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Abstract. In this work a novel cryptosystem for binary images is developed. It is based on the use of hybrid cellular automata as
psecudorandom bit generators. Such automata have good statistical properties as pseudorandom bit generators for cryptographic purposes.
Moreaver, the proposed cryptosystem is secure against brute force attacks.
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1. Introduction

In the current age of global communications, the need for security and privacy in the transmission of electronic
data has become a basic necessity. In this respect, public and private organizations depend on cryptographic
methods to guarantee confidentiality, integrity and authenticity in data storage and transmission.

Nevertheless, Cryptography has been used for a long time. Basically, the predominant users of it were the
governments in order to protect national secrets and strategies, but the proliferation of computers and the growth
of digital information made Cryptography be used by private sector too.

Strictly, Cryptography (see [1,2]) is the study of mathematical techniques related to aspects of security
information such as confidentiality, data integrity, entity authentication, and data origin authentication.
Moreover, Cryptanalysis is the study of mathematical techniques for attempting to break cryptographic
techniques. Cryptology is the study of cryptography and cryptanalysis.

There are two types of cryptosystems: symmetric and asymmetric cryptosystems. In symmetric cryptography
(also called secret-key cryptography) the same key is used for both encryption and decryption, whereas in
asymmetric cryptography (also called public-key cryptography) there are two keys: one for encryption -which is
publicly known, and other for decryption, which must remain secret. The most common algorithms in
asymmetric cryptography are block ciphers and stream ciphers. Specifically, a stream cipher is a secret-Key
algorithm which generates a cipher sequence of bits by means of the secret key. Encryption is accomplished by
combining the cipher sequence with the plain text (the bit sequence of the text to be sent), usually with the
bitwise XOR operation. There are several methods to generate the cipher sequence starting trom the secret key
(see [3]): LFSR generators, BBS generator, etc. All of them must be cryptographic secure in order to avoid
cryptanalysis attacks.

There are several mathematical techniques that can be used for cryptographic purposes, and one of them is the
use of discrete dynamical systems ([4]). In the present paper we focus our attention in a special type of such
mathematical tools called cellular automata.

Cellular automata (CA for short) are finite state machines consisting of a tinite number of interconnected cells
arranged linearly in one dimension, each of which can be in one of a finite nunber of possible states. Here, we
only consider Wolfram cellular automata, that is, cellular automata whose state set 1s Z, = {0, 1}. Every cell
essentially comprises of a memory element and a combinatorial logic that generates the next-state of the cell
from the present states of its neighbouring cells. When all cells evolve according to the same logic function, the
CA is called uniform, otherwise it is called hybrid.

The use of cellular automata to design cryptosystems goes back to middle eighties when S. Wolfram propesed the
cellular automaton with rule number 30 as a pseudorandom bit generator ([5]) for cryptographic purposes. Since then,
many CA-based cryptosystems have been proposed not only for text ([6]-[14]) but also for images ([15, 16]).

There are many others eryptographic protocols for images (see, for example, [17]-[27]), but no one of them can
be considered as a stream cipher. Moreover, some of them present problems such as the lost of resolution of the
recovered 1mage.
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In this work a novel cryptosystem for binary images is defined. Specifically, it consists of a stream cipher
cryptosystem whose cryptographic secure pseudorandom bit generator is a hybrid boolean cellular automaton.
It is secure against statistical and brute force attacks. Furthermore, no lost of resolution appears in the

recovered image.

The rest of the paper is organized as follows: In Section 2, the basic theory about hybrid cellular automata 1s
presented; in Section 3, their interpretation as pseudorandom bit generators is shown; the proposed cryptosystem
is detailed in Section 4 and an example is shown in Section 5; the security analysis of the cryptosystem is
presented in Section 6; and finally, the conclusions are presented in Section 7.

2. Hybrid Cellular Automata

Wolfram hybrid cellular automata (HCA for short) are discrete dynamical systems formed by a finite collection
of identical objects called cells: <i> with 1 < i <n, which can be assumea a state: 0 or 1, that change in every

a” =f,(a(’) a’ aml 1<i<n,

! =120 3]
step of time according to some transition rules: f1....f,, as follows:
where g, stands for the state of the cell <i > at time ¢.

Note that the transition rule is different for each cell, i.e., the cell <i > evolves according to the rule defined by
the boolean function f;. Those cellular automata for which f; = ... = f,, are called uniform cellular automata. As
the number of cells is finite, boundary conditions must be considered in order to assure the well-defined
dynamics of the CA. In this paper, null boundary conditions are taken, i.e.,

o =i =l ani

The vector C” = (@), ., a,) is called configuration of the HCA at time 7, and C is the inirial configuration.
Moreover, C is the set of all possible configurations of the hybrid cellular automata, in such a way that for HCA
with » cells and two states, one has |C | =2". Moreover, the vector

(0,k) _( (0) (k))
E(i) =\g;",....a,"" ),

is called temporal evolution of the cell <i>fromr=0tot=k

A particular and very important type of HCA are the linear HCA (LHCA for short). The transition rules of a
LHCA are linear functions in such a way that the evolution of such automata 1s given as follows:

) _ ) L )y (1) ) 4 (t)
a; —fg(af—l:aa ’ar4-l)_aia1‘—]+ﬂiai +yiai+l (mOdz):

i

where 1 < i <n, and «, B, yeZ, for every i. The importance of this type of automata is based on the

interpretation of its dynamics in terms of Linear Algebra: Its evolution is given by the following system of
linear equations:
t+1 r t
a"" = fa” + y,af’ (mod2)
(t+1) _ (t) (1) (1)
al™? = a,a(” + fa’ + y,af (mod2)

) =a, al,+ f, a0 +y,,a, (mod2)

n-1 -1

a V= g a' AeE al? (modZ)

n

that is:

CENT _ pr. 0T (mOdZ),
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where C7 stands for the transpose matrix of C, and M is the transition matrix of the LHCA:

By, O - 0 0
@ B, v. - 0 0
0 a B - 0 0

(=]
o

O ﬁnfl }/n—l
o o0 0 - a, B,

Furthermore, the characteristic polynomial of the LHCA, p.(x), is defined as the charactenistic polynomial
associated to its transition matrix.

All the information related to the evolution of the LHCA can be resumed in the global transition function Oy: C
— C, which assigns to every one of the possible configurations of the LHCA its successor in time. Using the
global function we can obtain a graphic representation of the evolution of the LHCA by means of the stafe
transition diagram. 1t is an oriented graph whose vertices are the 2" configurations of the automata so that there
exists an edge between to vertices: C and C’, if O (Cy=C’. Tt is said to be that a LHCA has maximum length
period when there exists a cycle of length 2"-1 in its state transition diagram. As a consequence in such
automata, starting from an initial configuration, C®_ the evolution traverses the rest of configurations of the
automata except for the null configuration: N = (0,...,0) -which is a loop of the state transition diagram as @, (N)
= N-. It is also known that a LHCA with maximum length period have a primitive characteristic polynomial (see
[28]); i.e., the characteristic polynomial is irreducible of degree such that the minimum value of m for which
such polynomial divides x"+1 is m = 2"-1. It is a well-known fact that the LHCAs with maximum length period
has good properties as pseudorandom bit generators (see [3]).

In this work, we focus our attention on LHCAs whose local transition functions are two. Specifically, we will
consider the following two transition functions:

(e+1) (ry ) L)) 40 ()

a; - f(a;—l 7, i ) = ta, (mOd 2) (1)
(+1) _ (0 1) ) () (1) ()

ai - g(ar’—l H ai ’ ai+1 ) - ai—l + a! g a1+1 (mOd 2) (2)

They stand for the cellular automata with Wolfram rule numbers 90 and 150 (see [29]), respectively.

Moreover, we assume that these LHCAs have n = 256 cells. Consequently, each LHCA is characterized by its
characteristic vector:

= </5’1,ﬂ2,~-3/3256>7 B eZ,,

in such a way that for every i with 1 < i <n, if B; = O then the evolution of the cell <7> is given by

the local transition function given by (1), while if B, =1, the evolution of the cell </ > is given by (2). As a
consequence, its transition matrix is of the following form:

g1 0 - 0 0
1 B 1 - 0 0
o 1 B - 0 0

o o0 o0 - g, 1
¢ == 1L &

3. Hybrid Cellular Automata as Pseudorandom bit Generators

Cellular automata and, particularly LHCA, can be considered in a very simple way as pseudorandom  bit
generators. Starting from an initial configuration on length »,

C(O‘) — (ago) a(o)

0 n-1
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it is easy to construct a sequence of bits of length & - n >> » by simple linking together the first & configurations,
CO ., %D of the evolution. Nevertheless, this is not a cryptographic secure procedure: If an adversary obtains
a portion (of length greater than n) of such linked sequence, and knows the cellular automata used, it is very easy
to generate the rest of configurations given by such automata during its evolution.

More secure bit sequences can be obtained by simply sampling the values that a fixed cell attains in the evolution
of the CA; that is, the bit sequence generated by the CA is the temporal evolution of a particular cell <7 >:

EO = (a0, ...a®)

L2 L |

Note that this procedure is computationally more expensive than the previous one, but it is also much more hard
for an adversary to generate the rest of the sequence knowing only one state of each past confi guration.

To assure good pseudorandom properties of a bit sequence, the generator has to pass several statistical tests (see
[30, 31]). The five basic statistical tests that are usually used for determining whether a sequence of bits
possesses some specific features that a truly random sequence would be likely to exhibit are the firequency test,
the serial test, the poker test, the run test and the autocorrelation test (see [3]). They have been developed ad hoc
for cryptographic use and they are based on Golomb's randomness postulates (see [32])

The main importance of the LHCAs formed by the transition rules (1) and (2) comes from their good properties as
pseudorandom bit generators. It is proven that such automata pass the statistical tests proposed above (see [33]).
Furthermore, they are the unique LHCAs formed by two transition rules and null boundary conditions which can
exhibit maximum length period (see [34]). Nevertheless, not all LHCAs with rule numbers (1) and (2) have maximum
length period. Cattel y Muzio showed in [35] that this property depends on the characteristic vector of the LHCA.
Furthermore, they proved that only two LHCA combining the Wolfram rule numbers 90 and 150 with » = 256 cells
have maximum length period. Their characteristic vectors are the following (see [36, 37]):

V1= <1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0.0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0, (3)
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 >,

V,=<0,0,0,1,1,1,0,0,1,1,1,0,0,1,0,0,1,0,1,0,0,1,1,0,0,0,1,1,0,0,1,1,
1,1,0,0,0,1,1,1,1,0,1,0,0,1,1,0,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,
1,1,1,0,0,1,0,1,0,0,0,1,0,0,0,1,1,0.1,1,0,0,0,0,1,1,1,0,0,0,0,0,
0,0,1,0,1,1,0,0,1,1,0,0,0,1,0,0,0,0,1,1,1,1,0,1,0,1,1,1,1,1,0,1,
1,1,0,1,1,1,1,0,1,0,1,1,1,1,0,0,0,0,1,0,0,0,1,1,0,0,1,1,0,1,0,0, (4
0,0,0,0,0,1,1,1,0,0,0,0,1,1,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,1,1,1,
1,1,0,1,0,0,1,0,1,0,1,0,0,1,1,1,0,1,1,0,0,1,0,1,1,1,1,0,0,0,1.1,
1,1,0,0,1,1,0,0,0,1,1,0,0,1,0,1,0,0,1,0,0,1,1,1,0,0,1,1,1,0,0,0>,

Moreover, the characteristic polynomial of such LHCA is (see [36])-

256

pe(®) ="+ x+ 7+ 1.

4. The Proposed Cryptosystem

The cryptographic protocol proposed in this work is, basically, a stream cipher for binary (black and while) images. It
consists of three phases: The setup phase, the encryption phase, and the decryption phase.

4.1 The setup phase

In this phase, the binary image is transformed into a boolean matrix in order to interpret it as a configuration of a
LHCA. In this way, every binary digitalized image defined by » x s pixels can be modelized as a boolean matrix
I=(p)with1 < i<r 1< <s,

1, if the color of (7, j) - th pixelis black

Py = 0, if the color of (7, ) - th pixel is white
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4.2 The encryption phase
In this second phase, the algorithm to encrypt the image is developed in the following steps:

1. The sender constructs a LHCA with transition rules (1)-(2), whose characteristic vector is randomly
chosen between the two characteristic vectors given by (3) and (4). Furthermore, the sender also
randomly chooses the initial configuration of such automata, C. Recall that it is formed by 256 cells
and it constitutes the secret key of the cryptosystem;, consequently, ' and the characteristic vector are

shared with the receiver.

2 The sender calculates the temporal evolution of the cell < 128 > from 1 =128, to ¢ =128 +r - s-1:

Q28128+rs-1) _ (- (128) (129 (128+r-5-1)
Esy (‘1128 »@1pg oo Giog )=

which is given by the evolution of the LHCA. Tt constitutes the cipher sequence.
3 The sender transforms the matrix 7, which defines the image, as the bit sequence:

S = (@115 P12,-05 Plsse-os Pils Pilse-os Piss-5 Prls PrasPrs) s
by simply linking together the rows of such matrix.

~(128,]1 28+ r-5-1)

4 The sender add bit to bit (XOR operation) the bit sequence S to the cipher sequence fv,y , and

consequently, the cryptogram is obtained:

_ (128) (1284 r5-1)
C‘(pn@a!zs sees Py B g )

5. Finally, using C, the sender can construct the ‘graphic' cryptogram by simply taking

p; ® af;égﬂiu])”‘*"hl) as the color of its (i, j)-th pixel. This image is sent to the receiver.

4.3 The decryption phase

To decrypt the ‘graphic' cryptogram, the receiver must transform it in a sequence of bits by simply
linking together the rows of such matrix. Then, he constructs the cipher sequence starting from the
secret key, ™. and the LHCA used, and add it bit to bit to the bit sequence obtained from the
‘graphic' cryptogram. As this operation is evaluative, the bit sequence representing the image defined
by I, is obtained.

5. An Example

Let us consider a black and white detail of the image *'Lena" witha size of 128128 pixels as our test image (see
Figure 1). If the sender uses the LHCA given by the characteristic vector (3) and a random initial configuration

: . ; ip ~(128,16511
9 _the secret key-, the cipher sequence 1s obtained considering £ ((123)] 51
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Figure 1: B&W Detail of *"Lena” of Size 128x128.

In Figure 2 the graphic' representation of such bit sequence is shown.

Figure 2: B&W Image Which Stands for the Cipher Sequence
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Finally, if one adds bit to bit both sequences, the cryptogram is obtained. Its "graphic’ representation is
shown in Figure 3.

Figure 3: B&W Image Which Stands for the Cryptogram

6. Security Analysis

As we mentioned above, the LHCAs combining the Wolfram transition rules (1) and (2), and given by the
characteristic vectors (3) or (4), have good pseudorandom properties with cryptographic purposes; consequently,
statistical attacks are avoided. Moreover, as the length of the key used, C (ﬂ): is of 256 bits, then the security of the
cryptosystem against brute force attacks is guaranteed (see [3]) because the total number of possible keys 1s

roughly 1.15-107.

Due to the structure of the transition functions, which implies that the state of a particular cell at tume step 7 + 1
depends on its own state and on the states of its nearest-right and nearest-left neighbour cells at time ¢, it is easy
to check that if only one state of the initial configuration

(the secret key) is changed, then the propagation of such modification is done diagonally (see [38]). As a
consequence, if we consider a LHCA with 256 cells and we take as cipher sequence the temporal evolution

EH;;)) , the change of the state of the cell < 129 > or of the cell < 127 >, with7 > 1, in c® yields a new cipher

(0.0} . ; -
sequence f£(128) whose first i-1 bits: al(g;,...,af’zf)

, are equal to the first i-1 bits of E((luzé)) As a consequence,
to guarantee the security of the proposed cryptosystem against changes of the secret key, O we take k= 128 as
the initial step of the cipher sequence.

As an example of the security of this protocol, if we take into account the results in Section 5, and we try to
decrypt the image in Figure 3 using a cipher sequence obtained starting from a secret key which difters from the
original one in only one bit: The state of cell <128 >, then no information about the original image (Figure 1) 1s

obtained, as it 1s shown in Figure 4.
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Figure 4: Decripted B&W Image Using a Moditied Cipher Sequence

7. Conclusions

In this work a novel cryptosystem for binary images is developed. It is based on the use of hybrid cellular
automata formed by two Wolfram transition rules as pseudorandom bit generators. Such automata have good
statistical properties as pseudorandom bit generators for cryptographic purposes; consequently, statistical attacks
are avoided. Moreover, the proposed cryptosystem is secure against brute force attacks.
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