
then slowly increasing the sending rate in an attempt to stay within the area of maximal transter efficiency.
This general behavior is shown in Figure 1.
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Figure 1: TCP Congestion Control.

TCP’s algorithms are referred to as AIMD (Additive Inerease Multiplicative Decrease) and are the basis for
its steady-state Congestion Control. TCP increases the congestion window by one packet per window of data

acknowledged, and halves the window for every window of data containing packet drop. The TCP
congestion control can roughly be expressed in the following equations:

Congestion Avoidance
ACK : cwnd « cwnd +a/ cwnd (1)
DROP : cwnd « cwnd - b % cwnd (2)
Slow-Start
ACK: cwnd €« cwnd +¢ (3)

The terms cwnd, a, b and ¢ are all defined in units of Maximum Segment Size (MSS). The canonical values
fora, b, andcare:a=1,b= 0.5and c=1.

The introduction of high-speed network techgoiogics has opened the opportunity for a dramatic change in the
achievable performance of TCP based applications. Unfortunately, this potential has not generally been realized.

The performance of a TCP connection 18 dependent on the network bandwidth, round-trip time (RTT), and
packet loss rate. At present, TCP implementations can only reach the large congestion windows necessary to
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fill a pipe with a high bandwidth delay product when there is an exceedingly low packet loss rate. Otherwise,
random losses lead to a significant throughput deterioration when the product of the loss probability and the
square of the bandwidth delay is larger then one [3].

For example, a standard TCP connection with 1500-byte packets and a 100 ms round-trip time, would
require an average congestion window of 83,333 segments and a packet drop rate of at most one congestion
event every 5,000,000,000 packets to achieve a steady-state throughput of 10 Gbps (this translates to at most
one congestion event every 1h:40m). This loss rate is well below what is possible today with the present
optical fiber and router technology.

3. High-Speed TCP Fundamentals

The HSTCP for Large Congestion Windows was introduced in [16] as a modification of TCF’s congestion
control mechanism to improve performance of TCP connections with large congestion windows. HSTCP 1s
designed to have a different response in environments of very low congestion event rate, and to have the
standard TCP (referred to in this work as Regular TCP or REGTCP) response in environments with packet
loss rates of at most 1073, Since, it leaves TCP’s behavior unchanged in environments with mild to heavy
congestion, it does not increase the risk of congestion collapse. In environments with very low packet loss

rates (typically lower than 107y, HSTCP presents a more aggressive response function.

HSTCP introduces a new relation between the average congestion window w and the steady-state packet
drop rate p. For simplicity, this new HSTCP response function maintains the property that the response
function gives a straight line on a log-log scale. (as does the response function for Regular TCP, for low to

moderate congestion).

The HSTCP response function is specified using three parameters: Low Window, High Window, and High
P Low Window is used to establish a point of transition and ensure compatibility. The HSTCP response
function uses the same response function as Regular TCP when the current congestion window is at most
Low Window, and uses the HSTCP response function when the current congestion window is greater than
Low Window. High Window and High P are used to specify the upper end of the HSTCP response function.
It is set as the specific packet drop rate High P, needed in the HSTCP response function to achieve an
average congestion window of High Window. The HSTCP response function is represented by new additive
increase and multiplicative decrease parameters. These parameters modify both the increase and decrease
parameters according to CWND. In congestion avoidance phase, its behavior can be expressed in the same
manner as in (1) and (2) with a and b act like variables.

4. Incremental Congestion Control Algorithm (ICC)

The pseudo-code of ICC implemented as a modification of BIC from [4]. Preset parameters used:
low window: if the window size is less than this threshold, normal TCP increase/decrease, otherwise ICC.
Smax: the maximum increment ; Smin: the minimum increment 1 b : multiplicative window decrease factor.

The following variables are used: Wmax: the maximum window size ; ewnd: congestion window size;

ICC _inc: window increment per RTT.

if (ewnd < low_window){ /mormal TCP
cewnd = cwnd *0.5; return; }
if (ewnd < Wmax)

Wmax = cwnd * (a-b )/ a,

else
Wmax = cwnd;
ewnd = cwnd * (1- b ), //multiplicative decrease

An acknowledgment for a new packet arrives:
if (ewnd < low window) { //mormal TCP

.cwna' = cwnd + l/ewnd; return; }
if (ewnd < Wmax)

Studies : o
tudies in Informatics and Control, Vol. 13, Nr. 3, September 2004 185



[CC_inc = (Wmax — cwnd)/a;

else //slow-start
ICC _inc = cwnd - Wmax,

if (ICC_inc > Smax)
ICC inc =Smax,

else if (ICC_inc < Smin) //slow-start
ICC _inc = Smin;

ownd = ewnd + ICC_inclewnd,

Two special cases are considered as in [4]. First it is assumed that Wb 5> 28 gy - The sending rate of
[CC mainly depends on the linear increase part, and for small values of p, it becomes independent of Smin
and can be approximated as follows:

S _
1 — @

Second, in the case W, b < 28, and assuming 1/p >> Smin then

.k’gz[—s[ﬂ"]""z

the last approximation is valid when 2b << log , (¥ gax &/ Sin ) +2 - In. the case when W, b << 28, the

sending rate becomes independent of Smax.
The sending rate of ICC is proporticnal to / 4 > with 1/2 < d <1. As the window size increases, d
P

decreases from 1 to 1/2. For a fixed b, when the window size is small, the sending rate is a function of Smin
and when the window size is large, a function of Smax. When window is small, the protocol is TCP-friendly:
and when the window is large, it is more RTT fair and gives a higher sending rate than TCP. This can be
realized by adjusting Smin and Smax.

It is considered the RTT unfairness of a protocol under the synchronized loss model. The RTT unfaimess of

- is (RTT, LROENVO=4),
p

g - . 1
a protocol with a response function
RTT

As the window size increases, the value of d of ICC decreases from 1 to 1/2. That is, with a high bandwidth, ICC has
the same RTT unfaimess as the TCP; while with a low bandwidth, ICC has the same RTT unfaimess as STCP.

5. Simulation Results

The experiments were conducted using the NS-2 simulator [6]. The simulation network topology used was a
dumbhell with a single bottleneck, as shown in Figure 2. All traftic passed through the bottleneck link., The
bottleneck link bandwidth was 1 Gbits/s, the link delay was 50 ms. The simulations used two types of router
queue management, DT (DropTail) and RED (Random Early Detection).
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Figure 2: Simulation Network Topology.

The TCP flows had the ECN bit set; the packet size was 1500 bytes; the maximum window size was large
enough to not impose limits; random times between sends were set to avoid phase effects; the flows used a
modified version of the Limited Slow-Start algorithm for large congestion windows[5]. The TCP agent used
for the sender and the receiver was SACK. FTP was the application used to transmit data through the TCP
connections. All the HSTCP flows used the forward direction. The HSTCP parameters used are

Low_Window = 31;High_Window = 83000; High_ P = 0.0000001.

For comparison, the HSTCP flows were run against TCP SACK implementations. A set of web-like flows
and a set of small TCP flows were also used as background noise for all the simulation. Other TCP flows
were used to represent bursty traffic. They were short-lived flows that lasted for a few seconds.

The first experiment allowed to observe the basic behavior of a single REGTCP or a single HSTCP flow run
in isolation. The experiment ran only one time, without external interference. As shown by Figures 3 and 4,
a REGTCP flow has a slower growth compared to the HSTCP flow. The REGTCP flow takes around 300
seconds to reach the bandwidth limit in congestion avoidance. In comparison, the HSTCP flow reaches this
point before 50 seconds (RED case). HSTCP has an oscillatory behavior with a very short period. With DT
queuing, drops did not occur until the router buffer overflowed. With RED queuing, the router sends the
congestion signal earlier. In the case of an empty network this can lead to lower utilization with RED.
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Figure 3: Evolution of Congestion Window for a Single Flow. RED.

Studies i '‘matics
te8 in Informatics and Control, Vol, 13, Nr. 3, September 2004 187



5200
A4 ¢ / A A
fEnOT ———— AL . “ﬂ _z" (r‘ A 7],{,71 y ;.\‘ £ _?;_._ ”
f F fg‘a ?(’ K /{J Fi H( f’ ('} 7 ¢ gf Id i, 4 7
ST ——. DT | F SO Al O A O ,f__;}zf_ i
fod f
;
e i £ s s nan ] S —
;o1
e ; - — s i s PR
; F i .
:f ﬁ. e PUURPRRRER
Boow f-——i e . - ]
]
2GS T (RIS S| CRDET SN (NS S SRS | (IS M
2
§
00T | ———— ——r —
;
zap (£ s S VIS pon e _
i
" kRt R e RE-H FERa] EH FIATE]

Figure 4: Evolution of Congestion Window for a Single Flow. Drop Tail.

In the following, the performance of ICC is compared with that of HSTCP and STCP. Every experiment
uses the same simulation setup described earlier. In order to reduce noise in data sampling, we take
measurement only in the second half of each run. We evaluate ICC, HSTCP, and STCP for the following
properties: bandwidth utilization, RTT unfairness, and convergence to fairness. For ICC, we use Smax = 32,
Smin =0.01, and b = 0.125. All high-speed protocols are implemented by modifying TCP/SACK.

Utilization: In order to determine whether a high-speed protocol uses available bandwidth effectively under

high-bandwidth environments, we measure bandwidth utilization for 2.5 Gbps bottleneck. Each test consists of two
high-speed flows of the same type and two long-lived TCP flows. In each test, the total utilization of all the flows
including background traffic is measured. In drop tail, all protocols give approximately 97% utilization, and in RED,
ICC consume about 95% of the total bandwidth while HSTCP and STCP consume about 92%. The drop tail
experiment consumes more bandwidth because drop tail allows flows to fill up the network buffers.

RTT Fairness: In this experiment, two high-speed flows with a different RTT share the bottleneck. The RTT
of flow 1 is 40 ms. The values for the RTT of flow 2 were 40ms, 120ms, and 240ms. The bottleneck link
delay is 10ms. Two groups of simulation, each with different values of bottleneck bandwidth: 2.5 Gbps, and
100 Mbps. This setup allows the protocols to be tested for RTT faimess for different window sizes. Around
small window sizes, [CC shows the worst RTT unfairness. ICC has window sizes about 7000 (loss rate
0.0003) for 2.5Gbps and 300 (loss rate 0.004) for 100Mbps.

Table 1 shows the results of drop tail only, for the runs in 100Mbps and 2.5Gbps, respectively. The RTT
unfairness under RED is close to the inverse of RTT ratio for every protocol.

Table 1. The throughput ratio of protocols under 100Mbps and 2.5 Gbps

Protocol Bottleneck Inverse RTT Ratio
Bandwidth 1 3 6
[bps]
ICC 100 M 0.98 11.69 26.94
25G 0.87 11.92 39.54
STCP 100 M 0.93 18.95 65.12
25 G 0.99 126.89 38921
HSTCP 100 M 1.02 8.85 38.87
25G 1.01 29.25 108.2

The performance of ICC does not deteriorate much while HSTCP and STCP have improved RTT unfaimess.
This is because in 100 Mbps, the window size of all the flows is much smaller than in 2.5Gbps run.
Therefore, the degree of synchronized loss is very low. Although the RTT unfairness of 1CC gets worse
around this window size by the analysis, this deficiency gets compensated by lack of synchronized loss so
that it does not have much performance degradation. Overall, its RTT unfairness is much better than HSTCP
and STCP. HSTCP and STCP tend to starve long RTT flows under high bandwidth environments.
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Fairness: Synchronized loss has impact also on bandwidth faimess and convergence time to the fair
bandwidth share. In this experiment, we run 4 high-speed flows with RTT 100ms. Two flows start earlier
randomly in [0:60] seconds, and the other two flows start later randomly in [100:160] seconds. The total
simulation time is 600 seconds. The bottleneck link bandwidth is 2.5Gbps. For this experiment, the fairness
index [13] is measured at each 50-second interval, after the first 100 seconds. This result gives an indication
on (1) how fast it converges to a fair share, and (2) even after convergence to a fair share, how much it
oscillates around the fair share.

Figure 5 shows the result for drop tail routers. At time around 150 seconds, the second set of two connections
just start while the first two connections consuming almost all the bandwidth. Therefore, the difference
between these four connections is the largest, and hence the fairness index is the lowest. As the latter two
connections get more bandwidth, the fairness index increases. The protocol whose fairness index reaches 1
the fastest has the fastest convergence speed. ICC give the best results, and it quickly converge to the fair
share (where the fairness index is close to 1). STCP is the worst. and even after 600 seconds, the fairness
index is still below 0.95. The fairness index of all protocols first increases fast, and then slowly reaches to 1.
The reason is that the congestion windows of the latter two connections first increase exponentially in the
slow-start state; after the first loss event, they enter the congestion avoidance state, and increase slowly as
specified by each protocol.
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Figure 5: Fairness Index Over Various Time Scales for Drop Tail and for RED.

6. Conclusions

TCP has ditticulty in fully utilizing network links with a high bandwidth delay product. HSTCP outperforms
TCP in this condition, and has an adaptability that makes an incremental adaption approach casy. HSTCP 1s
easy to deploy avoiding changes in routers and programs.

In this paper RTT fairness is presented as an important safety condition for high-speed congestion control
and raise an issue that existing protocols may have a severe problem in deployment due to lack of RTT
taimess under drop tail. RTT fairness has been largely ignored in designing high-speed congestion control.
This paper presents a new protocol that can support RTT fairness, TCP friendliness, and scalability.
Simulation results indicates that it gives good performance on these metrics.

Th_e response finction of ICC may not be the only one that can satisfy these constraints. It is possible that there
eXists a better function that utilizes the tradeoff among these conditions. Thus is an area of further research.

Studies in Informatics and Control, Vol. 13, Nr. 3, September 2004 189



REFERENCES

190

10.

12.

13.

14.

OMER, I and T., BASAR. Control of Congestion in High-Speed Networks. European Journal of
Control, vol.7, 2001, pp.132-144.

JACOBSON, V., Congestion avoidance and control, Proc. of the ACM SIGCOMM 88
Conference on Communications Architectures and Protocols, vol. 18, 1988, pp. 314-329.

LAKSHMAN, T. and U., MADHOW. Performance analysis of window-based flow control using
TCP/IP: Effect of high bandwidth-delay products and random loss, Fifth Int. Conference on
High PerformanceNetworking, 1994, pp. 135-149.

XU, L., K., HARFOUSH and L., RHEE. Binary increase congestion control for fast long-distance
networks, Technical Report, Computer Science Department, NC State University, 2004.

SQUZA, E.. A simulation-based study of HSTCP and its deployment, Lawrence Berkeley
National Laboratory, Tech. Rep. LBNL-52549, April 2003.

Project, NS-2 network simulator, URL http://www.isi.edw/nsnam/ns.

FLOYD, S., A., RATNASAMY and S., SHENKER. Modifying TCP’s congestyion control for
high speeds”, http://www.icir.org/floyd/hstep. html, May 2002.

FLOYD, S.HighSpeed TCP for large congestion windows, IETF, draft-floyd-tep-highspeed-
01.txt, 2003,

KELLY, T., Scalable TCP: Improving performance in highspeed wide area networks, submitted
for publication, Dec. 2002.

KATABL D., M., HANDLEY.and C., ROHRS. Internet congestion control for high bandwidth-
delay product networks. ACM SIGCOMM 2002, Pittsburgh, Aug., 2002.

. 11. GU, Y., HONG, X., MAZZUCCO, M., and GROSSMAN, R. L., SABUL: A high performance

data transport protocol, submitted for publication, 2002,

JIN,C., D., WEL H., LOW, G. BUHRMASTER, J. BUNN, D. H. CHOE, R. L. A. COTTRELL, J. C.
DOYLE, H. NEWMAN, F. PAGANINI, S. RAVOT, and S. SINGH. FAST Kernel: Background
theory and experimental results. First Int. Workshop on Protocols for Fast Long-Distance
Networks (PFLDnet 2003), Feb.3-4, CERN, Geneva, 2003.

CHIU, D., and R., JAIN. Analysis of the increase and decrease algorithms for congestion
avoidance in computer networks, Journal of Computer Networks and ISDN, Vol. 17, No. 1, June

1989, pp. 1-14

BANSAL, D., H., BALAKRISHNAN, S, FLOYD, and S., SHENKER. Dynamic behavior of
slowly responsive congestion controls, Proc.of SIGCOMM, San Diego, California,2001.

Studies in Informatics and Control, Vol. 13, Nr. 3. September 2004



