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1. Introduction 

Parking has become a big challenge in cities, 
especially in metropolises (Krpan, Marsanic & 
Milkovic, 2017; Yang et al., 2022a). The gap 
between the increase in the parking demand 
and the limited parking resources along with the 
inefficient use of these resources are responsible 
for the parking difficulties. Under these conditions, 
it has been confirmed that blind search for 
available parking spaces inevitably causes a waste 
of time. For example, research found that a driver 
may spend 3.5 to 14 minutes finding an on-street 
parking space (Hampshire & Shoup, 2018) and 
that looking for a parking space is accountable for 
about 8% to 74% of traffic congestion (Hampshire 
& Shoup, 2018; Yang et al., 2022b).

Except for constructing more parking resources, 
how to efficiently utilize existing parking resources 
is the key to solving parking problem. Therefore, 
researchers proposed the parking reservation 
systems (PRS) (Mei et al., 2020). Drivers can 
submit parking requests (e.g., the destinations, 
target occupancy time windows, even the parking 
preferences) to PRS and the basic idea of PRS is to 
guarantee drivers available parking spaces prior to 
arrival through online reservation. Theoretically, 
compared with parking without reservation, 
parking with reservation can avoid the futile and 
lengthy search for available parking spaces and 

traffic congestion, especially in the unfamiliar 
surroundings or during peak parking hours. In 
addition, parking reservation can guide drivers to 
carefully plan their trips before travelling, such as 
changing target arrival time or parking preferences 
according to the difficulty of reservation.

Among researches on PRS, dynamic parking 
allocation problem (DPAP) is significant. In DPAP, 
drivers who use PRS (called users below) submit 
demands dynamically, i.e., demand input to PRS is 
continuously updated. In existing studies, in order 
to optimize the allocation effect, static parking 
allocation problem (SPAP) was firstly modeled 
as resource allocation problem, which was then 
optimized to maximize the system managers’ 
profit or minimize the users’ cost. Then, DPAP 
was modeled based on Rolling Horizon (RH) 
strategy, in which the time was discretized into 
a sequence of equal-length intervals and SPAP 
was solved at the end time point of each interval. 
Geng & Cassandras (2013) firstly formulated the 
allocation model as a linear programming model 
to minimize users’ cost based on queuing theory 
and conduct static allocation at each decision 
time point defined in a time-driven sequence. 
Once being successfully allocated, users would be 
reallocated at each subsequent decision time point 
until they reached destination zones.    Mladenovic 
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et al. (2020) firstly rationalized the effectiveness 
of solving DPAP based on rolling horizon strategy 
and then proposed a 0-1 programming model 
with the objective of minimizing users’ cost and 
a variable neighborhood search-based heuristic to 
compute approximate solutions for lager instances. 
Mladenović et al. (2021) proposed a four-layer 
RH framework to tackle the real-time updates of 
parking demands and parking spaces. During each 
time interval, users that hadn’t arrived at their 
parking were reallocated. In these studies, users 
in each allocation shared the same priority and 
were allocated group by group Theoretically, RH 
based allocation approach is capable of improving 
allocation effect, ensuring allocation speed, and 
handling many unpredictable circumstances (e.g., 
a driver decides to change the destination) when 
solving DPAP. The advantages are significant, 
especially in cities with high parking demands.

Besides improving the utilization of public 
parking resources, the development of sharing 
economy gives birth to parking sharing, a novel 
parking management method that improves the 
utilization of private parking resources by sharing 
the available parking spaces at different times 
during a day. Different from DPAP, the availability 
of parking spaces in the dynamic shared parking 
allocation problem (DSPAP) depends not only on 
the real-time occupancy of users, but also on the 
real-time sharing of providers. Among the research 
studies on DSPAP based on the PRS, some focused 
on the sharing aspect and improved truthful auction 
mechanisms (Xu et al., 2016), other focused on the 
allocating aspect and regarded it as the DPAP, but 
most of them focused only on improving static 
allocation models. Shao et al. (2016) considered the 
shared use of residential parking spaces between 
residents and public users and assumed that time 
windows of parking demands and shared parking 
spaces were specific to PRS. Then, the authors 
proposed a simple binary linear programming 
model with the objective of maximizing parking lot 
utilization under the time constraints. On this basis, 
Ning et al. (2020) and Ning et al. (2022) enriched 
the demand preferences and proposed a binary 
linear programming model with the objective of 
maximizing system managers’ profit.

This paper studies the dynamic shared parking 
allocation problem based on PRS, in which multiple 
destinations and parking facilities, the temporal 
and spatial heterogeneity of parking demands and 
shared parking spaces, effective integration of 
allocation and reallocation are considered. 

The contribution of this study is the creative design 
of a heuristic algorithm, namely, Advanced and 
Adaptive Tabu Search, to achieve high allocation 
speed meanwhile maintaining allocation effect in 
the large-scale shared parking allocation problem. 
In AATS, multi-factor sequencing was introduced 
to advance the initialization, in which the demands 
are multi-factor sequenced so as to generate high 
quality initial solution. Moreover, an exchange 
operator, a replacement operator as well as a novel 
scoring mechanism were designed to adaptively 
generate high-quality neighborhood solutions.

The rest of this paper is organized as follows. 
Section 2 describes the dynamic shared parking 
allocation problem, Doubly Periodic Rolling 
Horizon allocation strategy, and mathematical 
programming models; Section 3 presents the 
meta-heuristic algorithm Advanced and Adaptive 
Tabu Search for solving allocation models; 
Section 4 offers comparison between TS, AATS 
and CPLEX Solver in a three-day district-level 
experiment. The paper ends with concluding 
remarks in Section 5.

2. Dynamic Shared  
Parking Allocation

This section describes in detail the DSPAP, 
a Doubly Periodic Rolling Horizon (DPRH) 
allocation strategy and the allocation models.

2.1 Problem Description

A scenario of dynamic shared parking allocation 
is studied as follows:  multiple parking facilities 
are distributed in one area, which are the sources 
of shared parking spaces and the destinations of 
users. The set { }1,2, ,fS F…  is used to represent 
these parking facilities. At any time of the day, 
users submit parking demands to PRS for parking 
guarantee, while providers submit shared parking 
spaces to PRS for extra income.

Each parking demand { }1,2, ,ii S I…∈  contains 
the following information: submission time P

it ,  
time window ,S E

i it t   , destination location 
[ ],i ilong lat , parking preferences including the 
upper bounds of acceptable walking distance 

max
id , of acceptable parking price max

ip  and of 
acceptable waiting time max

iw .

Among the submitted parking spaces, some are 
short-time shared (e.g., nine-to-five sharing) while 
some are long-time shared (e.g., 24-hour sharing). 
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Each shared parking space { }1, 2, ,jj S J…∈  
contains the following information: time window 

,S E
j jt t   , parking space location ,j jlong lat   , 

parking price jp , short-time rental price jr , or 
long-time rental price '

jr .

The overall time horizon is divided into a set of 
time units { }1,2, ,tS T…  with equal length τ . Each 
time unit corresponds to its end time point so that 

tS  is also a set of time points. In each time unit, 
PRS collects real-time submitted parking demands 
and parking spaces. At specific time point t , PRS 
conducts static narrow allocation. 

In addition to the unallocated demands ( )U
iS t ,  

the allocated but unoccupied demands ( )A
iS t ,  

the occupied demands ( )O
iS t , the terminated 

demands ( )T
iS t  and the failed demands ( )F

iS t  
exist simultaneously in PRS. Figure 1 describes 
the state transition of demands. PRS must ensure 
that allocated but unoccupied demands are 
successfully allocated in each broad allocation.

Figure 1. State transition of parking demands
Source: Figure 1 is adapted based on the previous 

work of Ning et al. (2022)

After allocation, the successful provider must 
ensure that the parking space is available in the 
shared time window according to the submitted 
information, and users are required to use the 
parking spaces according to the submitted target 
arrival time and departure time. Providers whose 
parking spaces are failed to be allocated will not 
be affected, and their parking spaces are still 
available in the rest of the shared time windows. 
Users whose demands are failed to be allocated 
have to wait for the subsequent allocation. If 
the waiting time exceeds the upper bound of 
acceptable waiting time, users will exit PRS and 
park by themselves.

2.2 Doubly Periodic Rolling Horizon 
Allocation Strategy

Denote { }, , ,t
1 2 nS T T T…  as the set of 

corresponding time points. In a time unit, PRS 
collects parking spaces and parking demands. 
Denote Nτ  as narrow allocation period, 

N Nmτ τ= ⋅  and the narrow allocation time 

points set is { }, , ,N N N
N 1 2 n
tS T T T… . Denote Bτ  as 

broad allocation period, B Bmτ τ= ⋅  and the broad 
allocation time points set is { },, ,B B B

B 1 2 n
tS T T T… .

When 0Nm ≠ , 0Bm ≠  and B Nm m> , the 
strategy is a Doubly Periodic Rolling Horizon 
allocation strategy, N B

t t tS S S∪ ⊆ , N B
t tS S∩ =∅ .  

Figure 2 shows an example of DPRH, in which 
1Nm = , Nτ τ= ; Bm m= , B mτ τ= ⋅  and 

\N B
t t tS S S= . The black arrows point to the 

direction of time rolling.

Figure 2. Process of DPRH
Source: Figure 2 is adapted based on the previous 

work of Ning et al. (2022)

Generally, narrow allocation period Nτ τ=  is set 
to improve allocation speed and broad allocation 
period is set to be longer than narrow allocation 
period to improve allocation effect and avoid 
wasting computation resources.

Two appropriate time thresholds APT  and ART  
are designed to control allocation scale: for 
a parking demand ( )A

ii S t∈ , if S
i APt t T≤ + ,  

demand i  and its allocated parking space j  
should be involved. The demand set ( )AP

iS t  
and the parking space set ( )AP

jS t  are settled to 
represent corresponding demands and parking 
spaces. Otherwise, demand i  and its allocated 
parking space j  are temporarily put aside. For 
a parking demand ( )A

ii S t∈ , if S
AR it T t+ < , PRS 

can change its allocated parking facilities. The 
demand set ( )AR

iS t  and the parking space set 
( )AR

jS t  are settled to represent corresponding 
demands and parking spaces. Otherwise, PRS 
must fix the allocated parking facility and 
reallocate parking spaces in the facility to demand 
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i . The relationship between two-time thresholds 
is AP ART T≥ .

2.3 Static Allocation Models

To solve the static shared parking allocation 
problem (SSPAP), the mathematical programming 
models are formulated. Both models are 
formulated to maximize the integrated profit of 
the system, which is decided by revenue and cost. 
Revenue comes from the parking fees paid by 
allocated users. Cost refers to the rental paid to 
providers and the demand waiting penalty. The 
unit penalty of waiting is Wq .

A binary variable ijx  is introduced to represent 
the allocation result between parking demand i  
and parking space j . 1ijx =  if parking space j  is 
allocated to parking demand i , otherwise 0ijx = . 
The objective function is given by Equation (1). 

( ) ( ) ( )
( )( )

( )( )

max

1

i j

i j

E S
j j i i ij

i S t j S t

W
N ij

i S t j S t

Z t p r t t x

q xτ

∈ ∈

∈ ∈

= − ⋅ − ⋅

 
 − ⋅ ⋅ −
 
 

∑ ∑

∑ ∑
     

(1)

In principle, ( ) ( )N
i iS St t=  and ( ) ( )N

j jS St t=  if 
it is narrow allocation, while ( ) ( )B

i iS St t=  and 
( ) ( )B

j jS St t=  if it is broad allocation.

2.3.1 Static Narrow Allocation Model

Narrow allocation is conducted at each narrow 
allocation time point N

tt S∈ . Three binary 
parameters are designed. ijc  expresses the time 
window relationship between parking demand i  
and parking space j . 1ijc =  if ,S E

i it t    is within 
time window ,S E

j jt t   , otherwise 0ijc = . 'iic  
expresses the time window relationship between 
parking demand i  and parking demand 'i . ' 1iic =  
if time window ,S E

i it t    and time window ' '
S E
i it ,t    

have no conflict or 'i i= , otherwise ' 0iic = . jfb  
indicates the belonging relationship between 
parking space j  and parking facility f . 1jfb =  
if parking space j  belongs to parking facility f ,  
otherwise 0jfb = . Narrow allocation is subject to 
constraints (2)-(7).

( ) ( ), , .N N
ij ij i jx c i S t j S t≤ ∀ ∈ ∀ ∈                    (2)

( ) ( )
' ' 1,

, ' , .
ij i j ii

N N
i j

x x c
i i S t j S t
+ ≤ +

∀ ∈ ∀ ∈                             
(3)

( ) ( )max , , .N N
ij ij i i jd x d i S t j S t⋅ ≤ ∀ ∈ ∀ ∈           (4)

( ) ( )max , , .N N
j ij i i jp x p i S t j S t⋅ ≤ ∀ ∈ ∀ ∈           (5)

( )
( )1, .

N
j

N
ij i

j S t

x i S t
∈

≤ ∀ ∈∑
                              

(6)

{ } ( ) ( )0,1 , , .N N
ij i jx i S t j S t∈ ∀ ∈ ∀ ∈                (7)

Constraint (2) claims that each parking demand 
can be allocated only to the parking space without 
time window conflict. Constraint (3) implies that 
every two conflicted parking demands cannot be 
allocated to the same parking space. Constraints (4) 
and (5) ensure that only parking spaces satisfying 
parking demand preferences (i.e., walking distance 
and parking price) can be allocated to the parking 
demand. Constraint (6) restricts each parking 
demand to be allocated to at most one parking 
space. Constraint (7) defines variable ijx .

2.3.2 Static Broad Allocation Model

Broad allocation is conducted at each broad 
allocation time point B

tt S∈ . A binary parameter 
ijy  is designed to represent the last allocation 

result between parking demand i  and parking 
space j . 1ijy =  if parking space j  was allocated 
to parking demand i  in the last allocation, 
otherwise 0ijy = . Broad allocation model is 
subject to constraints (8)-(15).

( ) ( ), , .B B
ij ij i jx c i S t j S t≤ ∀ ∈ ∀ ∈                     (8)

( ) ( )
' ' 1,

, ' , .
ij i j ii

B B
i j

x x c
i i S t j S t
+ ≤ +

∀ ∈ ∀ ∈                              
(9)

( ) ( )max , , .B B
ij ij i i jd x d i S t j S t⋅ ≤ ∀ ∈ ∀ ∈          

(10)

( ) ( )max , , .B B
j ij i i jp x p i S t j S t⋅ ≤ ∀ ∈ ∀ ∈          (11)

( )
( )1, .

B
j

U
ij i

j S t

x i S t
∈

≤ ∀ ∈∑
                             

(12)

( )
( )1, .

B
j

AP
ij i

j S t

x i S t
∈

= ∀ ∈∑
                           

(13)

( ) ( )

( )

,

, .

B B
j j

jf ij jf ij
j S t j S t

AR
i f

b x b y

i S t f S

∈ ∈

⋅ = ⋅

∀ ∈ ∀ ∈

∑ ∑

                            

(14)

{ } ( ) ( )0,1 , , .B B
ij i jx i S t j S t∈ ∀ ∈ ∀ ∈               (15)

Constraints (8) - (12) and (15) are derived from 
constraints (2)-(7), respectively. Constraint (13) 
specifies that each parking demand in ( )AP

iS t  must 
be reallocated to one parking space. Constraint (14) 
stipulates that each parking demand in ( )AR

iS t  can 
be reallocated only to another parking space within 
the same parking facility.
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3. Advanced and Adaptive Tabu 
Search Algorithm

In districts with heavy parking demands, there 
could be more than thousands of users reserving 
and thousands of providers sharing simultaneously 
through PRS (Yang, Yuan & Meng, 2022). In this 
condition, the allocation would be excessively 
time-consuming since the allocation model 
could have millions of variables and constraints. 
Therefore, even a greedy heuristic  algorithm 
followed by any heuristic local search algorithm 
could provide good quality solutions (Mladenovic 
et al., 2020).

In this section, An Advanced and Adaptive Tabu 
Search (AATS) algorithm is developed for solving 
SSPAP, in order to achieve good allocation effect 
and high allocation speed.

3.1 Main Procedures

Given the initial solution iniA  , AATS initializes 
the current solution curA  and the best solution 
so far bestA  with iniA . Naturally, the objective 
values of the current solution curZ  and the best 
solution so far bestZ  are equal to that of the 
initial solution iniZ . The search iteration starts 
after initializing candidate list CL , candidate 
list length CN , tabu list TL , tabu list length 
TN   and termination rule TR . In each iteration, 
AATS adaptively generates neighborhood 
solutions k

canA  from the current solution curA  
by an exchange operator and a replacement 
operator selected by a novel scoring mechanism. 
CL  collects the neighborhood solutions until 
the size of CL  reaches CN . Afterwards, 
AATS sequences all candidate solutions in 
CL  in descending order of objective values. 
The first candidate solution is recoded as A∗ ,  
and its objective value is recoded as Z ∗ . If Z ∗  
is not in TL , A∗  becomes the new curA  and 
Z ∗  becomes the new curZ . If Z ∗  is in TL ,  
the next candidate solution becomes A∗  and 
its objective value becomes Z ∗  until the new 

curZ  is generated. If no new curZ  is generated 
until all candidate solutions are tested, the first 
candidate solution becomes the new curA  and its 
objective value becomes the new curZ  according 
to aspiration criterion. Once the new curZ  is 
generated, AATS updates TL  by adding curZ  as 

a new tabu object and deleting the headmost tabu 
object if the size of TL  exceeds TN . If curZ  is 
higher than bestZ , curA  becomes the new bestA  
and curZ  becomes the new bestZ . Otherwise,  

bestA  and curZ  remain unchanged. The iteration 
stops when the termination rule TR  is satisfied. 
AATS terminates after performing Λ iterations 
or after maintaining the best solution so far in 
Λ' iterations. Table 1 shows the pseudo code of 
AATS. A detailed description and improvements 
of AATS are given in the following subsection.

Table 1. Pseudo code of AATS

Algorithm 1: AATS

1. Start
2. If B

tt S∈  then
3.       ( )B

i iS S t← , ( )B
j jS S t← ;

4. Else
5.       ( )N

i iS S t← , ( )N
j jS S t← ;

6. iniA ←  Advanced_Initialization( iS , jS );
7. iniZ ←  Objective_Evaluation( iniA );
8. cur iniA A← , cur iniZ Z← ;
9. best iniA A← , best iniZ Z← ;
10. CL ←∅ , TL ←∅ , 0.5P ← ;
11. While TR  is not met do
12.       1k ← ;
13.       While CL CN<  do
14.           k

canA ←  Adaptive_Neighborhood_Generation  
               ( curA , P , iS , jS );
15.      k

canZ ←  Objective_Evaluation( k
canA );

16.            If k
canA CL∉  then

17.              { }k
canCL CL A← ∪ ;

18.              1k k← + ;
19.      CL CL←  sorted descending order of k

canZ ;
20.      1k ← ;
21.      Do
22.            [ ]curA CL k← ;
23.            curZ ←  Objective_Evaluation( curA );
24.            1k k← + ;
25.      While & &curZ TL k CN∈ ≤
26.      If curZ TL∈  then
27.            [ ]1curA CL← ;
28.            curZ ←  Objective_Evaluation( curA );
29.            { }\ curTL TL Z← ;
30.      If cur bestZ Z>  then
31.            best curA A← , best curZ Z← ;
32.      { }curTL TL Z← ∪ ;
33.       If TL TN>  then
34.           [ ]{ }\ 1TL TL TL← ;
35.      ( ) ( )/ / / /P π π π π ω ωβ α β α β α← + ;
36. Return bestA ;
37. Stop
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3.2 Advanced Initialization with Multi-
factor Sequencing

Among all modules in AATS, initialization affects 
the performance of the algorithm directly. Though 
bidimensional 0-1 matrix I JX ×  made of I J×  (

iI S=  and jJ S= ) binary variables ijx  can 
directly represent a solution.

When solving the large-scale real-world instance, 
the size of the solution will be too large. Therefore, 
a unidimensional array A  made of I  integer 
variables ia  is chosen to represent a solution. Each 
variable ia A∈  ranges within [ ]0, J , in which 0 
means the status of allocation failure, while [ ]1, J  is 
the index of allocated parking space. Accordingly, a 
typical solution is expressed as { }1,2, ,0, ,1A J= … .

Instead of randomly sequencing demands, the 
advanced initialization sequences demands based 
on priority. According to time window constraints 
and parking preferences constraints, available 
parking spaces set i

jS  and conflict demands 
set i

iS  of each demand are constructed. Above 
all, reallocation demands take precedence over 
allocation demands since reallocation should keep 
parking guarantees. Then, for all demands of the 
same type (i.e., reallocation demands or allocation 
demands), the earlier the parking start time, the 
lower the parking availability (i.e., the number of 
available parking spaces) and the higher the target 
parking charge (i.e., the upper bound of acceptable 
parking price multiplies target parking duration), 
the higher the demand priority.

Instead of randomly allocating a parking space in 
i
jS  to each demand, the advanced initialization 

allocates parking spaces based on priority. On the 
one hand, each reallocation demand is pre-allocated 
to the previously allocated parking space. On the 
other hand, each allocation demand is pre-allocated 
to the currently best parking space. Specially, only 
BA requires the above pre-allocations to keep 
parking guarantees. Then, each demand is allocated 
to the currently best parking space (no worse than 
the pre-allocated parking space). In this process, 

i
jS  is dynamically updated according to i

iS .

The advanced multi-factor sequencing initialization 
sequences not only the demands based on multiple 
factors, but also the parking spaces based on 
objective values. Compared to the standard 
initialization without multi-factor sequencing, the 
advanced initialization is more accessible to a high-
quality initial solution. Table 2 shows the pseudo 
code of the advanced initialization.

Table 2. Pseudo code of the advanced initialization

Algorithm 2: Advanced_Initialization( iS ,
 jS )

1. Start
2. For each demand ii S∈
3.       i

jS ←∅ , i
iS ←∅ ;

4.        For each parking space jj S∈

5.              If 
( )f f j

jf j f ij
f S f S j S t

f b f b y
∈ ∈ ∈

′ ′
′

⋅ ≠ ⋅ ⋅∑ ∑ ∑
                     & & S

AR it T t+ ≥  then
6.                   Continue;
7.              If 1& & & &max max

ij ij i j ic d d p p= ≤ ≤  
                 then
8.                 { }i i

j jS S j← ∪ ;
9.        i i

j jSS S← ;
10.        For each demand { }\ii S i′∈
11.               If 0iic ′ =  then
12.                { }i i

i iS S i← ∪ ′ ;
13. i iS S←  sorted in descending order of
      ( )max E S

i i ip t t⋅ − ;
14. i iS S←  sorted in ascending order of i

jS ;
15. i iS S←  sorted in ascending order of S

it ;

16. If B
tt S∈  then

17.       i iS S←  sorted in descending order of i
j

ijj S
y

∈∑ ;
18.       For each demand ii S∈
19.              If 1i

j
ijj S

y
∈

=∑  then

20.                  0
i
j

i ijj S
a j y

∈
← ⋅∑ ;

21.              Else if
22.                  0 0ia ← ;
23.                  If i

jS ≠ ∅  then
24.                      i i

j jS S←  sorted in descending order 
                            of ( ) ( )E S

j j i ip r t t− ⋅ − ;

25.                      [ ]0 1i
i ja S← ;

26.              For each demand i
ii S′∈

27.                    If 0 i
i ja S ′∈  then

28.                        { }0\i i
j j iS S a′ ′← ;

29. iniA = ∅ ;
30. For each demand ii S∈
31.       0ia ← ;
32.       If i

jS ≠ ∅  then
33.           i i

j jS S←  sorted in descending order of
                ( ) ( )E S

j j i ip r t t− ⋅ − ;

34.           [ ]1i
i ja S← ;

35.      { }ini ini iA A a← ∪ ;
36.       For each demand i

ii S′∈
37.              If i

i ja S ′∈  then
38.                  { }\i i

j j iS S a′ ′← ;

39.              If 0 i
i jSSa ′∈  then

40.                  { }0i i
j j iS S a′ ′← ∪ ;

41. Return iniA ;
42. Stop

3.3 Adaptive Neighborhood Generation 
with Bi-Operator Competition

When generating neighborhood solutions, blindly 
and arbitrarily swapping the parking spaces of two 
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demands will lead to a large number of unfeasible 
solutions. Therefore, an exchange operator π  and 
a replacement operator ω  are proposed to enrich 
the selectivity of the operators and improve the 
efficiency of generating a feasible solution. In each 
iteration, any operator can be selected as a move.

Exchange operator π  works on two allocated 
demands. It randomly selects allocated demands 
i  and i′  until they meet the following criteria. 
Firstly, their allocated parking spaces j  and j′  
are available for each other based on original i

jS  
and i

jS ′ . Secondly, demand i  has time conflict 
with other demands allocated to parking space j′  
based on conflict demands set i

iS , and demand i′  
has time conflict with other demands allocated to 
parking space j  based on conflict demands set 

i
iS ′ . Once the criteria are achieved, the operator 

exchanges parking spaces for demands i  and i′ .

Replacement operator ω  works on an allocated 
demand and an unallocated demand. The 
replacement operator randomly selects allocated 
demand i  and unallocated demand i′  until they 
meet the following criteria. Firstly, the allocated 
parking space j  is available for demand i′  based 
on original i

jS ′ . Secondly, demand i′  has time 
conflict with other demands allocated to parking 
space j  based on conflict demands set i

iS ′ . Once 
the criteria are achieved, the operator replaces 
allocation status for demands i  and i′ .

In each iteration, the selection of operators 
determines the effectiveness of neighborhood 
solutions so that the probability of each operator 
is the key of selection. Based on a previous work 
(Han et al., 2021), it can be considered that the 
probability of each operator can be related to its 
historical performance.

Therefore, a scoring mechanism is proposed 
to estimate the historical performances of the 
operators. In recent Λ0 iterations, exchange 
operator π  generates πα  candidate solutions and 
replacement operator ω  generates ωα  candidate 
solutions. The candidate solutions in each iteration 
are sorted in descending order of objective value 
and the nth candidate solution is scored with 

1CN n− + . In recent Λ0 iterations, the total score of 
candidate solutions generated by exchange operator 
π  is πβ , and the total score of candidate solutions 
generated by replacement operator ω  is ωβ . On 
this basis, the probability of exchange operator 
P  is calculated in Equation (16). Obviously, the 
probability of replacement operator is 1 P− .

P π π

π π ω ω

β α
β α β α

=
+                                  

(16)

Table 3. Pseudo code of the adaptive  
neighborhood generation

Algorithm 3: Adaptive_Neighborhood_Generation 
( curA , Ρ , iS , jS )

1. Start
2. ρ ←  A decimal generated randomly in [ ]0,1 ;
3. If ρ < Ρ  then
4.        Do
5.              0f ← ;
6.               ,i i′ ←  Two different allocated demands 
selected randomly from iS ;
7.              [ ]i cura A i← , [ ]i cura A i′ ← ′ ;
8.              If & &i i

i j i ja SS a SS′
′∈ ∈  then

9.                  1f ← ;
10.                For each demand i

ii S′′∈
11.                        If [ ]cur iA i a ′′ =′  then
12.                            0f ← ;
13.                             Break;
14.                For each demand i

ii S ′′′∈
15.                        If [ ]cur iA i a′ =′  then
16.                            0f ← ;
17.                             Break;
18.        While 0f =
19.        For each demand i

ii S′′∈
20.              If i

i ja S ′′
′ ∈  then

21.                  { }\i i
j j iS S a′′ ′′

′← ;

22.              If i
i jSSa ′′∈  then

23.                  { }i i
j j iS S a′′ ′′← ∪ ;

24.        For each demand i
ii S ′′′∈

25.              If i
i ja S ′′∈  then

26.                  { }\i i
j j iS S a′′ ′′← ;

27.              If i
i jSSa ′′
′ ∈  then

28.                  { }i i
j j iS S a′′ ′′

′← ∪ ;
29. Else
30.        Do
31.              0f ← ;
32.               i ←  An allocated demand selected 
randomly from iS ;
33.               i′ ←An unallocated demand selected 
randomly from iS ;
34.               [ ]i cura A i← , 0ia ′ ← ;
35.               If i

i ja SS ′∈  then
36.                   1f ← ;
37.                    For each demand i

ii S ′′′∈
38.                      If [ ]cur iA i a′ =′  then
39.                          0f ← ;
40.                           Break;
41.        While 0f =
42.        For each demand i

ii S′′∈
43.               If i

i jSSa ′′∈  then
44.                   { }i i

j j iS S a′′ ′′← ∪ ;
45.        For each demand i

ii S ′′′∈
46.               If i

i ja S ′′∈  then
47.                   { }\i i

j j iS S a′′ ′′← ;
48. can curA A← ;
49. [ ]can iA i a ′← , [ ]can iA i a←′ ;
50. Return canA ;
51. Stop
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The adaptive neighborhood generation with bi-
operator competition generates not only more 
feasible neighborhood solutions based on two 
operators, but also more effective neighborhood 
solutions based on the scoring mechanism. 
Compared to the standard neighborhood 
generation without bi-operator competition, the 
adaptive neighborhood generation is more capable 
of providing high-quality neighborhood solutions. 
Table 3 shows the pseudo code of the adaptive 
neighborhood generation.

4. Numerical experiment

This section studies the performance of 
proposed AATS in a three-day district-level 
numerical experiment by comparing it with TS 
and CPLEX solver.

4.1 Experiment Setup

A district in Chaoyang District, Beijing, People’s 
Republic of China, is studied, which has mixed 
land-use. The historical parking data of the district 
are selected from 00:00 on April 20th, 2018 until 
00:00 on April 23rd, 2018. The overall time 
horizon is three days and is divided into 4320 
time-units, i.e., 1τ = .

The total number of historical parking demands is 
20000. For each parking demand, the submission 
time ranges within [5, 1440] minutes ahead of 
demand target start time. The upper bound of 
acceptable walking distance ranges within [100, 
700] meters. The upper bound of acceptable parking 
price ranges within [0.5, 1.2] CNY per 5 minutes 
according to Beijing Parking Charge Standard 
(Yang et al., 2017). The upper bound of acceptable 
waiting time ranges within [1, 10] minutes. 

The total number of parking spaces is 1800. For 
each short-time sharing parking space, the time 
window ranges within [1, 4320]. The rental price 
is 0.5 CNY per 5 minutes and the parking price 
ranges within [0.6, 1.2] CNY per 5 minutes. For 
each long-time sharing parking space, the time 
window ranges within [1, 4320]. The rental price 
is 0.1 CNY per 5 minutes and the parking price is 
0.5 or 0.7 CNY per 5 minutes. The unit profit of 
waiting Wq  is set to be 0.025 CNY per minute.

AATS and TS programs are encoded in Visual 
Studio 2017 using C# language. CPLEX Solver 

12.6.3 is evoked via concert technology, coded in 
C# on Visual Studio 2017. All computations were 
performed on an ordinary PC.

4.2 Comparison of AATS with  
TS and CPLEX

Total integrated profit (TIP), total allocated 
demands (TAD), total space utilization (TSU) 
and total computing time (TCT) are selected to 
evaluate the actual allocation effect and allocation 
speed throughout the overall time horizon.

Apart from the comparison of AATS with 
CPLEX solver, it is also compared with the Tabu 
Search (TS). In TS, the initialization is based 
on greedy strategy (GS), from which the multi-
factor sequencing is excluded. The neighborhood 
generation is based on a swap operator and the 
scoring mechanism is excluded.

By combining the present data with the ones from 
previous study (Ning et al., 2022), 1Nτ = , 10Bτ =
, 15ART = , and 30APT =  are selected. Table 4 
shows the comparison of performance metrics 
values obtained by AATS, TS and CPLEX.

Table 4. Comparison between AATS, TS and CPLEX 
on allocation effect and allocation speed

Algorithms TIP
(CNY) TAD TSU

(%)
TCT

(Hour)
CPLEX 218600.60 15107 99.33 1.95

TS 215235.01 14873 99.17 0.25
Gap (%) 1.54 1.55 0.17 87.18

AATS 218173.49 15095 99.33 0.28
Gap (%) 0.20 0.08 0.00 85.47

Based on TS, the total integrated profit is 
215235.01 CNY, the amount of total allocated 
demands is 14873, total space utilization is 
99.17% and the total computing time over three 
days is 0.25 hour. The gaps of TIP, TAD, TSU and 
TCT between TS and CPLEX are 1.54%, 1.55%, 
0.17%, and 87.18%, respectively.

Based on AATS, the total integrated profit is 
218173.49 CNY, the amount of total allocated 
demands is 15095, total space utilization is 
99.33% and the total computing time over three 
days is 0.28 hour. The gaps of TIP, TAD, TSU and 
TCT between TS and CPLEX are 0.20%, 0.08%, 
0.00%, and 85.74%, respectively.
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Apparently, even though there are gaps in 
allocation effect, both TS and AATS show 
significant superiority in allocation speed 
compared to CPLEX. Moreover, AATS is 
obviously superior to TS in allocation effect since 
the gaps in TIP and TAD between TS and AATS 
are up to 1.36% and 1.49%, respectively.

5. Conclusion

In this paper, the dynamic shared parking 
allocation problem based on PRS with multiple 
destinations and parking facilities is studied. To 
improve allocation speed meanwhile maintaining 
allocation effect, a meta-heuristic algorithm 
AATS is designed, which consists in the advanced 
initialization with multi-factor sequencing and the 
adaptive neighborhood generation achieved with 
bi-operator competition. 

In the three-day district-level experiment in 
Beijing, P.R. China, the performance of AATS 

was studied in comparison with TS and CPLEX 
solver. The gaps between AATS and CPLEX 
solver in allocation effect are lower than 0.2% 
while the computing time of AATS is compressed 
to 85.47%. All these indicate that in large-
scale dynamic allocation problems, AATS can 
achieve high allocation speed while ensuring the 
allocation effect.

Future research will focus on solving the 
unpunctuality of users and providers in DSPAP 
by improving the allocation strategy and 
allocation models.
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