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Abstract: Digital multisignature is signed by multiple signers with the knowledge of multiple secret keys and can be veritied based
on all signers' public keys. An efficient digital multisignature scheme can combine multiple individual signatures of the same
message into a single multisignature and this multisignature can be verified efficiently. In this paper we describe a multisignature
scheme with distinguished signing responsibilities. In this scheme each group member has distinguished signing responsibility and
partial contents of the message can be verified without revealing the whole message.
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1. Introduction

In [1] Harn has proposed two ElGamal type variants that can combine all individual signatures into a
multisignature without any data expansion. In other words, the length of the multisignature is equivalent
to the length of each individual signature. This result is reasonable since the length of the signature or
multisignature depends only on the security parameters of signature schemes and not on the number of
signers involved. Multiple signers with knowledge of multiple secret keys can produce a fixed length of
digital signature. Let us summarize properties associated with these multisignature schemes:

1. The length of multisignature is fixed. This property minimizes the communication and memory
costs of multisignatures.

2. The multsignature can be verified at once instead of verifying each one individually. This
property speeds up the verification process significantly.

3. The public key associated with this multisignature is just the product of all individual public keys.
This property reduces the size of public key directory since it needs only to store each signer's

public key.

The application of digital multisignature can be found in some secret sharing applications. For example, a
company's policy may require multiple managers to sign any business contract. Digital multisignature scheme
enables this internal policy effectively. Each manager has to use his individual secret key to sign the same
document and all individual signatures can be combined into a single multisignature. However, to any external
verifier, this multisignature is just a normal signature that can be verified by using the company's public key,
which is a product of all public keys of the signers. In the multisignature schemes proposed in [1], all group
members hold the same responsibility of signing the document. In fact, there are some applications that need to
use nmultisignatures with distinguished signing responsibilities. For example, a company releases a document
that may involve financial department, engineering department and program office. Each entity is responsible
of preparing and signing a particular section of the document. The signing responsibility of engineering
department may have no interest to read the content prepared by the financial department. However, the
combination of all sections represents the company's document. The company's document should be easily
verified by any outsider using company's public key. For the sake of confidentiality, same verifier may be
restricted to access and verify only some sections of the document. In this paper, we modify the schemes from
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[1] to convert them to be a multisignature scheme with distinguished signing responsibilities. A multisignature
scheme with distinguished signing responsibilitics can be found in many cryptographic applications. For
example, credit card, medical insurance and telephone companies can establish a joint venture to issue smart
cards to customers. By using the multisignature proposed in this paper can:

Allow each company to register and sign its own customers.
Reduce memory storage of each card since only a multisignature is needed on each card.

Reduce memory storage of each verifier since only the group public key is needed.

oW

Enhance the card security since multiple private keys needed to forge a multisignature.
Speed up signature verification.

The multisignature scheme described in this paper has been described in the setting of the group of points
on an elliptic curve defined over a finite field. Suitable choices include the multiplicative group of a finite

field, subgroups Z:, where 7 is a composite integer, and subgroups of ZZ of prime order g. Elliptic

curve groups are advantageous because they offer equivalent security as the other groups but with smaller
key sizes and faster computation times.

2. Digital Multisignature Schemes Using Elliptic Curves

In this section we describe the elliptic curve version of the multisignature scheme proposed in [1]. We

®
assume that there are ¢ signers U, 1 <i <{1to sign the same message me {0,1} .

2.1 Key Generation

Many researchers have examined elliptic curve cryptosystems, which were firstly proposed by Miller [5]
and Koblitz [2]. The elliptic curve cryptosystems which are based on the elliptic curve logarithm over a
finite field have some advantages than other systems: the key size can be much smaller than the other
schemes since only exponential-time attacks have been known so far if the curve is carefully chosen [31,
and the elliptic curve discrete logarithms might be still intractable even if factoring and the multiplicative

group discrete logarithm are broken.

Firstly, we choose elliptic curve domain parameters (see [3]):
1. Choose p a prime and » an integer. Let fix) be an irreducible polynomial over GF(p) of degree n,
generating finite field GF(p7) and assume that a is a root of f{x) in GF(p").

2 Two field elements a,b eGF(p?), which define the equation of the elliptic curve £ over GFp)
(i.e., y*=x*+ax+b in the case p>3, where 4a*+27b%0).

3. Two field elements x, and y, in GF(p"), which define a finite point P=(x,,y,) of prime order g in
E(GF(p")) (P#0, where O denotes the point at infinity).

4 The converting function ¢(x): GF(p")—>Z,» which is given by
n-1 i n—1 ; 5
c(X)= Y cpp €Z n, x=Y cpa’ e GF(p"), 0=c<p.
- p 5
i=0 i=0
For the elliptic curve over finite field see more details in [4], [7].
The operation of the key generation is as follows:
1. Each signer randomly selects an integer d, from the interval [/,q-1] and compules a
corresponding public key as the point:
Q,=d.P.
2. Compute the public key O for all signers, which is equal to the sum of all individual public keys
0=0,+0:+...+Q=dP=(xo.¥g).

where
d::dj +d2+.., +d¢ (I’n"lOd q)

3 Let H be a one-way hash function such as SHA-1 [6].
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2.2 Generating the Multisignature

Each signer U/, /<i<t executes next steps:
1. Randomly selects a number ki €f1,g-1] and computes
Ri=k;P= (XR Y ) 1<t
2. Converting the x-coordinate of point R; into the integer r,= C(X R ) where ¢(x) is the converting

function. The values 7, is broadcast to the other signer.

3. Once r, 1<<t, are available through the broadcast channel, each signer computes the commitment
Fas

FEritryt 4y (mod g).

4. Uses his secret keys, d, and k; to sign the message m. The signer U; computes

si=diHm)-krtmod q).

5. Transmits the pair (n,s;) to the clerk.

Once the clerk receives the individual signature (r;s,) from U, he needs to verify the validity of this
individual signature. The verification procedure is to compute the point

(r'ff-[(m)mod @O, - (¥'s; mod g)P= (X — ) I<i<t
and check
ri= C(X - )(mod q), 1<y,

Once all individual signatures are received and verified by the clerk, the multisignature of the messa ge m
can be generated as (7,s), where

§=8p+52+ s (mod ).

2.3 Verifying the multisignature

Since individual signatures (ri8), 1<9<t, satisfy

' Him)mod q)Q; - (v"'s;mod q)P= (X i, ) 1<i<t

Adding the above equations from 7 through /, we obtain

(r']H(m)moa' Q)0 - (v"'s mod q)P= (Xe Ve )

where s=s,+s5,+... +5, (mod q), O=0,+0,+.. +Q¢=dP:(xQ,yQ) and r=c(x,)(mod g). In other words, the

verifier computes the point (X.y.) and check if r=c(x,)(mod g). If this is true, then {¥,5) is accepted as the
valid multisignature of the message m signed by the users U, /<i<z.

3. Multisignature Scheme with Distinguished Signing Responsibilities

In this section we describe the proposed multisignature scheme with distinguished signing
responsibilities. The elliptic curve domain and the key generation are the same as in Section 2.

3.1 Generating the multisignature
We assume that there are ¢ signers U, 7<i<t. Instead of signing the same message m < {0,1}* directly,

each signer should prepare a section of message m; that he is responsible of and broadcast H(m,) to all
other signers, where // is the one way hash function.
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The operation of generating the multisignature with distinguished signing responsibilities is as follow:

1. Thesigner U, /<i<t, randomly selects a number ke[ 1,q-1] and computes

b=t

Ri=kP= (XRi s Yiita ) I<i<t.

2. The signer U, 1<i<t, converting the x-coordinate of the point R, into the integer r,-:C(XR_ )

where c(x) is the converting function. The values r; is broadcast to the other signer.

3. Once r, I<i<t are available through the broadcast channel, each signer U, computes the
value r as

F=ritro+.. e (mod gq).

4. FEach signer U, [<i<f, uses his secret keys, d; and k, to sign thc message
M=H(H(m,),H(my),...H(my), where H(H{m,),H(my), ... H(m,) means the hash value of the
concatenation of H(m,),H(my), ..., H(m,). The signer U, computes

s=diM — kir(mod g)
and transmits the pair (M, s,) to the clerk.

The clerk needs to verify the validity of the individual signature (r;, s,) from U,. The verification procedure
is to compute

(7' M mod g)Q; - (v's;mod g)P= (Xe_ s e ) 1<
and check
ri=c(x, ) (modq), ISi<t.

The multisignature of the message m=(m 1,0 is the pair (»,s), where s=s;+s2+... +s,(mod ¢q). Since
each signer is responsible of preparing a section of message m, the pair (r.s) is a digital multisignature
with distinguished signing responsibilities.

3.2 Verifying the multisignature
The verifier computes the point

M mod )0 - (! s mod gP=(x,, v ), 15t

where s=s,+s,+... ts,(mod q), Q=0;+Q+...+Q=dP. Also, the verifier check if r=ctx.)(mod q). If this
equality holds, the pair (»s) is a digital multisignature with distinguished signing responsibilities of the
message .

4. Conclusions

In this paper we proposed a digital multisignature with distinguished signing responsibilities. Instead
of signing the message H(mma...m), cach signer needs to sign the message
M=H(H(m,),H(ms),...H(my). The computation of H(H(m,),H(m3),...,.H(m,)) is faster than that of
H(m,,ms,...,m,) because each signer needs only to compute his own H(m;) and the other H(my), j#1,
I<i, j<t, has been computed by the other signer.

In the case some verifies only allowed to access partial contents of the message, the partial contents can

still be verified using the group public key without revealing whole message. This feature can be achieved
by just providing the one way hash values of the inaccessible contents to the verifier.
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