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Abstract: Data mining (also called knowledge discovery in databases) represents the process of extracting interesting and
previously unknown knowledge (patterns) from data. An association rule expresses the dependence of a set of attribute-value pairs,
called items, upon another set of items (itemset). This paper presents a comparative study of the most important iterative algorithms
used in association rules mining. A performance study that shows the advantages and disadvantage of the iterative algorithms
Apriori, Sampling and Partitioning is also presented.
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1. Introduction

In recent years the continued growth in the size of databases has led to an increased interest in the
automatic extraction of knowledge from data.

The term Data Mining, or Knowledge Discovery in Databases, has been adopted for a field of research
dealing with the automatic discovery of implicit information or knowledge within databases [7]. High
performance is a key factor for data mining systems in order to allow a sufficient exploration of data and
to cope with the huge amounts of data. Different architectures for Data Mining were studied in [4].

The implicit information within databases, and mainly the interesting association relationships among sets
of objects, that lead to association rules, may disclose useful patterns for decision support, financial
forecast, marketing policies, even medical diagnosis and many other applications. This fact has attracted a
lot of attention in recent data mining research [7]. Many authors focussed their work on efficient mining
of association rules in databases [1, 2, 6, 7, 8].

A very influential association rule mining algorithm, Apriori [1], has been developed for rule mining in
large transaction databases. Many other algorithms developed are derivative and/or extensions of this
algorithm such as Sampling and Partitioning algorithms.

Recently alternative data structures were employed in order to improve on the efficiency of existing and new
algorithms [10, 11]. In order to be able to compare new algorithms with existing algorithms a suitable
comparison framework must be established. This paper presents a comparative study of three of the most
important iterative algorithms used in association rules mining. This study will be further used and referenced
in future works on developing and extending new and existing association rules mining algorithms.

The paper is organised as follows. Section II presents the problem definition. Section III presents the
main aspects of Apriori algorithm and shown Sampling and Partitioning algorithms. Section IV shows a
comparative study of the algorithms. Section V presents the results and conclusions.

2. Problem Definition

Association rule mining finds interesting association or correlation relationships among a large set of data
items [8]. The association rules are considered interesting if they satisfy both a minimum support
threshold and a minimum confidence threshold [3].
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A more formal definition is the following [4]. Let 3 = {iy, iy, ..., im} be a set of items. Let D, the task-
relevant data, be a set of database transactions where each transaction T is a set of items such that 7 < 3.
Each transaction is associated with an identifier, called TID. Let A be a set of items. A transaction T is
said to contain 4 if and only if 4 £ 7. An association rule is implication of the form A = B, where A C 3,
BcF andAdn B =& Therule 4 = B holds in the transaction set D with support s, where s is the
percentage of transactions in D that contain 4 L B (i.e., both A and B). This is taken to be the probability,
P(A ' B). The rule 4 = B has confidence ¢ in the transaction set D if ¢ is the percentage of transactions
in D containing 4 that also contain B. This is taken to be the conditional probability, P(BIA). That is,

support(4 = B) = P(4 w B) ey
confidence(4 = B) = P(B|A) 2)

The definition of a frequent pattern relies on the following considerations [5]. A set of items is referred to
as an itemset (pattern). An itemset that contains k items is a k-itemset. The set {name, semester} is a 2-
jtemset. The occurrence frequency of an itemset is the number of transactions that contain the itemset.
This is also known, simply, as the frequency, support count, or count of itemset. An itemset satisfies
minimum support if the occurrence frequency of the itemset is greater than or equal to the product of
minimum support and the total number of transactions in D. The number of transactions required for the
itemset to satisfy mipimum support is therefore referred to as the minimum support count. If an itemset
satisfies minimum support, then it is a frequent itemset (frequent pattern).

The most common approach to finding association rules is to break up the problem into two parts [6]:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as frequently
as a pre-determined minimum support count [8].

5. Generate strong association rules from the frequent itemsets: By definition, these rules must
satisfy minimum support and minimum confidence [8].

Additional interesting measures can be applied, if desired. The second step is the easier of the two. The
overall performance of mining association rules is determined by the first step. As shown in [2], the
performance, for large databases, is most influenced by the combinatorial explosion of the number of
possible frequent itemsets that must be considered and also by the number of database scans that has to be
performed.

3. Iterative Algorithms in Association Rules Mining

3.1. The Apriori Algorithm
Figure 1 gives an overview of the Apriori algorithm for finding all frequent itemsets, using the notation in Table 1.

Table 1. Notations used in the algorithms

Notation Description
k-itemset  An itemset having k items.

Ly Set of large k-itemsets (those with minimum support).

Each member of this set has two fields: 1) itemset and 2) support count.
Cy Set of candidate k-itemsets (potentially large itemsets).
_ Each member of this set has two fields: 1) itemset and 2) support count.
Cy Set of candidate k-itemsets when the TIDs of the generating transactions

are kept associated with the candidates.

The first pass of the algorithm simply counts item occurrences to determine the large 1-itemsets. A
subsequent pass, say pass &, consists of two phases. First, the large itemsets L., found in the (k-1)™ pass
are used to generate the candidate itemsets Cy, using the Apriori candidate generation function (apriori-
gen) described below. Next, the database is scanned and the support of candidates in Cy is counted. For
fast counting, we need to efficiently determine the candidates in Cj that are contained in a given
transaction . A hash-tree data structure [1] is used for this purpose.
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L; = {large 1-itemsets};
for (k=2; L,.;<> @; k++ ) do begin
Cy = apriori-gen(L, ;);  //New

candidates
forall transactions t € D do begin
C, = subset(Cy, 1); //Candidates

contained in ¢
forall candidates ¢ € C, do
c.count++;
end
Ly={c € C;] c.count >= minsup }
end

Answer = U v Li;

Figure 1. The Apriori Algorithm

Apriori Candidate Generation: The apriori-gen function takes as argument L, ;, the set of all large (k-
I)-itemsets. It returns a superset of the set of all large 4-itemsets. The function works as follows. First, in

the join step, we join L, ;, with L, ;:
insert into C;
select p.item,, p.itemy, ..., p.item,.,, g.item;,
from Ly, p, Lis g
where p.item,=g.item,, ..., p.itemy ,=q.itemy.,,
p.itemy,; < p.itemy.;
Next, in the prune step, all itemsets ¢ € C, such that some (-1)-subset of ¢ is not in L, ; are deleted:
forall itemsets ¢ € Cy do
forall (4-1)-subset s of ¢ do
if(s & Li;)then
delete ¢ from Cy;
The subset function is based on the fact that the items in any itemset are ordered, and is described in detail in [1].

3.2. The Sampling Algorithm

To facilitate efficient counting of itemsets with large databases, sampling of the database may be used.
The original sampling algorithm reduces the number of database scans to one in the best case and two in
the worst case. The database sample is drawn so that it can be memory-resident. Then any algorithm, such
as Apriori, is used to find the large itemsets for the sample. These are viewed as potentially large (PL)
itemsets and used as candidates to be counted using the entire database. Additional candidates are
determined by applying the negative border function, BD™, against the large itemsets from the sample.
The entire set of candidates is then C = BD™(PL)UPL. The negative border function is a generalization of
the Apriori-Gen algorithm. It is defined as the minimal set of itemsets that are not in PL, but whose
subsets are all in PL.

Figure 2 shows the sampling algorithm [6]. Here the Apriori algorithm is shown to find the large itemsets
in the sample, but any large itemset algorithm could be used. Any algorithm to obtain a sample of the
database could be used as well. The set of large itemsets is used as a set of candidates during a scan of the
entire database. If an itemset is large in a sample, it is viewed to be potentially large in the entire database.
Thus, the set of large itemsets from the sample is called PL. in an attempt to obtain all the large itemsets
during the first scan, however, PL, is expanded by its negative border. So the total set of candidates is

viewed to be C = BD(PL)UPL.

During the first scan of the database, all candidates in C are counted. If all candidates that are large are in
PL, then all large itemsets are found. If, however, some large itemsets are in the negative border, a second
scan is needed. Think of BD™(PL) as a buffer area on the border of large itemsets. The set of all itemsets is
divided into four areas: those that are known to be large, those that are known to be small, those that are
on the negative border of those known to be large, and the others. The negative border is a buffer zone
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between those known to be large and the others. It represents the smallest possible set of itemsets that
could potentially be large. Because of the large itemset property, we know that if there are no large
itemsets in this area then there can be none in the rest of the set.

Input:

I /fitemsets

D //database of transactions
5 //support

Output:

L //large itemsets
Algorithm:

D, = Sample drawn from D;
PL = Apriori(l,D;,small,);
C=BD (PL)UPL

L=0;
for each [; € C do
¢;=0; /finitial counts for each itemset are 0;

for each ¢, € D do /ffirst scan count.
for each I, € Cdo
if ; € ¢ then ¢; ++;
for each I, € C do
ife,>=(sx|D)doL=LUI;
ML = {x | x€ BD'(PL)Ax € L}; //missing large itemsets.

if ML <> @ then begin
C=1L; //set candidates to be the large itemsets.
repeat

C =C u BD'(C) /lexpand candidate sets by neg border
until no new itemsets are added to C;
for each [, € C do

c;=0; //initial counts for each itemset are 0;
for each ¢, € D do //second scan count.

for each I, e Cdo

if I; € t; then ¢; ++;

if c;>= (s x |D|) do

L=Lul;

end

Figure 2. The Sampling Algorithm

During the second scan, additional candidates are generated and counted. This is done to ensure that all large
itemsets are found. Here ML, the missing large itemsets, are those in L that are not in PL. since there are some
large itemsets in ML, there may be some in the rest of the set of itemsets. To find all the remaining large
itemsets in the second scan, the sampling algorithm repeatedly applies the negative border function until the set
of possible candidates does not grow further. While this creates a potentially large set of candidates (with many
not large), it does guarantee that only one more database scan is required.

The algorithm shows that the application of the Apriori algorithm to the sample is performed using a
support called small,. Here small; can be any support value less than s. the idea is that by reducing the
support when finding large itemsets in the sample, more of the true large itemsets from the complete
database will be discovered.

3.3. The Partitioning Algorithm

Various approaches to generating large itemsets have been proposed based on a partitioning of the set of
transactions. In this case, D is divided into p partitions DL wa
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Input:
I /litemsets
D={D', D ..., D} /[divided database of transactions
s //support
Output:
L /large itemsets
Algorithm:
C=g;
//find large itemsets in each partition.
for i =1 to p do begin
L'= Apriori(l, D', 5);

c=clr;
end
L=@;
for each [, € C do
¢ =0; //initial counts for each itemset are 0;

// count candidates during second scan.
for each ;, € D do
foreach/, € Cdo
¢+
foreach 7, € Cdo
if ¢,>= (s x|D]) do
L=t | i

Figure 3. The Partitioning Algorithm

Partitioning may improve the performance of finding large itemsets in several ways [9]:

* By taking advantage of the large itemset property, we know that a large itemset must be in at least one of
the partitions. This idea can help to design algorithms more efficienly than those based on looking at the
entire database.

* Partitioning algorithms may be able to adapt better to limited main memory. Each partition can be created
such that it fits into main memory. In addition, it would be expected that the number of itemsets to be
counted per partition would be smaller than those needed for the entire database.

® By using partitioning, parallel and/or distributed algorithms can be easily created, where each partition
could be handled by a separate machine.

¢ Incremental generation of association rules may be easier to perform by treating the current state of the
database as one partition and treating the new entries as a second partition.

The basic partition algorithm reduces the number of database scans to two and divides the database into
partitions such that each can be placed into main memory. When it scans the database, it brings that
partition of the database into main memory and counts the items in that partition alone. During the first
scan, the algorithm finds all large itemsets in each partition. Although any algorithm could be used for
this purpose, the original proposal assumes that some level-wise approach, such as Apriori, is used. Here
L' represents the large itemsets from partition . During the second scan, only those itemsets that are
large in at least one partition are used as candidates and counted to determine if they are large across the
entire database. The partitioning algorithm [9] is shown in Figure 3.

4. Comparative Study

The previous section presented the main aspects of three important iterative algorithms used in
association rules mining. To be able to compare these (and other) algorithms a suitable comparison
framework was established. This framework’s design concentrated on its flexibility and extensibility, so
that new algorithms could be anytime added and compared to existing ones. In order to achieve this,
special interfaces and abstract classes were defined that provide abstracted access to different algorithms
and also for different databases. The entire framework was implemented using Java 1.4.
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public abstract class ARMiner {

/*#* Used to store the minimum support of a frequent itemset in
percentage */

private double minSupport;

/#* Used to store the minimum confidence of a rule in percentage */

private double minConfidence;
/** Used to store the frequent itemsets */

protected ItemSets frequentltemSets;
/** Used to store the generated rules */

protected Rules rules;
/¥* Default implementation of rules generation */

public void generateRules() { ... b
/** Declaration of the frequent itemsets mining algorithm */

public abstract long mineFrequentltemsets();
o ¥
¥

Figure 4. The abstract definition of an Association Rules Mining Algorithm

In order to evaluate the performances of the algorithms Apriori [1], Partitioning [9] and Sampling [6] and also
study their performance on different databases, these were implemented according to the defined interfaces.

Other papers present reports using binary databases. In this paper, for a more realistic evaluation,
databases stored on SQL servers (MS SQL 2000), accessed using standard ODBC drivers were used.
Although due to the flexible design, any other database types could be used.

The machine used to perform the tests was a Pentium 4 with a 1.7GHz processor, 256 MRAM with
Windows 2000 operating system.

To study the performance of the algorithms and the scalability, data sets with 10000 to 500000
transactions, were generated and support factors between 5 % and 40% were used.

Table 2. Generation parameters

Parameter  Description

|D| Number of transactions

[T Average size of the transactions

L} Number of maximal potentially large itemsets
N Number of items

The real-life model shows that people tend to buy some items together, forming a set. Each of these sets is
a potential frequent item-set. A transaction can contain more then one frequent item-set. The transactions
can have a different number of items, and the dimension of the frequent item-sets can vary. Taking into
account these facts we generated datasets depending on the number of items in a transaction, on the
number of frequent item-sets, etc. The method used was similar to that described in [1]. The necessary
parameters to generate the test dataset are described in Table 2.

The test datasets are generated setting the item number N = 100 the maximum number of frequent item-
sets |L| = 3000. We also set the average dimension o a transaction |T| = 10. These transactions we
generated, conforms to the transactions from retail commerce.
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Figure 5. Scalability function of support for D1 40K database

In Figure 4 we can observe that the three algorithms have an almost constant value for the execution time
when the support is greater than 30% on a database with a relatively small number of transactions (D1 =
40000), but the best performance is given by the Apriori algorithm. For a support less than 30% we notice
that the execution time increases dramatically.
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Figure 6. Scalability of the algorithms function of the number of transactions, for 25% support

The results from Figure 5 show that the Apriori algorithm has a good performance on a rather large
database, 150000 transactions, only for a high value of the support (minsupport > 30%). For a value less
or equal to 30% for the support, the execution time for the Apriori algorithm increases dramatically, while
the Partitioning and Sampling algorithms have an execution time smaller than the Apriori algorithm for a
support less than 30%. Thus, the Sampling and Partitioning algorithms have a better performance for a
larger database with a small support (less than 30%).

We notice that the Apriori algorithm has a low performance for a small support, for example a support
less than 10% even for small databases (50000 transactions). For a large database and a large support the
performance is satisfactory. When we grow the dimension of the database the performance of the Apriori
algorithm drops, even for a large support.

Figure 6 presents the scalability of the Apriori algorithm function of the number of transactions. The
database has a varying number of transactions, between 10000 and 150000, and a support factor between

5% and 40%.
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Figure 7. Scalability of the Apriori algorithm function of the number of transactions

Following these tests, the Apriori algorithm has a better performance on a database with a large number of
transactions but for a large support (> 20%). For large databases with small support (< 5%) the performance of
the Apriori algorithm drops dramatically, while the Sampling and Partitioning algorithms have a better
performance. For example, for a database with a number of 150000 transactions and a support of 40% the
execution time was 442 second, and for a support of 5% the time increased to 3098 seconds.

5. Conclusions

A comparison framework was developed to allow a flexible comparison between existing and new
algorithms that conform to the defined algorithm interface. Using this framework, this paper presented a
comparative study of three of the most important iterative algorithms used in association rules mining.

The Apriori algorithm has a low performance when executed on large databases with a large number of
transactions. This low performance is due to the fact that the dimension of the frequent item-set is rather
large. For example, for a frequent item-set with N>4, the Apriori algorithm needs N scans of the database

to discover the item, this being very time consuming.

For large databases with large support (> 20%) the Apriori algorithm has a better performance than the
Partitioning and Sampling algorithms, but for a small support (< 5%) the performance of the Apriori
algorithm drops dramatically.

The Sampling and Partitioning algorithms reduce the number of scans of the database to two and have a
better performance than the Apriori algorithm for large databases with small support (< 5%).

The Partitioning algorithm reduces the number of scans of the database to two and splits the database into
partitions in order to be able to load each partition into memory. During the second scan, only the item-
sets that are frequent in at least one partition are used as candidates and are counted to determine if they

are frequent in the entire database, thus reducing the set of candidates.

As future work, the developed framework will be used for testing and comparing new and existing
association rules mining algorithms.
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