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Abstract: Predictive techniques based on neural networks are investigated in an adaptive structure for on-line control of a process
exhibiting nonlinearities and typical disturbances. The method proposed consists of a novel identification technique based on
additional memory adaptation and an efficient implementation of the predictive control, based on a nonlinear programming method.
A forced circulation evaporator was chosen as a realistic nonlinear case study for the techniques discussed in the paper.
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1. Introduction

One of today's trends in modern control is finding faster, a more reliable solution for highly nonlinear
control problems in constrained environments. Many industrial processes exhibit a highly nonlinear
behaviour across the operating range, they are often subjected to physical constraints in their process
operation and they often have to follow safety limitations and strict environmental regulations.

The design of a model-based predictive control [2, 12] system relies heavily upon an explicit
mathematical model of the system under control. In many cases such a model is very difficult to find due
to, for instance, lack of knowledge about the system or the presence of strong nonlinear dynamics in the
behaviour of the system. For this reason conventional control systems are usually based on a linearized
and highly simplified mathematical model of the system under control. The use of simplified models in
model based control usually leads to a decrease of performance of the overall system.

In [10] it was proposed the enhancement of model-based control strategies, such as indirect adaptive
control, by replacing the linear models with nonlinear representations, based on neural networks (NN). It
has been shown that predictive control techniques could be improved by including a nonlinear model of
the plant. In particular, the dynamic matrix control (DMC) was extended by using a nonlinear predictive
model of the process, based on feedforward neural networks.

Neural networks are particularly appropriate for multivariable applications, where they can readily
characterise the interactions between different inputs and outputs [8].

The goal of this paper is to show that, provided with appropriate adaptation techniques and control
structures, neural networks can be used to adaptively control a wide range of nonlinear processes at a
useful level of performance.

The organisation of the paper is as follows. In Section 2 some aspects of the predictive control strategy
are presented. Identification structures with NN and the novel adaptation technique AMA is proposed and
analysed in section 3. Section 4 shows some of the simulation results of adaptive control for a
multivariable nonlinear process. Conclusions are presented in Section 5.

2. Nonlinear Predictive Control

The complexity of developing a phenomenological model for the process and the nonlinearities of its
dynamics, make very attractive the use of an artificial neural network for the identification and
predictions of the plant outputs. Fixed NN models, identified off-line have been used with various model-
based control structures [13].
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Prediction using neural networks

The prediction algorithm uses the output of the plant’s model to predict the plant’s dynamics to an
arbitrary input from the current time k to some future time k+n. This is accomplished by time shifting

equations for y,(k) and net; (k) by n resulting in
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where fi(.) is the output function for the j™ node of the hidden layer, net(n) is the activation level of the j™
node's output function, nh is the number of hidden nodes in the hidden layer, w; is the weight connecting
the j* hidden node to the output node ,wj; is the weight connecting the i input node to the i hidden
node, b; the bias on the j™ hidden node, b the bias on the output node. The first summation of (2) breaks
the input into two parts represented by the conditional.

Using quadratic cost function and the predicted model it is possible to calculate the optimal control strategy
for a nonlinear model predicted by using NN. The cost function in predictive control is chosen as:
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where r is the required process output, ¥, is the NN model output, u is the process input. N, and N, define
the prediction horizon, N, the control horizon and % is a sequence of control weighting factors. A suitable
choice for N, is to make it equal to the process delay between input and output. Ny is then set to define the
prediction horizon beyond this point and it represents the number of time-steps in the future for which the
process response is recursively predicted as a result of the proposed control action sequence uk), .., u
(k+N,-1) executed over the control horizon N, . Control actions after the control horizon are held constant
equal to the value u(k+N,-1). With Newton-Raphson (NR) method, J is minimized iteratively to
determine the best

u(n) = [l +1) uk +2)..u(k + NI @

The improved convergence rate of NR is computationally costly, but is justified by the high convergence
rate. The NR update rule for u(n + 1) is:
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In order to avoid the computation of the inverse of the Hessian matrix, equation (11) is rewritten in the form of a
2
ju{ (m)(u(n +1) —u(n)) = _gj—u(n) which is solved for x = u(n +1) — u(n) .

When solving for x, calculation of each element of the J acobian;nd Hessian is needed for each NR iteration.

system of linear equations:

3. Adaptive Predictive Control

A major advantage of the predictive control strategy is that the process input is optimally computed to take into
account of future predictions of the process response up to a defined horizon. This enables the scheme to
anticipate future process outputs, which achieves smooth transient responses to set-point changes and the
ability to take early corrective action against disturbances. The adaptive scheme (Fig. 1) is obtained by
combining predictive control with the EM adaptation method. This structure has a number of attributes that
make it an appealing strategy to adopt in comparison to other neural-network control schemes.
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Figure 1.

3.1. Additional-Memory Adaptation Technique

A Multiple-Input Multiple-Output (MIMO) model suitable for identification can be expressed in terms of
8(k) , the set of unkriown parameters, past values of the inputs and outputs, and modelling errors e(k) :

k) = f(0k),y(k=D),....y(k —n)), u(k-1),...,u(k—n,)) +e(k) (6)

At time step k each weight w;; , connecting the input of node i on each layer, to the output of node j on the
preceding layer, is updated using;

wjf (O) = }/_,u'

wi (k) =w, (k-1)+ae,(k)+ B(w,(k=1)-w,(k-2))

where a.eR" is the learning rate , 0 < f < 1 is the momentum factor, ei(k) is the back propagated error
value corresponding to the input to the sigmoid function calculated for node i during the presentation of
the pattern 6(k) derived from process time k. The random variable ¥;i is independently selected for each
weight from a distribution with zero mean and small variance.

(7)

A distinction should be made between iteration q and time step k. The updated weight w; (q.k) is
calculated using the extended recursive equation set below:

Wﬁ(0,0) =V s

w,;(0,0) = w(Lk-1) 8)
w,(q,k) = w(g-Lk)+ae (k) + ,B(wﬁ (g-1k)- w),.,.(q -2,k))

The method proposed retains some process patterns that can represent an approximation to the nonlinear

process dynamics. The additional memory (AM) accepts a new pattern 8(k) from the process at each time
step k and discards the oldest pattern 6(k-n,). The recursive equation set can be written as follows:

W (0,0)= A
w,(0,0)=w, (Lk-1) ©)
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where: 1 is a cycle counter for n, cycles of the pattern memory which are performed at time step k , p
indicated the time step origin of the pattern selected from the AMA is chosen in random order from its
index range (k - n, +1, k). At each selection of p and execution of the recursion, the iteration count q is

incremented, up to nen,,.
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3.2. AM parameters

The learning rule is repeated n, X n, times at each time-step. The parameter n, determines the length of
moving average effect on the patterns. It is set as a balance between speed of adaptation and accuracy of
model. Tt is analogous to the forgetting factor commonly used in linear adaptive control theory [9]. Using
various situation typical values of n. and n, for various nominal conditions and objectives have been used
in simulations. In the case study simulations we demonstrate greatly enhanced identification performance
in adaptive control structures and also the possibility of starting identification and control at the same
time with no a priori knowledge of the plant.

4. Simulation Results

Neural control techniques have already been introduced in many industries, in particular to the chemical
and biochemical processes [3, 9]. Here is considered a complex process simulation of a forced circulation
evaporator system. The process diagram is presented in figure 2. The variables, their description, normal
operation states with measurements units are described in table 1. The simulation equations are presented
in [11]. The resulting process simulation is dynamically nonlinear, unstable, and multivariable with strong
interactions. An input-output neural model with n,=2 and n,=2 was selected. The final network topology
was selected to be 12-20-3 . The EM parameters were set to n.=20 si n;=50.
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Figure 2. Forced Circulation Evaporator
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Table 1. Evaporator process variable description

Variable Description Nominal Value
F1 feed flowrate 10.0 kg/min
F2 product frowrate 2.0 kg/min
F3 circulating flowrate 50.0 kg/min
F4 vapour frowrate 8.0 kg/min
F5 condensate flowrate 8.0 kg/min
X1 feed composition 5.0 %
X2 product composition 25.0%
T1 feed temperature 40,0 °C
T2 product temperature 84.6 °C
T3 vapour temperature 80.6 °C
L2 separator level 1.0 meters
P2 operating pressure 50.5 kPa
F10 steam flowrate 9.3 kg/min
T10 steam temperature 119.9 °C
P10 steam pressure 194.7 kPa

Q10 heater duty 339.0 kW
F20 cooling water flowrate 208.0 kg/min
T20 cooling water outlet inlet temperature 25.0 °C
Q20 condeser duty 307.9 kW
T21 cooling water outlet temperature 46.1 °C

Test sequence

A sequence of test cases using the proposed method were conducted to investigate initial start-up
adaptation and stabilization, setpoint following and disturbance rejection. The first stage of the test
reflects the mode of start-up. After a period for adaptation and stabilisation of the process, a sequence of
alternating setpoint step ( for X2) setto 1, 0.5, -0.5, -1, 1, -1 was introduced. Finally it was introduced a
large (30%), unmeasured disturbance.

The performance of each of the cases and their individual components were compared using the
Integrated Time-weighted Absolute Error (ITAE) measure. In this experiment the control rate-of-change
weight was set to 0.3 (A = 0.3). The plot of the three outputs is shown in Fig.3 for N, = 5 and N, = 3, np =
40 and nc = 10. :

The process was quickly stabilized and the mcasurements had varied at most by only 5, 6 and 20%
respectively from their operating values. The 20 % variation of y; is associated with the separator level,
the unstable state of the process. The closed-loop responses indicate very good control of all outputs.

The initial stabilization tends to have fewer, lower amplitude, slower cycles in comparison with the case
when the rate-of-change weight was set to zero. Several others experiments were realised to investigate
the effects of different values of the design variables within the control structure [3].

The results obtained were in accord with those cxpected from using a predictive control methodology. It
is seen that with no weighting of the control input good set-point tracking is achieved; however, the
control input exhibits large fluctuations and would cause undue actuator wear in practice. For larger
values of & , movement of the manipulated variable is dampened at the expense of poorer set-point
tracking. It was observed that increasing the prediction horizon had a number of desirable effects. Good
set-point tracking was maintained, whilst the control clfort was considerably reduced.
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Figure 3. Process Response with N, =3 » N2=5, n, = 40, n. = 10.
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Figure 4. Process Response with N,=2,N,=3, n, =40, n. = 10,

These results demonstrate that improvements can be achieved with neural network in practice. The
presented method is better than the other approaches due to fast adaptation and ability to address process
nonlinearity. For time-varying processes, adaptation is the only means by which the performance of the
controller can be maintained,

The values of the parameters were decreased in order to reduce the computation effort. The control
horizon and stack size had the main contribution on this reduction but also the performance suffers
degradation. A trade-off between the computational effort and performances was obtained. The nuinber of
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cycles for each step of EM algorithm could be reduced but the obtained performances were not improved
significantly. The goal was to maintain a suitable level of performances in parallel with a reduction of
computational effort. Based on this approach it could be obtained good results with reasonable
computational effort.

5. Conclusions

This paper has discussed issues concerning the application of predictive techniques based on neural
networks to the adaptive control of nonlinear processes. A novel identification method is proposed for the
learning of nonlinear input-output mappings. This identification method is combined with a multi-step
predictive control to provide an adaptive neural predictive control strategy. The proposed method is
superior due to fast adaptation and ability to address process nonlinearities. It is a viable adaptive control
approach which can achieve high performance when applied to nonlinear complex processes.
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