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1. Introduction

In critical systems, security is the major concern 
of manufacturers in their various fields. Thus, 
having FTC is crucial, particularly for aircrafts 
where human lives are involved. Indeed, aircrafts 
may encounter a wide range of unexpected failures 
such as actuator, sensor, airframe damages. Even 
the occurrence of a minor fault during the flight 
may sometimes cause human losses. Therefore, to 
preserve the safety of both aircraft and passengers, 
it is crucial to actively deal with these failures and 
“tolerate” them (Amin & Hasan, 2019). 

The different studies dealing with the problem of 
FTC are based either on analytical or hardware 
redundancy. Hardware redundancy consists 
of replacing the failing component with a 
healthy-one, capable of performing the same 
task. This last strategy is necessary in safety-
critical systems. It is advantageous especially in 
the case of a complete loss of an actuator or a 
sensor. However, it is evident that this solution 
cannot be used in all industrial processes since 
it requires multiplying the number of actuators 
and sensors. This makes hardware redundancy 
financially expansive, regarding the costs of 
instruments and maintenance. Thus, using 
analytical redundancy can significantly reduce 
these material costs as well as the dependence 
on hardware redundancies.

The analytical FTC strategies are divided 
into two types: passive and active. In passive 
approaches, controllers are already designed to 

be robust against a predefined set of failures. 
This strategy relies mainly on robust control 
methods ( H∞ , disturbance rejection, etc...) (Ijaz 
et al., 2022). However, these methods are very 
restrictive, since not all the faults and their effects 
on the system can be known in advance. Active 
methods, however, rely on diagnosis process 
and react actively to the faults by redesigning 
the control law (Dong et al., 2021). Compared to 
passive FTC approaches, it is obvious that active 
methods are more realistic and preferable since 
they can deal with a large number of faults even 
with the unforeseen ones. Moreover, the real time 
aspect makes these methods more appropriate to 
be implemented in aircrafts with the ability to 
accept degraded performance in fault conditions.

In the specialized literature, there are different 
active techniques such as Neural Network (NN) 
(Lin et al., 2020), applied for the accommodation 
of actuator faults in affine NL systems. 
Although NN is a very attractive technique 
for various fields and has many advantages, it 
has the disadvantage of being computationally 
expensive and hardware dependent since it 
requires a processor with parallel processing 
power. The Eigenstructure Assignment (EA) 
(Brizuela‐Mendoza et al., 2020) is also a widely 
used technique which consists in making the 
eigenstructure of the faulty system coincide with 
that of the nominal system. Despite that stability 
is always guaranteed with this technique, the 
major drawback is that full state feedback is 
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needed which reduces the applicability to high-
degrees-of-freedom systems. In the specialized 
literature (Zhang et al., 2021), the predictive 
control was used for the reconfiguration of an 
aerial vehicle system. This approach can easily 
manage the different control constraints (such 
as the physical limitations of actuators). But 
it induces high computational burden since 
it requires online optimization. The Linear 
Quadratic Regulator (LQR) (Wang & Sun, 
2022) is another efficient FTC technique that 
was applied to different aeronautical systems 
such as airplanes, helicopters, etc. It consists 
of synthesizing a feedback control, based on 
the Algebraic-Riccati-Equation (ARE), while 
minimizing a cost function that depends on 
the control and state variables. Besides its 
simplicity, the main advantage of the LQR is that 
the settling time of the state variables and the 
amplitude of the control inputs can be taken into 
account. Another major advantage of this optimal 
technique is that it can be extended to the case 
of NL systems (the SDRE theory), which is of 
interest to this present study.

Concerning aircraft applications, several studies 
from the specialized literature have investigated 
the aircraft model using linear equations (Brizuela‐
Mendoza et al., 2020; Liu et al., 2022) since 
they are simple to implement and particularly 
adequate to put in the state-space form. Contrarily, 
NL equations are more complex and slower to 
simulate. However, they are closer to reality 
because the aerodynamic behaviour of the aircraft 
is itself nonlinear. Moreover, the existing works 
from the specialized literature considered either 
longitudinal dynamics (by acting on the elevators) 
(Guo et al., 2022; Liu et al., 2022), or lateral 
dynamics (by acting on the ailerons) (Chang et 
al., 2021). Assuming that longitudinal and lateral 
motions are uncoupled makes the control system 
much easier as it avoids complex NL relations 
between state variables. However, the separation 
of longitudinal and lateral equations means 
separated gravitational and inertial forces, while 
in “flight reality”, the six degrees of freedom are 
strongly coupled. 

Moreover, these techniques do not take 
into account the delay associated with the 
computation of the FTC, i.e. they apply the new 
reconfigured control just after the diagnosis 
which is not correct and supposes that the system 

is “ideal”. During that time, the faulty system is 
still under the nominal control law and can risk 
instability or control inadmissibility. Therefore, 
it is useful to shorten this period as much as 
possible to avoid the damages that can be caused 
by the failure. The progressive accommodation 
(PA) was conceived to minimize these risks by 
applying an iterative algorithm in real-time. It 
was first proposed by Staroswiecki et al. (2006) 
and Staroswiecki et al. (2007), based on the 
LQR control. The authors proved the efficiency 
of the PA compared to the direct approach, 
where it was applied to a linearized model of 
a Boeing 747. However, the validity of this 
linear PA is limited to a certain range of initial 
conditions. To overcome these problems, a few 
existing works from the specialized literature 
(Ghachem, Benothman & Benrejeb, 2013; 
Ghachem, Benotman & Benrejeb, 2017) used 
the NPA, but the application was limited to first- 
and second-order equations and never involved 
a real NL system. Lately, the NPA was used for 
the stabilization and the recovery process of a 
drone (Mlayeh et al., 2020; Mlayeh et al., 2021). 
A comparison between the NPA and the classical 
accommodation was presented.

However, all the aforementioned studies 
considered only the partial actuator failure. The 
case of a complete loss of an actuator was never 
investigated. Moreover, a unique linear-like-
form of NL systems was considered to allow 
the application of the SDRE. Additionally, the 
control problem considered in the previous 
studies concerned the stability of the system 
around an equilibrium point (such as the 
drone case (Mlayeh et al., 2020)), but never a 
trajectory-tracking problem.

This paper proposes a modified NPA strategy to 
deal with a non-classical stabilization problem 
and a different model of a NL system, affected 
by a complete loss of one actuator. The system 
considered in this study is a full NL model of 
a DC-8 aircraft, where longitudinal and lateral 
motions are coupled. This NL model includes a 
mismatch term that is due to state-independent 
terms. The objective is to perform a straight flight 
with steady longitudinal velocity while there 
is a complete loss of one control surface. The 
proposed control accounts for both the tracking 
problem of the aircraft, and the mismatch term in 
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the NL model. Different simulations are presented 
to prove the efficiency of the proposed strategy.

The rest of this paper is organized as follows. 
Section two presents the concept of the NPA, 
based on the SDRE technique. In section three, 
the NL model of the DC-8 aircraft is built. Section 
four presents the problems related to the control 
objectives and to the form of the NL system. Then, 
a solution is presented based on the modified 
control law. Before conclusion, section five sets 
forth the different simulations. 

2. The Iterative Strategy: NPA

In this section, the NPA scheme, based on the 
SDRE, is presented. The SDRE methodology 
consists in modifying the NL system in order 
to put it in a “linear-aspect” form. The matrices 
depend on the state and can be calculated at 
different time intervals. The control is computed 
by solving the ARE. Let the aircraft dynamics 
have the following form:

( ),x F x u=                                                (1)

where F  is a NL function. Equation (1) should 
be modified to obtain a “linear-aspect” (2). This 
parameterization is called the state-dependent-
coefficient (SDC) form.

( ) ( )x A x x B x u= +                                   (2)

where ( ) n nA x ×∈  and ( ) n mB x ×∈  are the 
state matrix and the input matrix, respectively. 
There is not a unique selection of the matrices 
( )A x  and ( )B x  which results in more levels of 

freedom and so, the performance of the controller 
is enhanced. Then, the SDRE (3) can be resolved 
at each sampling interval.

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 0

T

T
p p

A x T x T x A x

T x B x R B x T x Q−

+ −

+ =           

(3)

where pQ  and pR  are used for penalizing the 
control input and the state, respectively. Finally, 
the control is expressed in (4).

( ) ( )1 T
pu R B x T x x−= −                               (4)

where ( ) 0T x >  is the solution of SDRE. 

Remark. To obtain a solution ( )T x  that ensures 
the asymptotic stability of the system, the 

following conditions must be satisfied (Yucelen, 
Sadahalli & Pourboghrat, 2010). For any state 

nx∈ℜ  ( 1)n >  and given ( ) 0pQ x ≥  and 
( ) 0pR x > , the choice of the pair { ( ), ( )}A x B x

must ensure the system (2) controllability, i.e. 
( )( )trbrank C x n=  where trbC  defines the 

controllability matrix.

( ) ( ) ( ) ( ) ( ) ( )1    n
trbC x B x A x B x A x B x− = …        

(5)

If the above condition is not fulfilled, a stabilizable 
solution ( )T x  does not exist. It is worth noting that 
a suitable selection of the pair { ( ), ( )}pA x Q x , that 
makes the system (2) observable, can also ensure 
the existence of a stable estimation law. However, 
in this study, it is supposed that states are known 
and available for measurement and consequently, 
no observer is used.

As mentioned in the introduction, the NPA is used 
to shorten the delays related to the computation 
of the FTC (4) and to avoid the critical damages 
that can be caused by failures. It consists in 
applying an iterative algorithm in real-time, (the 
Kleinman Newton (KN) (Kleinman, 1968)), that 
converges to the final FTC. Each control produced 
by this iterative scheme guarantees the stability 
of the system and gets better as calculation time 
passes. Let one define fct  as the application time 
of the FTC using the direct SDRE method, and 

0it  as the computation time of the first iteration 
using the NPA. The time required to begin the 
accommodation process of the direct method is 

fc fdit t= −
 (where fdit  is the diagnosis instant). 

However, for the NPA, it takes 0i fdit t= −  where 
( i0 fct t< ). This proves the efficiency of the NPA 
with respect to convergence speed and stability 
especially when the initial solution is close to the 
final one. The theory of the KN algorithm consists 
in the following steps.

	- Select a starting matrix ( )0
n nT x ×∈ .

Get the subsequent iterate ( )1kT x+  by solving 
the Lyapunov equation (6) ( k  is the number  
of iterations).

( ) ( ) ( ) ( )( )1k kT x A x B x G x+ − +

( ) ( ) ( )( ) ( )1
T

k kA x B x G x T x+− =
               

(6)

( ) ( ) ( ) ( )T
p k p kQ x G x R x G x− −
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	- Determine the gain (7):

( ) ( ) ( ) ( )1 T
k p kG x R x B x T x−=                     (7)

	- The control is computed online using 
equation (4) each time the iterate ( )kT x  is 
generated and the associated gain ( )kG x  is 
determined. The algorithm terminates once 

( ) ( )1k kT x T x+ = . 

It is worth noting that the condition 
( ) ( )1k kT x T x+ =  is theoretical. It may never 

be satisfied or may require too many iterations. 
Therefore, it is common in real-time simulations 
to use a small enough tolerance ε  such that 

( ) ( )1k kT x T x ε+ ≤− . In this study, one 
considers 1.0 5eε = − .

Let ( )T x∞  be the final solution to which the 
algorithm converges. It also represents the unique 
solution of the SDRE (3) which leads to the control 
law (4). It was proved in (Kleinman, 1968) that all 
the produced iterations ( )1kT x+  in (6) guarantee 
the closed-loop stability and converge uniformly 
to ( )T x∞  such that:

1 00 ... ... .k kT T T T∞ +≤ ≤ ≤ ≤ ≤ ≤                   (8)
One can also stress that the choice of an accurate 
starting matrix makes the convergence faster. 

3. Aircraft Modelling 

As mentioned in the introduction, simulations will 
be performed using the NL coupled dynamics of 
the DC-8 aircraft. To achieve this, one needs to 
build the appropriate model describing the system 
behavior and to put it in the form of equation (2) 
in order to apply the SDRE method. The aircraft 
dynamics (McLean, 1990) are described using the 
equations of translational and rotational motions 
(9), where X , Y , Z  denote the forces according 
to ( )x, y, z  axis, respectively and L , M , N  are 
the moments according to the roll, pitch and yaw 
axis, respectively:  

( )X m U QW RV gsinθ= + − +

( )Y m V RU PW gcos sinθ ϕ= + − −

( )Z m W PV QU gcos cosθ ϕ= + − −

            
(9)

( ) ( )x xz z yL PI I P PQ I I QR= − + + − 

( ) ( )2 2
y xz x zM QI I P R I I PR= − − + −

( )z xz y x xzN RI I P PQ I I I QR= − + − + 

,U , V , W  represent the forward, side and vertical 
velocities respectively. P , Q , R  are the roll rate, 
the pitch rate, and the yaw rate, respectively. θ 
and φ are the pitch angle and the roll angle, 
respectively. m  is the mass of the aircraft. xzI
denotes the product of inertia. xI , yI , zI  are the 
moments of inertia around x axis− , y axis−  
and z axis− , respectively. By solving the six 
equations in (9), one can obtain the derivatives of 
velocities as well as the derivatives of pitch and 
roll angles.

Let [ ]                      Tx U V W P Q R θ ϕ=  be the state 
vector. In order to conceive the SDC form, one 
needs to eliminate the cos  and sin  terms (10) by 
doing the small angle approximation. This implies 
that the model is valid for small angles and for 
small angular rates which is actually the case of 
large aircrafts that cannot generate large angular 
rates. One must stress that the approximation of 
the tan and sin functions have a percentage error 
higher than the one of cosine. Thus, sin and tan 
functions were expanded up to the 2nd  term, in 
order to reduce the error and to make results more 
accurate. 

3 2

sin ,  cos 1 ,  
3! 2!
x xx x x= − = −

31tan .
3

x x x= +
                                        

(10)

If all the calculations are correct, one obtains the 
model in (11) of the form: ( )x A x x Bu d= + +  
with the controllability condition (5) satisfied 

( )( ) 88 trbrank C x x= ∀ ∈R . The inputs of the 
system are δΕ, Aδ  and Rδ  which represent the 
command on the elevator, the ailerons and the 
rudder, respectively. B  is the input matrix that 
depends on the dimensional stability derivatives 
and on the inertial parameters which vary according 
to the flight conditions of the DC-8. The matrix 

8 1d ×∈  illustrates the discrepancy between the 
SDC (2) and the NL dynamics (9). It depends on 
the stability derivatives of the aircraft, and on 0U  
which is the steady-state velocity along the x-axis. 
All variables and parameters in (11) as well as in 
A1 and A2 are defined in (Mclean, 1990).

[ ]

0

0

1 2

3 6 0

5 6

0 0
0      0

0 0
0      0

1 2
0 0

0       0
0 0 0     
0 0 0

E u

A R

E u

U X X UU
V Y YV
W Z Z UW

E
P C CP

A A A
Q C I UQ

R
R C CR

δ

δ δ

δ δ
δ
δ

θθ
ϕϕ

−     
     
     
      −

      
      = + +       −
        

     
     
     
         

















 

  0
      0

 
 
 
 
 
 
 
 
 
 
 
          

(11)
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where:

1 2 4 5

6 7 8

4 5 6

0 0
0 0
0

0 0
1

0 0 0
0 0 0 0 1
0 0 0 1

u w

v

u w

w w q

X X W
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Z P Z U
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θϕ
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 −
 + − =  − +
 

− 
 
 
  

 
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8 9

7 8
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6
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ϕ
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 

=

− +

+ −

− −

− + − −

−

−

− + + − − −

  
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δ δ

δ δ

δ δ
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
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=
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



The nonlinearity in (9) makes it difficult to obtain 
analytical solutions (Mclean, 1990). Therefore, for 
simplification purpose, every motion variable is 
assumed to have 2 components (12): a steady-state 
or mean motion, denoted by the subscript 0  that 
represents the equilibrium or trim condition, and a 
dynamic or perturbed motion denoted by the lower 
case letter. For instance:  

0 0,    ,           U U u V V v= + = +

0 ,   W W w= + …                                        
(12)

These trim conditions are specific to the aircraft 
type and the flight conditions. They are used with 
the stability derivatives in order to calculate the 
perturbed forces and moments 'x , y , z , l , 'm ,  
n . For instance, the derivative of speed along the 
x -axis is:

'xU QW RV gsin
m

θ= − + −

                     
(13)

where:

( )0
'

u w E
x X U U X W X E
m δ δ= − + +

             
(14)

By substituting equation (14) in (13), one can 
obtain the expression of U  (15) as a function 
of state variables, control input and the steady-
state term.

( ) ( ) ( )1 2 3 0, , , ,U f U V W Q f E f Uθ δ= + +

        (15)

where 1f , 2f , 3f  are real functions. The rest of 
the derivatives can be found in (McLean, 1990).

4. Control Problem

In the sequel, the control objectives associated with 
the flight case are first presented, as well as the 
control problem that the aircraft model imposes. 
Then, the new control strategy is proposed as a 
solution to the aforementioned problems.

4.1 Problem Position

In flight control systems, it is common to consider 
different flight cases with simple trim conditions. 
For instance, a common interesting case is when 
the aircraft flies straight with its wings level, in 
symmetric, steady flight. Straight flight is when the 
components of the angular velocities are zero. In 
this study, one is particularly interested in the case 
of a straight flight with steady longitudinal velocity. 
That means that angular velocities must be zero, 
and the linear velocity along x  axis is constant.

One can notice that here, the control problem 
differs from that of the quadrotor (Mlayeh et al., 
2020), where the major concern was the stability of 
the drone around an equilibrium point. However, 
for the aircraft, one is rather concerned with the 
stability of a motion, i.e, whether the aircraft can 
keep a specific desired trajectory, if perturbed 
away from it. The control procedure must then 
include the trajectory-following problem.

Another important aspect to consider is that the 
form of the aircraft model in (11) differs from 
that of the SDC parameterization in equation 
(2). Indeed, the mismatch (represented by matrix 
d ), between the aircraft dynamics and its SDC 
factorization must be handled in the control 
design. The solution to the aforementioned control 
problems is given in the following subsection.



https://www.sic.ici.ro

112 Hajer Mlayeh, Kamel Ben Othman

4.2 Proposed Solution

In the sequel, a NL control law that accounts for 
the tracking problem of the aircraft, as well as the 
mismatch due to the state-independent terms in 
the aircraft dynamics are presented. The control 
law is a combination of the SDRE control and a 
feed-forward compensator, and is derived from 
the FPRE (Prach, Tekinalp & Bernstein, 2016). 
In the aforementioned works from the specialized 
literature, the FPRE was applied for disturbance 
rejection and command following of a NL system. 
The “Forward” term is used because the method 
relies mainly on the solution of differential 
equations, integrated forward in time.

The FPRE method is motivated by the classical 
tracking problem which consists in the resolution 
of two differential equations. The first one is a 
Riccati differential equation and the second one 
is a vector differential equation. Both equations 
are propagated backward in time and need a 
prior knowledge of system dynamics. In FPRE 
strategy, one replaces the backward-propagating 
differential equations by equations that propagate 
forward. The main advantage about this forward 
propagation is that no prior knowledge of the 
command signal, nor the system dynamics, is 
required. This last property, in addition to the 
simple structure of the FPRE, make it an attractive 
method for real-time implementation. 

In this study, the minus sign in the feedback 
regulator is kept as in the case of SDRE method, 
and a feed-forward compensator is added, derived 
from the vector differential equation. Let one 
consider the following NL system (16).

( ) ( ) ( ) ( ) ( ) ( )x t A x x t B x u t f t= + +

( ) ( ) ( )y t C x x t=                                      
(16)

where: ( )   n nA x R ×∈ , ( )   l nC x R ×∈ , ( )   n mB x R ×∈ , 
( )  nx t R∈ , ( )  ly t R∈ , ( ) mu t R∈  and ( )  nf t R∈  

is a signal that varies slowly and that might be 
constant for a period of time. In this study, ( )f t  
is constant and it represents the mismatch term 
due to the independent-of-state terms. It can also 
represent a known disturbance (Prach, Tekinalp 
& Bernstein, 2016). The control objective is to 
make the output signal ( )y t  follow a desired 
reference signal ( )z t  as close as possible, while 
minimizing the infinite horizon cost function (17).

( ) ( ){ }
0

T T
p pt

J e Q x e u R x u dt
∞

= +∫           
(17)

where: ( ) ( ) ( )  e t z t y t= −  is the tracking 
error. The optimal control is obtained from the 
derivation of the Hamiltonian:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

1  

T
p

T
p

u t R x B x T x x t g x

G x x t R x B x g x

−

−

 = − − 
= − +    

(18)

where the feedback gain ( )G x  is as follows:

( ) ( ) ( ) ( )1 T
pG x R x B x T x−=                    (19)
  ( ) n nRT x ×∈  and   1( ) nRg x ×∈  represent the 

solutions of the forward-propagation equations 
(20) and (21), respectively.

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )  

TT x T x A x A x T x

T x E x T x V x

= + −

+



         
(20)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

Tg x T x E x A x g x

W x z t T x f t

 = − − 
+



         
(21)

where:

( ) ( ) ( ) ( )1   T
pE x B x R x B x−=

( ) ( ) ( )    T
pW x C x Q x=                               (22)

( ) ( ) ( ) ( )   T
pV x C x Q x C x=

It is noteworthy that for slowly varying reference 
signals ( )z t , as it is the case in this study, the 
derivative in (21) can be set to 0  and the solution 
of the differential equation is as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

Tg x T x E x A x W x z t T x f t  
  

   

−
= − −

    
(23)

Then, the final expression of the optimal control 
law is given in (24):

( ) ( ) ( ) ( ) ( ) ( )  z fu t G x x K x z t K x f t= − + +    (24)

where equation (25) defines the different control-
ler gains.
( ) ( ) ( ) ( )1 T

pG x R x B x T x−=

( ) ( ) ( ) ( ) ( ) ( ) ( )11 T T
z pK x R x B x T x E x A x W x

−−  = −       (25)
( ) ( ) ( ) ( ) ( ) ( ) ( )11 T T

f pK x R x B x T x E x A x T x
−−  = − − 

5. Simulations and Analysis

In this section, the NPA is applied for the recovery 
process of the aircraft affected by an actuator 
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failure. To achieve this, one uses the NL model 
of the aircraft defined in equation (11). First, one 
starts applying the control method developed in 
subsection 4.2 to observe the response of the NL 
system before the occurrence of failure. Then, one 
simulates the affected system with and without the 
correction of the NPA.

Flight condition  

A class III large transport DC-8 aircraft with the 
category B  flight phase is considered (Teper, 
1969). One assumes the case of the cruise flight 
condition where the aircraft is flying in a uniform 
atmosphere at an altitude of 33,000  ft and 0.84  
Mach number. The corresponding weight is 
230,000  lbs and the position of the center of 
gravity is ( )0.15,0,0 . The steady-state speed 
along the x -axis is 0 824.2U =  ft/s.  

5.1 NL Healthy System

Based on the model (11), the aircraft is described 
by the following state-space representation:

( ) ,n nx A x x B u d= + +

[ ]1 4 5 6 .Ty x x x x=                            
(26)

The subscript n  denotes the nominal system. 
As stated in subsection 4.1, the main control 
objective is to make the aircraft fly straight with 
a steady cruising speed (ideally 0  U U= ) and 
steady angular velocities (       0p q r= = = ). In order 
to apply the FPRE control in normal conditions, 
the penalization matrices ( ) 8  8

pQ x R ×∈  and 
( ) 3  3

pR x R ×∈  need to be defined. For the system 
presented in this study, both matrices are chosen 
independent of states (27).

( )1,1,1pR diag=

( )6 10 1010 ,10 , ,10pQ diag − − −= …                 
(27)

Figure 1 shows the output responses and the 
actuators positions of the healthy system using 
the FPRE technique. One should notice that short 
period oscillations last for only 5s . Then,  U  
converges to the steady speed of 825.5  ft/s and 
the angular velocities as well as the deflections of 
the control surfaces are maintained at 0 /rad s  
and 0 rad , respectively. The absolute steady-
state error related to the longitudinal and angular 
velocities is expressed in (28).

Figure 1. Output responses and actuators positions of 
the healthy system

( )0 ; ; ;  ne U U p q r= −

     = (1.3; 0.0002; 0.0077; 0.0001)          
(28)

Although some slight tracking errors can be 
seen (which is normal during the cruising of the 
aircraft), the overall performance of the controller 
is considered satisfactory. From equation (29), 
one can obtain the exact actuators positions 
evaluated after the convergence of the system, 
for ( ( 1 0 ))x t s> :

5 5 51.5 10 , 1.1 10 , 1.2 10
T

nu − − − = × − × ×           (29)

5.2 Faulty System

In this subsection, one considers that there is a 
total loss of the rudder effectiveness at time ft .  
The reduction of control effectiveness can be 
caused by the control surfaces impairment such 
as stuck, floating, etc. Such failure is modelled 
by a multiplicative coefficient [ ]0,1η∈  that 
indicates the control effectiveness, i.e. 1η =  
stands for 100 %  efficiency, and 0η =  indicates 
a total loss of the actuator which is the maximum 
damage condition. Depending on the type of fault, 
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the diagnosis module provides a pair of matrices 
( )( ),f fA x B  describing the affected system where 

f  stands for faulty. In this case, ( ) ( )( )f nA x A x=  
and the faulty control matrix becomes (30): 

3

1 5

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 0 0 0

E E
T

f A

X Z C
B Y C C

δ δ

δ

 
 =  
         

(30)

In order to see the impact of the failure, one 
simulates the behaviour of the affected system 
using the nominal control law, i.e., using the 
same control from subsection 5.1 without any 
accommodation procedure. As it can be seen 
in Figure 2, the velocity U  is continuously 
increasing after ft  (it reaches 1112  /ft s  at 

30t s= ). The rudder deflection increases as 
well, from ( 0  to 0.3 ) rad in 20  s. The pitch 
rate becomes negative in the interval [ ]10  20 s 
and reaches 0.116−  rad/s. Similarly, the elevator 
switches to the negative position to reach 0.083−  
rad  at 30 t s= . One should remark that the 
failure of the rudder has significantly affected the 
elevator deflection because of the coupling effects 
between longitudinal and lateral channels.

5.3 NL Accommodation Procedure

In the previous subsection, the performance of 
the system under the nominal control nu  was 
not acceptable. The failure caused the system 
to deviate from its normal behavior. Thus the 
necessity to use a corrective procedure: the 
NPA. As explained in sections 3 and 4, one starts 

applying the initial gain at time 0it , then one solves 
the Lyapunov equation and applies the obtained 
control iu  online until the convergence of the 
algorithm at time fct  (when ( ) ( ) ( )1i iG x G x+= ). 
This final iteration corresponds then to the final 
corrective control fcu . Each time one obtains a 
solution ( )iG x  of the Lyapunov equation, it is 
applied to equation (25) to compute the iterative 
control iu . For illustration purposes, one assumes 
the delay time 1fdit s=  for the diagnosis, while 
the time needed to compute each control law iu  
is assumed to be 0.5et s= . One should remind 
that the main objective of FTC is to ensure that 
the post-fault system can still achieve the control 
objectives of the healthy system. Some limited 
performance degradations can be allowed but 
not at the cost of stability. Simulation results 
have shown that the NPA has successfully 
accommodated the faulty system and has driven 
its overall behavior very close to the healthy one.

As it can be seen in Figure 3, the stability of the 
system and the convergence to the steady states 
is ensured. The rudder deflection resumes to 
0 rad  but at the cost of some steady tracking 
error (31). In addition to the deflection of the 
elevator ( 31.8 10  rad−× ), the longitudinal speed 
U  has decreased to 814.2 /ft s . On the other 
hand, the angular velocities perform similarly to 
the nominal case. 

[ ]10;   0.0002;   0.0001;   0.0001fce = − −

3 31.8 10 ;   0.1 10 ;   0fcu − − = × − ×  .           

(31)

Figure 2. Output responses and actuators positions of the faulty system
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6. Conclusion

The aim of this study was to prove the efficiency of 
the NPA, dealing with a non-classical stabilization 
problem and a different model of an NL system, 
affected by a complete loss of an actuator. A NL 
model of a DC-8 aircraft where longitudinal and 
lateral channels are coupled was built, which made 
the model more realistic. Then, a modified NPA 
strategy was proposed by combining the SDRE 
control and a feed-forward compensator, derived 
from the FPRE. The proposed methodology 
accounts for the tracking problem of the aircraft, as 
well as the mismatch due to the state-independent 

terms in the aircraft dynamics. By applying the 
proposed strategy, and with only two controllable 
actuators, the system could achieve its control 
objectives. Despite some tracking error, the aircraft 
continued operating with a recovered stability. That 
is, the NPA can be considered as a good alternative 
to the use of redundant actuators, especially for 
aeronautical systems. Despite the advantages of the 
NPA strategy, some limitations can be encountered 
when selecting the SDC matrices that yield optimal 
control. Another limitation of the NPA is that it 
requires a very small sampling time which makes 
simulation time last longer, especially for high 
order systems.

Figure 3. Output responses and actuators positions using the NPA
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