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Abstract: This paper deals with a new extension of the basic vehicle routing problem including depot double time windows and multiple use
of vehicles (VRPDM). The VRPDM is a combination between a variant of the vehicle routing problem with time windows (VRPTW) and
the Vehicle Routing Problem with Multiple use of vehicles (VRPM). It consists in designing and assigning multiple routes to vehicles within
a given planning period in order to service a set of customers. The depot has double time windows, one for loading the vehicles and the other
for their returning back. The aim is to minimize the number of required vehicles. To solve this combinatorial optimisation problem, an
evolutionary algorithm incorporating new combinations of crossover and mutation operators is developed. Computational testing on 70
problem instances shows the effectiveness of the suggested approach.
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1. Introduction

The motivation of this work arises from a distribution real case problem facing the fuel supplying
companies. We are interested in designing and scheduling vehicle routes within a given planning period
to cover known customer demands. Customers do not have any time window. However the depot has
double time windows, one for loading the vehicles and the other for their returning back. Servicing
customers even after the depot closes for loading is allowed. Moreover, making use of a vehicle involves
a considerable fixed cost. As customer locations are near the depot and the vehicle capacity is relatively
small, customers are quickly serviced. Consequently, a vehicle should be assigned several routes in order

to use fewer vehicles.

The problem is considered as a Vehicle Routing Problem with Double time windows for the depot and
Multiple use of vehicles (VRPDM). It is a new extension of the basic vehicle routing problem (VRP)
[10]. which consists of a combination between the Vehicle Routing Problem with Multiple use of vehicles
(VRPM) and a new variant of the Vehicle Routing Problem with Time Windows (VRPTW).

The basic formulation of VRPs was introduced by Dantzig and Ramser in 1959 [11]. The model considers
a set of customers with known demands and locations that must be served from one depot. A set of
homogeneous vehicles with equal capacity is available to service the customers. The aim is to design a set
of routes servicing all customers in order to minimize a total cost. All routes must start and end at the
depot and the vehicle capacity must not be exceeded [1]. In VRPTW, every customer can not be serviced
before its time window opens and after its time window closes [27]. The depot has only one time window
that is called the scheduling horizon and within which vehicles may leave and return back to the depot.
The VRPM is another variant of the VRP where the vehicles may perform several routes as long as the
total duration of the routes for each vehicle does not exceed a pre-defined limit T,

To solve routing problems, exact as well as heuristic approaches have been designed [8]. Laporte et al.
[21] listed 500 main bibliographic references. The VRPTW has been widely studied in the literature.
Kallehauge et al. [18], Desrochers et al. [12], Kohl et al. [19] and Kolen et al. [20] provided exact
approaches. However, finding an optimal solution to the VRPTW is NP-hard and becomes NP-complete
if the fleet size is fixed [26]. Accordingly. heuristic methods are more frequently applied to solve large
size practical problems [24, 30]. For example, the route construction heuristics of Solomon [27], the local
search of Savelsbergh [26], the meta-strategy simulated annealing and tabu search of Osman [23], the ant
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colony of Gambardella et al. [14], the Tabu Search of Cordean et al. [9] and the genetic and evolutionary
algorithms of Berger et al. [3], Briysy et al. [6], Homberger et al [17], Thangiah [32] and Potvin et al.
[25]. In [7]. itis shown that the evolutionary approach proposed in [17] is currently the most efficient for
solving the VRPTW. On the other hand, the VRPM has received little attention in the literature despite its
importance. In fact, only Taillard et al. [29], Branddo et al. [4, 5] and Zhao et al. [33] addressed the
VRPM and solved it by tabu search heuristics. Fagerholt [13] and Suprayogi et al. [28] also designed
solution approaches to solve ship routing problems considered as vehicle routing problems with multiple
use of vehicles and a heterogeneous fleet. However, the major drawback of these two approaches is that
they are not well suited to solve large unconstrained problems.

To the best of our knowledge, the VRPs with depot double time windows (VRPD), the VRPM with time
windows and the VRPDM are new variants of VRPs that have not yet been addressed in the literature. In
this paper, we have developed a hybrid evolutionary approach to solve the VRPDM, incorporating new
combinations of crossover and mutation operators.

The remainder of this paper is organized as follows. Section 2 describes the real case we address and
gives a mathematical formulation of the VRPDM. Section 3 presents the hybrid evolutionary approach.
Section 4 reports computational results and analysis for 70 problem instances involving different
customer sizes and volume ranges.

The VRPDM consists in designing vehicle routes to satisfy a sct of known customer demands of a fuel
product. Vehicles can perform multiple routes leaving the depot at time ¢, at the carliest and returning to
the depot at time lo,, at the latest. However, the depot is open to load vehicles only during the time interval
leo : 1,,] where 1, <l Though, vehicles still have the possibility to service customers after 1, .
Accordingly. the depot is considered to have double time windows. To model the VRPDM as a
mathematical program, let us define :

m: number of required vehicles.

n: number of required routes.

N: number of customers.

K: maximum number of routes.

C;: customer i.

tk - arrival titne at customer i using route k.
t,: travelling time from C, to ;.

d} - starting time of route k on the depot.
s;. service time al customer 1.

s’g - loading time of route k at the depot Ca.
Vy.: volume carried on route k.

9 : volume requested by C..

C.ax. vehicle capacity.

T, driver maximum working day hours.

[eo; 1,, I: time window for loading vehicles in the depot.

[eq: 1o,]): time window for the returning back of vehicles to the depot (lw <lor).
We also define the following 0-1 decision variables:

{1 if route k travels directly from C; to C;

Nl € 0 otherwise
1 if route k exists
LT {0 otherwise
|1 if route k followed by route k' are both assigned to the same vehicle
e {0 otherwise

The objective is to minimize the number of required vehicles while satisfying all customer demands :
minimize m (H

under constraints (2) to (14)
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The constraint (2) guarantees that each customer is visited exactly once:

N K

>y x, =1 Vie[;N] @)
Pl

2

The constraint (3) ensures that each route leaves C; afier visiting him:

N N
Bt = vh e[l;N], vk e [1;K] &5
i=0 j=0
izh j=h

The constraint (4) specifies that there are exactly n routes going out of the depot:

N K
X
j=1 k=1

The constraint (5) guarantees the existence of routes

N N

%, 2 by s lejk Vke[l;K],Vl,Je[l;Nlt;t}_ )
s

Constraints (6) and (7) limit respectively the duration and the total volume of each route:

ii(tij +s:§ +Si)xljk <T. Vke [I;K] ©)

i=0 j=0 )
JEl

ii‘f}jxijk <C,.. Vke [I;K].

ke )
_]#l
Constraints (8) to (13) define the time feasibility:
th2db s+t —(U-x0l,  Vie[liNpvke[l;K]. @)
te =t +s, +t;, —(1-x,)],
; ’ S : )
Vie [I;N];V) = [O;N];L = ), Vk € [I;K]
7 N N
d; gl injk Vke[l;K]‘ (10)
1=0 ;=0
*i
, N‘ N
tO Slf)r - le}k \_/kE[l,K] (11)
i=0 E? |
e, <d;5 <1, vke[l;K]. (12)
e, <th <, vk e(l;K]. (13)

The constraint (14) makes sure that 8, is equal to 1 if route k followed by route k™ are both assigned to
the same vehicle, otherwise ¢ is an infinitesimal positive number needed to enforce B to 1 1f dﬁ' = t‘; .

dx —t* d 1tk
To 70 hegd, <l+—2—2 vkke[l;Klk=k' (14)

max max
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Hence, the numbers of required routes and vehicles are respectively given by :

K
Ok (15)

1 k'=
k'«

b, and M=ND-
1

K K
n-=
k= k=

o —

2. A Hybrid Evolutionary Approach for the VRPDM

Evolutionary Algorithms (EAs) are randomised parallel scarch techniques modelled on natural selection.
They are based on the principles of genetic algorithms (GAs) introduced in 1975 by Holland [16]. They
move from one generation of solutions to another by evolving new solutions through evaluation,
selection, recombination and mutation [15]. EAs have been successfully applied to a wide variety of
combinatorial optimization problems.

2.1 Coding

A chromosome is represented as an integer string of length N (number of customers). Each gene in the
string is the integer node number pre-assigned to the customer. No specific genes are pul in the
chromosome, neither to mark the depot nor to show the limits of routes, because such delimiters lead to
unvalid offspring resulting from reproduction. Consider for example the set of customer demands of
figure 1. One chromosome representation is given by figure 2.

¢ [1[2]3 [4]sl6l7[8[o[10]11] 121314151617 ]18 1920
Sy 6|6]13]5]6]7[6le[s[ 76 [7[1]2[r0]12|13]8]8 |8

Figure 1: A Set of Customer Bemands.
mm|12119|2|7j111654!3|13|11{15|5|si9|14117!18!20]

Figure 2: Chromosome Represention.

A solution to the problem is obtained by first decoding the chromosome into routes which are then
assigned to and scheduled within vehicle plannings.

2.2 Chromosome Route Configurations

To decode the chromosomes into route configurations, the gene values are sequentially inserted into a
route. A new route is detected if the total demand of the route exceeds Cpa or if the route duration
exceeds T, Each route originates and ends at the depot referred to by the node number 0. The sequence
of genes in the route is the order in which these customers will be serviced. Sg denotes the set of routes
ordered as they appear while decoding the chromosome into route configurations. It is interesting to note
that constraints (2) to (9) are satisfied.

As illustration, we decode the chromosome of figure 2. The resulting route configurations are reported in table 1.

Table 1: Chromosome Route Configurations (Cmm{=29m3 and T,,.,=10 hours).

Sp Vi (m°) | Dy (Hours)
Route1]0-6-10-12-19-0 29 55
Route2|0-2-7-1-0 18 3
Route 3|0-16-4-0 17 5
Route 4 |0 -3-13-11-0 20 2
Route 5|0 — 15-5-8-0 22 4.5
Route 6 |0 -9-14-0 10 35
Route 7/0-17-18-20-0 29 45

2.3 Scheduling Vehicle Routes Algorithm

Once route configurations are available, we need to assign several of them to the same vehicle. To this
end, we have developed the Scheduling Vehicule Routes Algorithm (SVRA) which exploits the depot
double time windows and satisfies constraints (10) to (14). It is based on two main stages. Let Dy be the
duration of route k. In the first stage, a vehicle is assigned a long duration route (D - lof) such
that its returning back matches o, Then, proceeding backwards. the available time is filled with other
routes. This procedure is repeated until there is no more long duration route. In the second stage. a vehicle
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is assigned the first route from the remaining ones such that its beginning date matches 1;,. Then,

proceeding backwards, the available time is filled with other routes. If one of these routes has a longer
duration than the last one in the vehicle planning, they are permuted. Formally. the SVRA is described as

follows:

Begin

Set m = 0.

While it exists a route k such that [Dk > (1, -1, y)] do SVRA-1 to SVRA-3

SVRA-1: Set the vehicle time counter V=T and m =m + 1.

SVRA-2: Assign the first route k in Sg to the vehicle V. Set d{; =l — Dy, Vo= Vo -Dyand Sg = S\ k.
SVRA-3: While it exists a route k such that [Dy < V] do SVRA-3.1 and SVRA-3.2

SVRA-3.1: Assign the first route k in S to the vehicle V..

SVRA-3.2: Set df = df ~Dy, Vo=V, -Diand Sg = Sz \ k.

While Sy # @ do SVRA-4 to SVRA-6

SVRA-4: Set V.= Tyxand m=m +1,

SVRA-5: Assign the first route k in Sg to the vehicle V. Setdlg =1,, Ve= V. -Dy, S = S\ k
andd™ =1,, .

SVRA-6: While it exists a route k’ such that [Dy < V.| do SVRA-6.1

SVRA-6.1: Assign the first route k’ in Sg to the vehicle V.. Set Sg = Sg\k> and V.= V. - Dy If D> Dy
then do SVRA-6.2 else do SVRA-6.3.

I, and d¥= d¥ —D, Set dj*=d;andk=k"

SVRA-6.2 : Set dy

0

I

SVRA-6.3 : Set d¥ = di™ —Dy. Set di™ =d; .

End

To illustrate this, we apply the SVRA on the route configurations of table 1. The resulting vehicle routes
are reported in table 2.

Table 2: SVRA Solution for the Route Configurations of Table 1
(eg = 7.00 am, 1,,= 2.00 pm and l. = 6.00 pm)

Vehicles | Routes | D, (Hours) | d* (am) | t} (am)
1 1 ) 12.30 18.00

2 3 9.30 12.30

5 3 13.00 18.00

4 2 11.00 13.00

5 =) 4.5 13.30 18.00

6 3.5 10.00 13.30

L 4 7 4.5 7.00 11.30

2.4 Evaluation

Every chromosome is evaluated according to its fitness function which is the sum of the number of
vehicles and the total travel time.

2.5 Reproduction

During the reproduction phase, parent solutions selected from the current population via the Roulette Wheel
Selection [15] undergo crossover and mutation to produce new offspring. As crossover and mutation
operators are directly responsible for high EA performances they have to be well suited for the problem.
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2.5.1 Crossover

The crossover process combines genes of selected parent chromosomes in order to potentially create
offspring with better fitness. We make use of the following two crossover operators.

2.5.1.1 Heuristic Crossover

The Heuristic Crossover (HX), successfully used by Tan et al. [31], is concerned with distances between
nodes and produces only one offspring from a pair of parents. It could be summarized as follows:

Step-1: Randomly select two parents;

Step-2: Randomly define a cut point at the same location on both parents;

Step-3: Consider the gene situated immediately after the cut point on each parent. If they are different
randomly select one, keep it on the corresponding parent and swap it on the other parent.

Step-4: Evolving by means of swapping, transmit the next nearest customer of the two parents to the offspring.

Figure 3 shows two parent chromosomes and their resulting offspring. Let x, y and z be 3 different node
numbers assigned to three Customer&gtlch that x<y<z. In this example, we assume that d,,<d...

12[15[19]1]2]7]114]5]3]8]9[16]14]17] 13]
19]9]4]3]17]16]13]15]6[18]14[8[5][7][11]2]

| Parent 11820 |6

(3-a): Mlustration of Step 1 and Step 2.

|Parent 1 [ 18]20 6] 108 12]15]19[1[2]7][11[4]5][3]8]9]16]14]17]13]
[Parent 2| 12[10}6]207 19]9]4[3]17]16]13]15]1]18]14[8[5]7]11]2]
(3-b): Hlustration of Step 3.

[Offspring [6 [ 10 [12[9[4[1]2][7][11]15]3][5[8[14][16]18][13][17]19]20]
LV, (m®) 129 129 129 129 29 i

Figure 3: Heuristic Crossover illustration.

2.5.1.2 Order Crossover

In [31] the HX is combined with the PMX, an absolute position preserving crossover. However, since
crossover operators preserving the relative order, like the Order Crossover (OX), generally provide much
better results than those preserving the absolute position [22], we combined the OX with the HX. Figure 4
shows two parent chromosomes and their resulting offspring with the Order crossover. Cut points are

located on genes 10 and 13 on both parents.

6 12

Parent 1

Figure 4: Order Crossover Ilustration.
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2.5.2 Mutation

Mutation consists in randomly modifying genes of one chromosome to further explore the solution space
and to ensure the genetic diversity [15]. We make use of the following four mutation operators.

2.5.2.1 Randomly Permute Two Routes Operator

The randomly Permute two Routes operator (PR) is a new developed operator. It consists in swapping
two randomly selected routes of the chromosome. In case only one route is involved, the parent
chromosome is transmitted to the next generation. This operator plays a key role because it influences the
chromosome decoding not only into route configurations but also into scheduled vehicle routes. To
illustrate this, let us permute routes 4 and 5 in the set of routes of table 1 as shown in figure 5. Under the
assumption that the new mutaled chromosome decoding into route configurations is preserved, we obtain
table 3. It is interesting to note that in this illustration one vehicle has been saved.

Cffspring

' Routes 5 5 :

Figure 5: Randemly Permute two Routes Illustration.
Table 3: SVRA Solution for the Route Configurations of Figure 5.

Vehicles | Routes | Dy (Hours) | di (am) | t; (am)
1 1 5.5 12.30 18.00

2 3 9.30 12.30

2 3 13.00 18.00

4 4.5 8.30 13.00

3 i 4.5 13.30 18.00

6 3.5 10.00 13.30

5 2 8.00 10.00

3.5.2.2 Exchange Two Route Sequences Operator

The Exchange two Route Sequences operator (ERS) is a new mutation operator. It consists in swapping
two sequences of customers between two randomly selected routes of the chromosome. The ERS is based

on three steps summarized as follows:

Step-1: Randomly select a chromosome;

Step-2: Randomly select two routes from the chromosome route configurations;

Step-3: Randomly define a cut point on each route;

Step-4: Exchange the customers sequences situated after the cut point on the two routes;

Note that if the parent chromosome involves only one route or at least one of the selected routes contains
only one customer then the ERS transmits the parent to the next generation.

To illustrate the ERS, let us consider routes 4 and 6 (Table 1). The cut points are located on the first gene
of each route. After exchanging route sequences, the resulting offspring is given by figure 6, Note that in
this illustration the ERS helped save one route.

[0ffsprmg|6im|12\19]2|7|1[16|4\3|14113|3|3\9]13 |11[17[1b[70j
Vi (m) 129 118 117 125 127 129

Figure 6: Exchange two Route Sequences Ilustration.

5.2.3 Swap Sequence Operator

The Swap Sequence operator (SS) randomly permutes a sequence of customers in the chromosome [31].
First, two cut points are randomly selected on the chromosome. Then, customers located between the two
cut points are randomly swapped. Figure 7 shows one parent chromosome and its resulting offspring. Cut
points are located on genes 7 and 17. Note that in this illustration the SS helped maximize the load of routes.
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1 9
! ; 29 :

b V()

-
29 :

Figure 7: Swap Sequence illustration.

2.5.2.4 Immigration

In order to continuously explore new regions of the search space, we call for the Immigration operator (I)
which introduces new customer configurations totally generated on random basis. Although in [2] this

operator is shown to have an important role in preventing premature convergence of the population, it has
never been used in routing problems. In this paper, we adapted this operator to the VRPDM we adress.

2.6 Hybrid Evolutionary Algorithm
The Hybrid Evolutionary Algorithm (HEA) is based on the following main steps :

HEA-1: Choose a population size N, which will be held constant through all the generations. Set the
maximum number of generations Ng;

HEA-2: Set k=1 and randomly generate the initial population Gy;

Repeat

HEA-3:. For each chromosome of Gk

HEA-3.1: Decode it into route configurations;

HEA-3.2: Use the SVRA to determine the number of vehicles required;

HEA-3.3: Evaluate its fitness function;

HEA-4: Include the top Npes Chromosomes of Gy in Gys1;

HEA-5: Include in Gy e and noy offspring created respectively by HX and OX.
HEA-6: Include in Gy Dipr, Ders, Tss and n; offspring created respectively by PR, ERS, SS and
Immigration.

HEA-7: Set k=k+1.

Until N, generations are reached.

It should be specified that (16) is satisfied through all generations :

N =n

c best

g n]—D( +nOX Lz nPR +nERS +nSS +nl . (16)

3 Computational Results

3.1 Problem Sets

The HEA was applied to 70 instances including seven real data sets (see Table 4) which involve 100
customers and seven volume ranges DV,Vuax (D0105, DO110, Do115, D0120, DO125, D0129 and
D2029). The label DVyyinVine MEANS that all volume demands are within [V mm,vmx]. From these real data

sets, we randomly generated 63 other instances by variying the number of customers N, Table 5 presents
the random instances related customers. Each problem instance is labeled CNDV Ve meaning that the
number of customers is equal to N and that the volume range 18 DVinVmax
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Table 4: Customer Coordinates and Requests per Volume Range.

G X, Y, D0105D0110 D0115D0120 D0125D0129D202 | C X, Y;D010 D011 D011S D012 D012 D012 D202
Co2si60. 0 0 L 0 0 0 0 0 lca206 231 3.02 1421 1804295 349 2196
Co10 65 175 167 | 115 1028 19.46 1271 22.4 |C5p167 13.96 | 12 | 3.8 145 2327 26.58 21.96
C. 1670 499 | 958 | 7.3 1333 | 45 | 326 2214|Cy176 393 | 966 9.66 555 | 598 23.16 2658
C,1860 42 | 215 188 266 524 1588 2166|Csy176 | 433 1 9.93 | 1458 | 859 2268 2772 2203
. 7052 279 1353 | 6.14 | 166 572 14.84 25.83|Css226 259 1 6.27 | 13.33  9.61 12161 12.11 22.87
C,10/40) 382 988 | 7.8 10.88 1107 738 26.64|Css207 | 115 | 606 367 1476 1305 9.45 218
. 18501 12 | 86 | 304 14.53:21.53 | 491 23.63|C5,258 | 445 | S5 439 112.66 3.51 26.75 26.28
C.12737 137 | 2.69 11404 4.69 | 1.03 11032 24.98|Cse267 | 2.86 1 9.52 : 14.52 1 6.09 | 1.59 23.64 2553
C.1518 229 823 | 717 | 6 1233311574 20.86|C50287 236 | 605 435 169 [18.59 502 2719
O3 24 481 158 11045 837 | 4 2669 28.42|CeB378 13.56 | 624 | 1001 1817/ 1.02 875 27.16
01032 2.68 | 835 | 3.23 11477 22.04 1688 2037|Cqi428 | 3.57 9,93 | 1336 18951277 4.07 2251
. 8136 122 979 10731 3.22 (11,71 9.05 20.16|C508 | 43 | 589 | 147 | 541 1468 11.25 24.07
51431 155 2.88 | 493 1015 1837 1423 22.15|Cq 708 | 2.85 1 24 | 779 |14.4521.54 5.66 2046
0750 168 473 | 3.88 | 238 1343 25 2491|Ce 808 1431 589 377 382 941 1327 22.19
903 415 536 11,59 14.12 2297 3.88 2097|Ces707 | 4.88 693 | 179 | 9.93 1501 3.9 2426
G810 315 | 6.16 |12.45 13.06 12177 112 26.11 |Cec686 | 1.83 | 6.52 | 11.57 1061} 7.84 21.55 222
G 17101 194 | 5.5 | 7.08  2.71 11212 17.62 2331]|Ce;526 242 1 505 | 501 1275} 2.73 26.86 26.28
C 19 18| 3.54 | 2.19 11256 | 4.88 | 24.9 | 7.07 2032 |Ceui506 | 1.74 1 9.38 1.5 12,66 11.62 26.9% 26.93
27 13 3.77 | 225 | 474 1319 1148 784 26.02|Cep297 | 487 48 | 354 10.04 769 13.53 28.49
Coo10 11 335 | 7.52 1 217 | 10.5 1876 1431 24.35[C0317 | 197 1 7.84 | 1475  8.82 (1276 6.62 2433
Sw3113] 2,18 | 247 | 816 | 641 | 124 |13.47 2883[Cp597 | 164 | 243 | 806 | 136 1266 1333 2461
3715 292 | 6.02 | 779 1112 3.86 |19.65 24.47|C,,438 1 124 1534 | 682 | 9.5 [10.88 22.81 2682
Coai42 9 | 134 1 872 | 137 | 862 | 9.5 | 467 22.32|C,587 (437 (713 | 84 15 12457 15652676
0500 0| 241 | 741 | 7.09 1916 9.65 121.01 24.54[C;4225 §3.94 | 1.01 | 11.01 1927 395

.48 20| 4.84 | 6.69 | 2.36 11552 5.79 115.12 12679 C;523/5 | 4.53 | 531 626 181912179

36 16| 225 | 6.55 | 2.27 | 1.83 | 7.51 |13.47122.51[Crs254 | 1.89 | 6.41 | 9.67 | 3.32 20.16

26 101 2.05 | 2.82 | 5.12 | 7.94 [20.11116.66 125.12|C1112.0] 2.71 | 3.89 | 503 17.84] 2.87

C,r12/55] 231 | 912 | 112 125 1884 815 20.13[Crs214 | 1.05 865 508 1185 172

C.0 738 483 | 222 44 | 135 1658] 727 23.12]Cpe198 275 | 639 | S81 15.97116.83

2130 2.65 | 5.46 1432 10.83 2054] 875 127.41 [Cep173 | 421 | 9.06  7.12 11228 7.74

Co | 62, 4.46 | 834 1049 3.89 | 633 | 3.6 25.12[Cujl84 | 3.1 | 752 1126 (1233 1323 1. :
137651 27 | 6.19 | 162 11095 12,86 17.31 24.93|Cppi03 | 379 | 137 | 1201 11373 23.74 812 | 23.5
Ci0 67 274 | 942 | 321 499 | 534 |24.66 21.48|Cayl5S | 199 | 593 | 1407 [11.34 1632 22.02:28.23
.19 T71 104 | 614 (1393 | 6.87 | 2.6 | 3.98 | 28.44|Ce135 | 467 | 7.1 327 |17.16 1251 432 2635
5 770 382 | 6 915 112.52 492 | 872 122.33|Ced175 | 22 | 491 198 1271 9.01 13.34127.28
1283 127 497 954 | 94 | 79 [153612574|Cei84 138 | 427 572 [IR06 1633 557 2367
C. 9 87 491 3.6 1415 626 2035, 211 28.01|Cyi015 | 3.64 1288 182 1608 808 512 2428
.0 95 103 8.56 10.08 16.18 | 876 | 19.38 25.22|Cys144 3.16 1 7.77  14.39 11655

C.e 011000 3.05 731 | 9.04 119.11 694 | 196 |28.18|[Cypi 011 | 4.48 | 4.69 1449 | 7.54

C.o 10105 17 | 212 | 794 | 122 | 186 | 791 |22.67|Ce231 1379 1 5,12 241 | 6.58 . 68
1711200 466 | 9.13 | 7.75 | 131 1041 25021 28.1 [Cy244 | 481 1 946 | 731 11737 686 | 5 244
0,20 73| 407 | 2.52 | 6.58 | 9.86 | 153 2468 23.54|C5,270 266 612 1024 | 9.5 1609 506 2838
072 68 312 | 1,09 1421 1408 599 2029 275 |Cu222 155 982 2 117.0424.97] 66 23.65
Cui25.66| 409 | 5.04 | 3.62 | 4.66 266 2266 23.35|Ces301 | 29 636 | 1438 | 738 971 21.36 25.63
15901 155 | 7.94 | 102 |15.83 | 971 | 766 | 27.7 [Cos26il | 2.27 219 | 111 | 3.4 | 725 | 861 2811
01785 322 | 706 1073 17.45 1 13.99 11,72 20.86 |[Css202 | 4.06 1 9.22 | 5.23 {11981 4.99 12425 2592
Ciel20/70] 215 | 6.01 |14.78] 6,52 [14.84| 283 24.57|Cp121 | 4.55 [ 756 | 279 [1093]11.59 1424 28.72
o176 198 | 15 | 3.98 433 1111512161 22.85|Ce132 | 28 443 1302 | 7.52 816 19.14 21.53
1370 332 | 5.86 | 534 1678|217 | 7.1 12563[Cs 101 | 103 | 5.06 | 406 1941 1553 2202 22.98
14 64| 292 | 7.03 1 14.62 9.35 | 14.12] 22.1 122.47|C;p 40 0] 342 | 2.41 | 13.04 | 152 18.94 222412638
.14 62 194 247 473 882 | 523 [17.15:126.07] i

Distances and volumes are given respectively in Km and me X, Vi
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Table 5: Customers of the Random Instances.

Problems Customers
C10D0105, C10D0110, | Crz; Cro; Caa; Cis; Casy Cso; Csy; Cag; Casy Crol
C10D0115, C10D0120,
C10D0125, C10D0129
C10D2029
C20D0105, C20D0110, Cas;Ca;Cs3;Cs0;Cr0;Crs: Cys; Cs3;Cor3 €15 Co3:Cas; Crsi Ceas
C20D0115, C20D0120, C19,C34,Co:Ca9;Cay; Cop;

C20D0125, C20D0129
C20D2029
C30D0105, C30D0110, C1:Cs1:Cr3,Crg;Cs55C32, C1;C33Co2; Co3 C0; Cs15C52:Caa
C30D0115, C30D0120, | Ce4;Ca6;C2:C3:C27,Cs7,C7;Co1; Cra; Cr6; Cs9:C30; Ci3, Cset
C30D0125, C30D0129 C75.Cos;
C30D2029
C40D0105, C40D0110, Csz;C7;C57;C69;ng;csn;Cz;Czﬁ;Czs;ng;Cm;C70;C45;C65;C59;
C40D0115, C40D0120, | Cao;Css;Cao:Coo; C14;Coo;Ces; C10;Ca0;Cs5;Ca0; Can; Cus: Crx
C40D0125, C40D0129 Cs5,Ca6:Cs2:Cus; Cos; Crg; CosCor; Cas; Ca 1 s
C40D2029
C50D0105, C50D0110, C76,Cs,Ca1;Cas: C39;C54:Ca5,Ca0; Ca0;Caai Cr2;Ca8:Cs13 Cex.
C50D0115, C50D0120, C15,C13:C11;,C24:Cs0:Coa3Cr2,C31,Co13 Co2: Ca8; Ca0: Cs2; Cart
C50D0125, C50D0129 Co7,Cx;C32,Co0:Cr13C34;Cs6,C17:Cs7; Con; Cr55 Cog: Cro: Cr:
C50D2029 C37:C63:Ca3:Ci Crg; 341 G Cig
C60DO0105, C60DO0110, C13,Co6,C2;Cr0;C34;Cr4,Cya;C17:Cr5:Can; Conscaas Crsic s
C60D0115, C60D0120, | Cs7,Cs6Cs15Ci4;Cs63Cr7;C3,Ca: Ca0; Co; Can; Car; Cssi Crot
Co60D0125, Co0D0O129 Ci5;Co3;, Cax; Csz; C3; C24;C; Csa; Cag; Cas; Car; Cazt Caas ot
C60D2029 C39;Cs8;C32:C15:C12:Ch1:Ca; Co7:Cas; Ceo; Cow; Cao; Css;
Ca5,Cs4;Ca6,Cs0, Crs;
C70D0105, C70D0110, C1;G5;Cs;C4;Cs;C;,Cs; C10;Ci15C12:Ci6; Cr7;Cags Ca0y Con s oz
C70D0115, C70D0120, C23:C24;Ca6;C27;Cas; Ca0,Ca1; Ca2;Ca4; Cas; Cags Car; Cas s
C70D0125, C70D0129 C45:Ca6:Ca7;Ca8,Ca9,Cs0;C1, Cs3,Cs55 Cs; Cs7, Csei Cso: Cor
C70D2029 Ce1;Cs3;Cs4;Cés; Cos, Co7:Cos, Cr0;Ca13,Cr2;Cr3;,Cr4, Crs: Co;
Cs0;Car;
C80D0105, C80DO110, C1:C2;Cs;C4:C5;,C5;C5: Co, Ci0,Ci13 C12:Ci3: Cias CGrsi Cisi G
C80D0115, C80D0120, Ci8,Ca05Ca2:Ca3;Cou; Cor Cas: Casi C0: Gt Gz Cs3;, Caa . G
C80D0125, C80D0129 C5:Ca0;Ca0:Ca1,Ca2; Caa;Ca5: Cas; Cag; Cag; Cs03 Cs2;,Cs3: Cs g
C80D2029 Cs6,C57:Cs8,Cs9:Co0; Ca1:Co4; Cos; Cor; Cos; Can; Cro, Cap ;. Ca
C73,C5,C7:Crs: Croiomor Can: Cua: Cas: Cipr Cari Cini Cao: Coy -
Caz,Co4;Cos;Cos; Car; Cox: Cos; Ciao;
C90D01035, C90DO110, C1:Ca:CaiC4iC55C6 Cri G Co; Cr: G221 Chai G, G 53 G G
C90D0115, C90D0120, C19,C20;C21:C2: C3; G4 G5, Ca6:C73 G o, C0;Cy 1 G
C90D0125, C90D0129 C33.C34;Ca5:Ca6,Cag; C305C 0. Ca2; Ctz; Cag; Csy Car; Copg Caon
C90D2029 Cs0:Cs1;Cs52:Cs3:Csa;Cs53Cs6, Cs75Cszs Csoy Con; Coz; Cs; Cse

: Cs7:Co8:Ce5:Cr0:C1:Cr2:Cr3, G141 Cr7; Cag; Cro; Gy Cag s Gy
Ci3,Cs4:Css;Cs; Cs7: Casgi Cs9, Ca0, Con ; Cop; Coy; Cos; Cog: Cor:
Cog;Co0,Cions

3.2 Evolutionary Parameters

The HEA was implemented on a Pentium-[II PC, 500MHz using the C-Language. The following
parameter values were experimentally found to be good and robust for the tested problems:

N, = 20000 and N, =100 . (17)
Nc [ NC #
Nyg =0;p = Mgy =~ Mox = >
20 ) 5 (18)
Npg = MNppg = Ngg = l(;;

Although earlier research has shown that excessive mutation rates lead to pr_emature convergence [31], often resulting in
undesirable local optimal solutions, we noticed that, in our case, small mutation rates do not produce good results,
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3.3 Simulation Analysis

For each problem instance, the HEA was run 20 times (each with a different seed). Each table from 6 to
12 presents the results of one volume range and ten instances varying in customer size. A t-test was
designed on the hypothesis that the solutions to obtain have relative mean average deviations of the
fitness values RMADy and the number of vehicles RMAD,, less than 5%. For each instance, we have also
mentioned a lower bound on the number n* of routes needed to service all customers which is the
smallest integer not smaller than total demand divided by the capacity of the vehicles.

It is interesting to note that in all cases, the HEA found the same number of vehicles over the 20 runs,
thus yielding an RMAD,, of 0% and a maximum RMADz of 1.59%. The t-test hypothesis is satisfied
which illustrates the robustness of the developed algorithm. Furthermore, as the number of routes
increases according to volume ranges and/or customer sizes, the number of vehicles increases slightly but
not necessarily, this shows the ability of the HEA to employ available resources effectively. An other
observation stemming from tables 6 to 12 is that if the number of customers is few, the HEA quickly
finds feasible solutions in a short period of time. As the number of customers gets more important, the
computation time increases reasonably.

Table 6: D0105 HEA Solutions.

Problem Fitnessm n| Total CPU Ngen RMADHRMAD,,
Distance: (s) (%) (%)
C10Do10s Min 7.59 {1:1:263.77 1 0 ¢ 4
Med 7.59 1:1 26377 0 | 49 o 0
n*=1 Max 759 1.1 26377 1 245
C20D010s Mini 1118 212 367.19 . 0 - 115
Med 11.18 :2{2 367.19 | 12 2646; 008 0
n*=2 Max 1127:2:2:370.74 3 | 593
c30D010s Min 13.70 1214 467.84 | 49 8315
Med: 13.72 :2:4 468,69 1 6 891 @ 029 0
n*=4 Max 13.82:2:4] 472.8 | 51 :865]
C40D0105 Min: 18.64 13 51 625.69 | 30 4477
" Med 18.89 3 5 635.59 [ 66 19476 0.63 0
n*=5 Max 19.07 13:5: 642.69 1091566
lcsopo10s Min 19331351 653.18 1151 1911
Med: 19.92 1316 676.93 | 52 16573 0.87 0
n*=5 Max 203735 694.72 {147 1855
C60D010s Min 2096 1317 71839 1 69 (7818
7 Med 21,5137 74021 § 57 16903 0.98 0
n*=7 Max 22.283i7 771.12 | 18 12496
C70D0105 Min: 23.02 13 8 800.98 | 66 16492
Med: 23.45 318! 818.06 :19911987 ; 1.56 0
n*=8 Maxi24.06 38 842.29 (102 1020
cgopo1os Mini 27.51 4.9 940.44 1168 1474
| Med 2807 41996284 1511300 1.43 0
n*=9 Max 2892 4 9 996.68 183 1581
Coopu0s Min 29.32 141011012.75 1223 1755 )
Med: 29.64 4 10/ 1025.69 2411933 . 1.59 0
n* =10 Max 30.55 410 1062.2 150 1178 f
CIUODmos;M‘“ 31.95 1411/ 1117.98 1279 1988
o Med! 327 (4]1111147.89{27111919  0.96 0
n*=11 Maxi33.14 :4:1111165.73:216 1527
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Table 7: D0110 HEA Solutions. Table 8: D0115 HEA Solutions.

Fitnessmn Total CPUiNgea RMAD#RMAD,, Problem féF\itness§n| ni Total CPU: Ngen RMADH RMAD,,,
: £
Distance(s % %) ! Distance: (s) (%) (%)
Problem .
Mim 1042 241336791 0 3
. C10D0115
ropo1go MinBS4 |12 30151 06 X Med 10.4212{4[ 33679 | 1 13081 O 0
e geds.z: 112 igizi g ;(5} n Maxi 10.42 1214 336.79 | 15 13650
In*= ax i %
T | 2 caupo11s Min 143312/6 20325 0 | 42
C20D0110 ' ' 005 b T Med 1433 2.6 49325 198 | 007 0
e xedi;g; i;’ 222'33 {‘) ;g' : ST Max 14.43 121649720 | 4 | 646
1 e ax s i y
Min 1638 26 157535 2 354 csopois Mo 2063131970325 § 2 | 274
C30D0110 - : S—_—1 T Med 2063 319 705.25 13 11825 024 0
~~;~--—6—v~-——ﬁedizzg Zz ;Zg;i 32 ggzz ' g Max 2116 1319 726.43 | 70 10454
n" = ax; . i m
ey 07 13933 CaoDo1 15 Min] 30.50 412 1060.07; 1 ;158
C40D0110 : : ez 1 S Med 3079 14112107171 101 11595 0.53 0
e ﬁ‘*d?” 38179875 2 337 P T2 Maxi 3110 |4112/1083.95¢ 5 | 617
it L 8 80861 3 467 Csop0115 Min| 34.00 15114 1159.871106 11015
C50D0110 ﬁ"ﬁgl‘l‘ : 3?3?;;5 f;: ;(1’3‘;60 b COODOT e 34.37 15114/ 1174.86 | 119 12486 0.7 0
............... edi2o. . § : k= 14
e Y i b 0 300
Min 3095 4 1141078.11 114 {10780 C60D0115 . )
C60D0110 : : AU N e Med 3442 |5/17 117692 40 13584 0.83 0
ﬁ;-_-l_g——ﬁedii-?; : i:igzgg ;gé ;?;“;“ : 716 IMax 35.02 |5117,1200.86 | 191 16081
n" = ax . 3 .
T iea s 13013103 croDo115 Min 40.52 16 20 1380.83 | 149 11449
croponto R T s hs L | ee |se6| 07 " | Med 40.98 |6191399.03 18214132 0.7 0
M . . : * = 1
TV T 14 Max 3505 1511511201.99 1195 16953 p* =18 I;j‘:: :;'; :;i ::;Z:i 21777 :j:jg
Min 41,31 16118 1412.25 1223 {17111 C80DO115 ' '
C80DO110 1 " e g L aalle3od 085 . TP Med 5126 71231177045 1217 14464 0.66 0
M . . 2 ¥ = i 5
T3 T17 Max 42.56 (6118 146233 1238 18052 n® =21 Max 3130 77231798.07 123 8357
_ - 1 couno1 15 Min] 36.70 18125 1948.04 1203 12181
SHDGTIaI A4S, [S]19 I ssi 19972 oom I OO Med 5736 18126/197427| 76 4705 079 | 0
”"“_;E'*Tg“"’":d;d ::?; E iz 112[5);-23 29052 ‘63459(;7 : ¥ T34 Max 5835 |8125/2013.88 322 19872
n*t= ax & o =
O ALl T EITHEEY o 100D0115Min, 5964 (8128 2065.79 1309 16216
210000110 ‘ : - . CI00 " Med 60.11 18128/2084.25 330 17076 037 0
- Med :2-32 ;;} 122;2 i;’i ;;gcﬁ 0. “¥759 Max 6030 |8/2812091.81] 73 (3931
n { 48. .
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Table 9: D0120 HEA Solutions. Table 10: D0125 HEA Solutions.

Fitness%;m n: Total CPU Ngen ERMADF"RMAD,“ Fitnessm' n: Total :CPUé Ngewn RMAD [RMAD,,
Problem i Distance: (s) © (%) (%) Prablem Distance; (s) L (%) (%)
C10D0120 Pvimi 12.16;2 406230 0 . 2 Clopoips Mini 1174 205 38980 0 1 ;
. Med 121162 540623 0 | 11 0 0 " Med 11742 5,38980 0 | 15 0o 0
n*=4 Max 1216 2:5 40623 . 0 | 49 n*=4 Max 11.74{2{5:389.80 . 1 | 265
C20D0120 Mm;216733=10 74675 1 0 | 25 C20D0125 Mini 17.27 3 8 570.76 : 0 © 105 |
Med 21.71 1310 74847 . 6 964 | 0.07 0 Med, 17.27 3:8: 57076 | 1 151 . 0.07 0
n*=9 Max 21.71 1310 748.60 : 12 1887 n*=7 Max 1734 :3:8 57354 0 . 34
C30D0120 Min 24.67 14 11 82670 | 3 | 289 : C30D0125 Min 31835 17107340 1 77
| Med 2467 [4111] 826.70 | 62 i8028; 03 0 Med 31.84 [5:17.1073.68 . 4 : 300 . 0.12 0
2546 411 85823 : 54 17121 n* =14 Max 32.23 :5:17 1089.05: 26 3390
C40D0120 Min 3746 15116, 1298.57 3 285 C40D0]25 Min: 44.01 16119 152027 51 4508
Med 37.63 : 5 16:1305.09: 56 {6193; 0.57 0 Med: 44.78 1 6 120: 1551.18: 65 16499 0.51 0
n* =15 Max 3831 15:16/1332.51 72 :7679 n* =18 Max 44.95 16 20/1557.92 25 12458
Cs0p0120 Min 42.39 16 11911455.65 1171 1577 C50D012s Min. 47.47 1723 1618.73 1 1257703
) Med 42.95 6 2011478.10} 32 (2878 0.7 0 Med: 47.77 (7123 1630.93 121717082 0.57 0
n*=18 Max 43.46 619149839 66 5991 n* =20 Max 4837 (7 :23/1654.89 | 45 12692
CooDo120 Min| 51.45 1727, 1778.01 1128 7648 C60D0 25 Min: 56.91 |8 28 1956.31 86 5448
Med: 52.14 | 7127 1805.56 1 17411063 ; 0.69 0 o .....Med 5736 8 28197438 28019043 0.59 il
n* =24 Max 52.63 {7127/1825.56! 27 |1730 n* =26 Max 58.09 828200368 10 749
C70D0120 Min 5432 /8 128/1852.89 184 1008 C70D0125 Min; 613919 311209565 13 769 f
| Med 54.62 .8 28 1864.85 169 7576 0.66 0 61.97 19 31,2118.87 331 19018 0.65 0
n* =26 Max 5558 828 1903.05:275 1830 62.86 19 31:2154.24 16 | 958 |
CR0D0120 Mini 67.78 191321235134 1225 1347 C80D012s Min 73.26 110:36:2530.43 | 83 14615
Med: 68.37 :9133; 2374.8 127611473 | 0.42 0 Med, 73.79 110336/ 2551.41 {227 10962, 0.5 0
n* =30 Max 68.84 |9 32:2393.48 2711550 n* =33 Maxi 75.02 1036 2600.77 1332 16681
CooDo120 Min 72.24 :1035:2489.71 1377 1935 Co0D0 125 Min! 82.70 [12140/2828.18 | 413 17846
Med 72.63 10:35 2505.2 1125:5773; 0.78 0 Med 83.26 11239:2850.33 367 16283 0.49 0
n* =33 Max 73.85 11035/2554.00 10. ;5195 n* =37 Max 83.77 12:39:2870.71 : 485 16217,
C100D012 Min 80.9 [1140.2796.07 1145 6526 Clo0Do12 Min 94.31 13147 3252.53 1450 17544@
Med; 81.77 (11:40{2830.93 :127:5451 0.34 0 Med: 94.70 113146 3268.18 1 551 19647, 0.41 0
n* =36 Maxi 82.33 11139:2853.02: 46 (2048 : n* =42 Max 95.61 13i47.3304.29 : 500 18466,
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Table 11: D0129 HEA Solutions.

Table 12: D2029 HEA Solutions.

Problem

{ Total
Distance

Fitness

Ngen

RMAD#
(%)

[RMAD,,|
(o)

Problem

Fitness

m

n

Total
Distance

(s)

CPU

T
Nyen

RMAD,,
RMADs (")
(%)

C10D0129
M

371.34
371.34

3068

1685

C10D2029

Min: 18.28

Med: 18.28
Maxi 18.28

611.36
611.36
611.36

C20D0129:

714.56
714.56
10. 718.87

S
5
Maxi 11.28:2:5 371.34
9
9

13
75
193

©0.09

C20D2029

Mini 34.70
Medi 34.70

n* =20

Max: 34.70

1188.12
1188.12
1188.12

[=0 L=l

16

C30D0129
M

(n*=15 )

16: 1099.56
16:1099.56
16:1115.51

119

1230
4749
1071

0.22

C30D2029

Min] 49.46
Med: 49.46

n* =30

Max! 49.46

1698.52
1698.52
1698.52

&3
503

3

17184

3163

C40D0129

21:1669.53
21.1672.89

n* =20

1703.6

91

329
5719
151

C40D2029

Min; 77.13
Med: 77.13

n* =40

Maxi 77.13

2645.02
2645.02
2645.02

87
331

0
3993
9943

C50D0129

25:1849.80
25:1870.64

n* =23

2511892.90

235
30
72

1934
1582
6119

C50D2029

Min{ 91.65
Med: 91.65

n* =50

Max: 91.65

3146.10
3146.10
3146.10

229
739

51
6881
16638

C60D0129

30:1931.99
31:1954.05
30:1985.86

=
"
'
o
W
{¥=]
o0 00 00 |oe o0 00 fud < <afin o wa
[3%)
—

118
24
198

8041
1366
1201

0.54

C60D2029

Min! 99.88
Med: 99.88

n* =60

Max; 99.88

3395.34
3395.34
3395.34

216
773

182
5567
18977

C70D0129
M

2263.35
36:2295.65

= =
=9
o o
Al b
L in
-
o
o o
)
)

n* =33

Max 67.58 110:36:2303.06

205
237
241

8723
9718
1265

0.6

C70D2029

Min{116.76
Med116.76
Max 116.76

3990.44
3990.44
3990.44

191
984

37
6338
15049

C80D0129

Min| 84.99 112:42{2919.42
Med 85.5 112142:2940.15

Max 86.3% 1242 2975.4

540
358
55

1998
1790
2266

0.49

C80D2029

¥ =80

Mini142.89
Med:142.89

‘Max 142.89

4915.72
4915.72
4915.72

1278
1663

282
6863
17213

C90D0129

Mini 98.97 14:49:3398.75
Med 99.15 14:49:3406.06

n* =45

Max 99.98 14149 3439.23

473
326
147

1439
1409
4024

0.37

Co0D2029

Min:160.39
Med: 160.39

n* =90

Max 160.39

5495.56
5495.56
5495.56

201
687

143
4699
15952

IC100D012

Mini104.14:1554:3565.54
Med 104.92:15i54:3596.63

n* = 49

Max: 105.7 15:53 3627.97

562
509
459

1583
1843
1198

0.47

C100D2029;

Mini176.79
Med 176.79

n* =100

Max 176.79

25
25
25

100
100
100

6071.72
6071.72
6071.72

21
344
930

277
5549

13551

Min : minimum fitness;

Med : medium fitness;

Max : maximum fitness;

CPU

- time elapsed in seconds to find the solution;

Ngen © number of generations necessary to find the solution;
n* - lower bound on the number of routes;

m : number of required vehicles;

n : number of required routes;

RMAD:; : relative Mean Average Deviation of the fitness values over the 20 runs;
RMAD,, : relative Mean Average Deviation of the number of vehicles over the 20 runs;

Con=29m°, Ty=10 hours, ey = 7.00 am, I, =2.00pm, I, =6.00pm, s,

hours;
The speed of vehicles is assumed to be equal to 40km/h.

266

, a=0.5
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Besides, to load the vehicles efficiently, the number of routes should be as small as possible. Ideally, it
would be equal to n*, In this context, the HEA finds the lower bound on the number of routes for 30
problems over 70, However, the number of routes for 22, 7, 8, 2 and 1 problems has been upper than the
lower bound respectively by 1, 2, 3, 4 and 5 routes (the difference is computed with respect to the best
number of routes found). This is an acceptable result since having a smaller number of routes is indeed
appealing, yet it does not necessarily yield a better solution as it is for example the case of the best
solutions found for problems C100D0120 and C40D0110. In fact, in some cases, small routes are more
easily inserted into vehicle plannings than big routes for which new vehicles would be needed. Therefore,
for each instance, a suitable trade off between short and long duration routes should be found. This is best
accomplished by the HEA since on the one hand the evolutionary approach diversifies the solution space
by creating different route configurations and on the other hand, the scheduling vehicle routes algorithm

groups them within a given vehicle planning,

4. Conclusion

In this paper, a practical new variant of the VRP is adressed. The problem is considered as a Vehicle
Routing Problem with Double time windows for the depot and Multiple use of vehicles. We solved the
problem by an evolutionary approach hybrided with a scheduling algorithm. The evolutionary approach
involves a new combination of crossover operators and makes use of new and adapted mutation
operators. This is to smartly difersify the solution space by creating different route configurations. The
scheduling vehicle, routes algorithm efficiently exploits the depot double time windows and groups
several routes within a given vehicle planning.

The computational results show that in all instances considered, the hybrid evolutionary optimisation

algorithm yields satisfactory solutions in a reasonable amount of computation time. Its ability to deal with
practical size decision problems and to fit customer characteristics changes is also shown.

As further research, we think about extending the suggested approach to more complex problems such as
VRPDMs involving customer time windows with various widths and densities, a heterogeneous fleet of

vehicles, ...
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