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1. Introduction

Edge is defined as all network resource nodes 
between the data source and the cloud center (Ning 
et al., 2020). Edge computing is the process of 
extending computing services from a centralized 
cloud-based model to the network edge (Mansouri 
& Babar, 2021; Shi et al., 2016). In the industrial 
field, an edge device generates and collects a 
large amount of data that is initially preprocessed, 
analyzed on the edge of the network, and then 
transmitted to a centralized cloud in different 
ways to extract in-depth knowledge (Taneja 
et al., 2020; Liu et al., 2021). In recent years, 
convolutional neural networks have played an 
important role in industrial control, including data 
prediction (Shen, 2021), target detection (Wang 
et al., 2022), anomaly detection (Liu et al., 2018; 
Globa et al., 2006) and attack sample generation 
(Zhou et al., 2021). However, with the increasing 
depth of the network, the demand for computing 
ability increases gradually, making it difficult for 
complex networks to be deployed on all kinds of 
edges, such as industrial control sensors, smart 
robots, mobile phones, etc. Although reasonable 
resource allocation for edge devices can effectively 
improve their overall performance, reducing the 

number of neural network parameters is still the 
root of problems. 

Researchers have proposed various methods 
for alleviating resource conflicts, such as more 
compact network frameworks (Yang et al., 2021), 
model quantification, knowledge distillation 
(Song et al., 2022), and network pruning. 
However, the classification of industrial datasets is 
different from various image classification tasks. 
Anomalies in edge industrial control systems often 
appear in some sensors or in sensors associated 
with a certain sensor, which resulted in abnormal 
data appearing in specific columns. Therefore, 
there will be more redundant features extracted 
from neural networks. These redundant features 
make some parameters of the filter in each 
convolutional layer update slowly or even remain 
unchanged for a long time.  Secondly, in the edge 
industrial control system, the pruning method 
must be simple and efficient in order to ensure an 
optimal data transmission rate between the edge 
and the cloud with the purpose of facilitating the 
update and maintenance of intrusion detection 
classifiers. Based on this, the historical behavior 
of filter parameters under Poisson distribution is 
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considered for selecting the active filters, which 
can effectively remove the redundant parameters 
of intrusion detection classifiers.

After network pruning, the performance 
degradation should be compensated by retraining 
the network. At present, there are two primary 
pruning methods, structured pruning and 
unstructured pruning (Li et al., 2016). To prune 
once and retrain means to prune filters of multiple 
layers at once and retrain them until the original 
accuracy is restored. To prune and retrain iteratively 
means to prune filters layer by layer or filter by 
filter and then retrain iteratively. The classifier is 
retrained before pruning the next layer so that the 
weights may adapt to the changes trigged by the 
pruning process. Obviously, the structured pruning 
requires less memory and time during training, 
and the unstructured pruning performs better 
during retraining. However, the proposed method 
considers the behavior of multiple filters at one 
time and pruning, so the former fits better.

Based on the above discussion, this paper proposed 
filter pruning through hybrid-order difference 
based on Poisson distribution. This channel-wise 
pruning method can effectively reduce the number 
of parameters. It brings about two contributions: 
(1) Calculating the first-order difference and 
second-order difference for the L1-norm of filter 
parameters, giving them weights and converting 
them into activity indices through the Min-Max 
function. (2) Verifying the method through two 
public datasets and an oil depot dataset.

The structure of this paper is as follows. Section 2 
introduces the current pruning methods. Section 3 
presents the specific principle and implementation 
process for the proposed method. Section 4 
discusses various experiments which were designed 
and conducted with the purpose of verifying the 
proposed method. Section 5 presents the conclusion 
of this paper and the proposals for future work.

2. Related Work

The network pruning can be traced back to the 
optimal brain damage approach proposed by 
Lecun et al. (1989), which could measure and 
prune low weights. Later, Hassibi & Stork (1992) 
proposed Optimal Brain Surgeon for removing 
unimportant weights determined by the second-
order derivative information. The authors used 
the Hessian matrix to determine the importance of 
weight, which is a preliminary analysis in pruning.

For unstructured pruning, some researchers 
regarded the parameters below a certain threshold 
as redundant parameters, which is a simple and 
effective pruning method. The sparse matrices 
generated by unstructured pruning slow down the 
network update and they are not conducive to the 
edge industrial control systems.

For structured pruning, the direction is relatively 
clear. The current research mainly focuses on 
formulating a more appropriate standard for 
evaluating the filters which are in convolutional 
layers. Li et al. (2016) proposed to select the filter 
based on the L1-norm and restore its performance 
through fine-tuning. This method is simple and 
effective, but it is difficult to apply to industrial 
control datasets. After some methods were put 
forward, researchers realized that better results 
could be obtained through global evaluation 
and dynamic pruning. For example, Wang et 
al. (2017) proposed global pruning. Abbasi-
Asl & Bin (2021) proposed global importance 
indices to evaluate each filter. Luo et al. (2018) 
proposed to use the optimization algorithm to 
guide the selection of filters. Guo, Yao & Chen 
(2016) adopted the dynamic pruning method to 
recover the loss during pruning. However, with 
the proposed method focused on global evaluation 
and optimization, the cost of the pruning method 
is gradually increasing. So, Zhuo et al. (2018) 
proposed a pruning method based on sparse 
spectral clustering. Yang, Chen and Sze (2017) 
proposed that balancing the resources needed for 
calculation and data transfer could significantly 
reduce consumption. As deeper and more complex 
neural networks emerge, the pruning method 
for complex neural networks is also proposed. 
For example, He, Zhang & Sun (2017) used 
the LASSO constraint to select the coefficient 
channel to be deleted, which can be applied to the 
residual network. Wang et al. (2020) proposed a 
pruning method based on random weights. These 
pruning methods do not consider the complexity 
of pruning, so an efficient and effective pruning 
method is urgently needed at the edge with limited 
computing resources. 

3. Methodology

3.1 Notation Explanation

In the process of pruning the intrusion detection 
classifier, certain notations were defined and their 
meaning was explained, as it is shown in Table 1.
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3.2 The Pruning Process

The historical distribution of the parameters is 
analysed and manipulated as it is shown in Figure 1  
and Table 2. The identities “S1”, “S2” etc. in 
Figure 1 represent the steps for implementing the 
proposed method, and the identities in Table 2 

represent the same. Equations for S2, S3, S4, S5, 
and S6 in Figure 1 are detailed in Section 3.3. The 
boxes in S1 represents the parameters of the filter.  
and  in S1 and S6 represent the start and end times, 
respectively. The red cross in S7 is the deletion 
symbol, indicating that the filters corresponding 
to a low evaluation value are deleted after sorting.

Figure 1. The proposed pruning method

Table 1. Notations and their meanings

Notations Meanings
thi the convolution layer i
in number of filters in the convolution layer i
ix the feature map input to the convolution layer i
1ix + the output feature map of the convolution layer i

/i ih w the size of the feature map input to the convolution layer i
imF the filter m in the convolution layer i

, ,i j kω the parameters of the position ( , , )i j k  in a filter

, ,
t
i j kd the first-order difference at the position ( , , )i j k  in the filter at time t

, ,
t
i j kD the second-order difference at the position ( , , )i j k  in the filter at time t

, ,
t

i j kW the weighted value at the position ( , , )i j k  in the filter at time t

, ,
t
i j kA the activity index at the position ( , , )i j k  in the filter at time t

iE the evaluation value of the filter i

Table 2. Pruning process

Input: weights of the model from p  to q
S1: obtain the initial weight of the model
S2: calculate the first-order difference at the adjacent time
S3: calculate the second-order difference according to the first-order difference
S4: calculate the weighted value by weighting the first-order and second-order difference
S5: the activity index is obtained by mapping the weighted value
S6: calculate the evaluation value according to the activity index
S7: select the pruned filter according to the sort of the evaluation value
S8: retrain the pruned model
Output: pruned model
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3.3 The Pruning Theory

Assume that the given task is to prune filters in 
the convolutional layer i . For the convenience 
of narration, the convolution layer i  is taken as 
an example without considering the pruning of 
other convolution layers. There are in  filters in 
convolution layer i . ix  becomes 1ix +  through in  
filters. The filter imF  consists of c  convolutional 
kernels of size a b∗ . Therefore, the filter can be 
regarded as a block with side lengths a, b , and c , 
respectively. A filter contains a b c∗ ∗  parameters. 
So if a filter is pruned, the number of the parameters 
of the classifier will be reduced by a b c∗ ∗ .

The first-order difference of weights at position 
( , , )i j k  is obtained as it is shown in equation (1). 
The second-order difference , ,

t
i j kD  is obtained by 

the first-order difference between times t  and 
1t − , as it is shown in equation (2). After that, the 

weighted value , ,
t

i j kW  can be obtained according 
to equation (3).

1
, , , , , , ( 3)t t t

i j k i j k i j kd tω ω −= − ≥                         
(1)

1
, , , , , , ( 3)t t t

i j k i j k i j kD d d t−= − ≥                         
(2)

, , , , , ,(1 )
( 3,0 1)

t t t
i j k i j k i j kW d D

t
α α

α
= − +

≥ < <                      
(3)

The weighted value is obtained by giving the 
second-order difference weight. With the change 
of a weight in a filter, it is difficult to judge the 
effect only by the first-order difference, so we use 
the second-order difference to measure the change 
rate of weights. Assuming that a weight changes 
from value 1ω  to value 2ω  from time 1t  to 2t , its 
growth mode can be linear, in steps, oscillatory, 
etc. Different growth methods have a different 
significance for feature extraction in a limited 
time. Therefore, the method for obtaining the 
evaluation value through the first-order difference 
and the second-order difference is proposed. For 
α , the value 0.2 is taken.

The weighted value is converted into activity 
index through the Min-Max function, as it is 
shown in equation (4), which avoids the step 
of threshold selection. The selection of activity 
threshold directly affects the activity index of the 
filter. So under different activity thresholds, the 
filters may be different. To avoid the error caused 
by the activity threshold, the evaluation value is 
mapped to a value between 0 and 1, as it is shown 

in equation (5), where minimum  represents the 
minimum weight of a filter between time p  and 
time q , and maximum  represents the maximum 
weight. Typically, p  and q  are considered 
the start and end time, respectively. However, 
different frameworks adopt different stochastic 
methods when initializing parameters, which 
makes parameter updating unstable. Therefore, 
increasing p  appropriately may reduce the error 
of randomization when pruning. The calculation 
method is shown in equations (6) and (7). For 
the classifiers with lots of weights, such as the 
neural network, a simple mapping relationship 
can reduce the memory consumption in the edge 
industrial control system. 

, , , ,( )t t
i j k i j kA f W=                                          

(4)

( ) x minimumf x
maximum minimum

−
=

−                    
(5)

1{ , ,..., }p p q
minimum

min W W W+
=

                   
(6)

1{ , ,..., }p p q
maximum

max W W W+
=

                
(7)

The filter is evaluated according to equation (8), 
where a , b , and c  denote the size of a filter. p  
and q  represent the starting and ending time, 
respectively.

1
, ,1 1 1

p q c b a t
i j kt p k j i

E A+ −

= = = =
=∑ ∑ ∑ ∑               

(8)

Z M X b′= ⊗ +                                          (9)
( )Y Z= ∂                                                    (10)

All of E  make up a set 1 2{ , ,..., }nN E E E= . The 
top K values in N  are set to 1 and the rest to 0.  
This 0-1 set can be expressed as N ′ . Essentially, 
N ′  is a mask set, where 1 means to retain the filter, 
and 0 means to remove it. All the parameters of 
the filter compose the tensor M , and the shape of 
M  is ( )n a b c∗ ∗ ∗ . After pruning, M  becomes 

'M , and the shape of 'M  is ( )K a b c∗ ∗ ∗
. Equations (9) and (10) represent the forward 
propagation process for the convolutional network 
(Lecun et al., 1998). X  represents the input, b  
denotes bias (a constant for promoting the model 
fitting), ⊗  denotes the convolutional operator and 
Z  represents the output of convolutional layer. ∂  
represents the activation function, which enables 
the neural network to fit the nonlinear function. For 
example, the Sigmoid function shown in equation 
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(11) is a common activation function, which was 
first used by Lecun et al. (1998). Y  denotes the 
output of the activation function.

1( )
1 ZZ

e−∂ =
+                                          

(11)

3.4 Pruning for Special Networks

If there are special structures such as basic blocks, 
bottleneck blocks (which comes from ResNet) or 
dense blocks (which comes from DenseNet) in the 
network, the pruning method needs to be adjusted 
according to the special blocks. 

In the case of basic blocks and bottleneck blocks, 
there is a shortcut for each block that passes the 
information to the convolution layer behind. It is 
necessary to ensure that the number of pruning 
filters in the convolutional layer on the shortcut 
path be the same as that in the last convolution 
layer on the forward propagation path. The number 
of pruning filters in the first convolutional layer 
on the forward propagation path is optional. The 
above is shown in Figures 2 and 3. The rectangles 
in these figures represent the convolution layers. 
Shadows indicate that the number of filters in the 
different convolutional layers is the same, and the 
absence of shadows indicates that the number of 
filters in the different convolutional layers could 
be different.

In the case of DenseNet, the information fusion 
method for dense blocks is concat, which is 
different from that of basic blocks or bottleneck 
blocks. So the number of filters does not need 
to remain the same, but it is preferred to keep 
the same number of filters to maintain a stable 
information transmission, as it is shown in 
Figure 4.

Figure 2. Pruning for basic blocks

Figure 3. Pruning for bottleneck blocks

Figure 4. Pruning for dense blocks

4. Experiments

4.1 Preparation

The experiments were run in Windows 10 with 
CPU AMD R7 4800H, GPU NVIDIA GeForce 
RTX 2060, and 16G memory. The employed 
program was Python 3.7. The deep learning 
framework were PyTorch 1.9.0 and TorchVision 
0.10.0.

The experiments only verified the pruning effect. 
The network was pruned when the loss converged 
and the accuracy was within an acceptable range. 



https://www.sic.ici.ro

10 Xue-Jun Liu, Hao Wang, Hai-Ying Luan, Yong Yan, Yun Sha

The evaluation method for pruning included the 
parameters (Paras), the FLOPs, and the accuracy 
change. The fully connected layers and the feature 
engineering such as feature selection or data 
preprocessing were not considered.

Three datasets were used, namely the DDoS 
dataset, the gas dataset, and the oil dataset. 
The gas dataset is from the Mississippi State 
University Key Infrastructure Protection Center 
for intrusion detection and assessment in industrial 
control systems. These datasets can be used to 
help researchers evaluate the performance of 
supervisory control and data acquisition intrusion 
detection system (SCADA IDS) by using actual 
SCADA attack modes. The CICDDoS2019 dataset 
contains benign and the most up-to-date common 
DDoS attacks, which resemble real-world data. 
It also includes the results of the network traffic 

analysis using CICFlowMeter-V3 with labeled 
flows based on the time stamp, source, and 
destination IPs, source and destination ports, 
protocols, and attacks. In the oil dataset, there 
are 131 attributes, including inlet pressure of oil 
pump, outlet pressure of oil pump, etc. The attack 
types are set to seven, as it is shown in Table 3.

4.2 LeNet-5 on Industrial Datasets

The pruning effect of LeNet-5 convolutional 
neural network was verified on the basis of three 
industrial datasets, and the experimental results 
are shown in Figure 5 and Table 4. The figures 
labeled by A, B, and C illustrate the results of 
LeNet-5 for the DDoS dataset, the gas dataset, 
and the oil dataset, respectively. The sequences of 
figures labeled by 1 (A-1, B-1 and C-1) show the 
trends for Acc Top 1 and the loss during pruning. 

Table 3. Abnormal states of an oil depot

Number Events Results

1 Increase / decrease the integral coefficient of the 
pipeline system.

The pressure on a device is out of balance in the 
process of transporting oil.

2 Distort the adjustment mode of the pipeline system 
from automatic to manual.

The pressure on a device is out of balance in the 
process of transporting oil.

3 Distort the integral coefficient of the pipeline 
system frequently.

The pressure on a device fluctuates up and down in 
the process of transporting oil.

4 Distort the output pressure of the pipeline system. The alarm system is activated. The pressure on a 
device is abnormal.

5 Turn on the switch to fill up a device with oil when it 
is not necessary. The pressure on a device increases sharply.

6 Distort the frequency of variable frequency pump in 
a pipeline system.

The pressure on a device is out of balance in the 
process of transporting oil.

7 Distort the oil flow in the process of receiving oil. The data is abnormal when a device is transporting oil.

Figure 5. The trends for various indices in the experiments based on LeNet-5 
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The horizontal axis represents the training epoch. 
The left vertical axis represents the accuracy. 
The right vertical axis represents the loss. The 
sequences of figures labeled by 2 (A-2, B-2 and 
C-2) show the variations of Acc Top1, Acc Top5, 
and FLOPs. The horizontal axis represents the 
percentage of pruning parameters. The left vertical 
axis represents the Acc Top1 and the Acc Top5. 
The right vertical axis represents the pruning 
FLOPs. Table 4 shows the final results for the 
pruned FLOPs, Acc Top1, Acc Top5, and loss 
for different pruning rates. The meanings of the 
experimental diagram in sections 4.3 and 4.4 are 
the same as those described in this section.

In the experiments on the DDoS dataset, when 
the pruning rate reaches 67.91%, the amount of 
parameters is reduced by 73.33%, and Acc Top1 
is only reduced by 1.89%. In the experiments on 
the gas dataset, when the pruning rate reaches 

91.90%, the amount of parameters is reduced 
by 96.97%, and Acc Top1 is only reduced by 
1.75%. The experiments on the oil dataset show 
that the accuracy may increase when redundant 
parameters are pruned. For example, the accuracy 
(Acc Top1) increased by 0.06%, when the amount 
of parameters was reduced by 81.61%.

4.3 VGG16 on Industrial Datasets

The pruning effect of VGG16 was verified based 
on three industrial datasets, and the experimental 
results are shown in Figure 6 and Table 5.

The experiments on the DDoS dataset and the 
gas dataset show that there are many redundant 
parameters in the case of VGG16. The fluctuations of 
Acc Top1 do not exceed ±2.45%. In the experiments 
on the oil dataset, when the pruning rate reaches 
97.61%, the Acc Top1 is only reduced by 0.82%.

Table 4. The final results in the experiments based on LeNet-5

LeNet-5 on DDoS Dataset

Pruning FLOPs (%) None 67.91 81.59 83.01 92.92 93.86
Δ Acc Top1 (%) 98.40 -1.89 -2.4 -2.5 -4.16 -3.57
Δ Acc Top5 (%) 100.00 0.00 0.00 0.00 -0.01 -0.01
Loss 0.0641 0.0723 0.1213 0.1097 0.1345 0.1435

LeNet-5 on Gas Dataset

Pruning FLOPs (%) None 64.61 78.79 80.08 91.22 91.90
Δ Acc Top1 (%) 93.38 -0.55 -0.62 -1.01 -2.34 -1.75
Δ Acc Top5 (%) 100.00 0.00 0.00 0.00 0.00 0.00
Loss 0.1714 0.1915 0.1975 0.2283 0.2304 0.2337

LeNet-5 on Oil Dataset

Pruning FLOPs (%) None 68.01 81.61 83.20 93.60 93.90
Δ Acc Top1 (%) 65.20 -0.33 +0.06 -0.62 -1.12 -1.40 
Δ Acc Top5 (%) 83.50 -1.12 -1.78 -1.74 -1.92 -2.28 
Loss 0.6619 0.6982 0.7155 0.7201 0.7988 0.8567

Figure 6. The trends for various indices in the experiments based on VGG16 
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4.4 ResNet on Industrial Datasets

The pruning effects of ResNet18 and ResNet50 
were verified for the oil datasets, and the 
experimental results are shown in Figure 7 and 
Table 6.

The experiments of ResNet18 on the oil dataset 
show that the amount of parameters is reduced 
by 83.9%, and the Acc Top1 is only reduced by 
2.28% when the pruning rate reaches 83.16%. 
When 95.62% of the FLOPs of ResNet50 were 
pruned, the Acc Top1 was not reduced by more 
than 2%.

The proposed method was compared with two 
other methods for the oil dataset, as it is shown 
in Table 7. L1-Norm prunes filters by calculating 
the absolute difference of weights. HRank prunes 
filters by calculating the average rank of multiple 
feature maps. The features of the industrial control 
dataset were analysed, in order to better extract 
the abnormal features and prune the redundant 
parameters. As it can be seen, the proposed method 
performed better than the other two methods.

Table 5. The final results in the experiments based on VGG16

VGG16 on DDoS Dataset

Pruning FLOPs (%) None 83.73 90.83 95.82 97.61 98.92
Δ Acc Top1 (%) 99.94 -0.02 -0.01 -1.09 -0.07 -0.05
Δ Acc Top5 (%) 100.00 0.00 0.00 0.00 0.00 0.00
Loss 0.0001 0.0002 0.0002 0.0002 0.0011 0.0025

VGG16 on Gas Dataset

Pruning FLOPs (%) None 83.70 90.82 95.79 97.59 98.91
Δ Acc Top1 (%) 99.13 -0.06 0.38 -0.78 -0.83 -1.09
Δ Acc Top5 (%) 99.95 +0.02 +0.03 -0.01 +0.03 -0.05
Loss 0.0108 0.0090 0.0089 0.0267 0.0280 0.0382

VGG16 on Oil Dataset

Pruning FLOPs (%) None 83.74 90.83 95.82 97.61 98.92
Δ Acc Top1 (%) 76.83 -0.10 -0.21 -0.30 -0.82 -2.45
Δ Acc Top5 (%) 96.91 -0.69 -1.03 -2.41 -2.48 -3.76
Loss 0.3935 0.4212 0.4390 0.4664 0.4586 0.5046

Figure 7. The trends for various indices in the experiments based on ResNet18 and ResNet50
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5. Conclusion

In order to reduce parameters and FLOPs of the 
neural networks and alleviate load pressure on 
the edge industrial control systems, this paper 
proposes the pruning of filters through hybrid-
order difference based on Poisson distribution. 
The experiments carried out show that the 
proposed method can prune various intrusion 
detection classifiers at a high rate and make the 
pruned classifier perform excellently in the edge 
industrial control system with limited resources, 
which may have a certain guiding significance for 

the construction of lightweight industrial control 
systems. Future work may focus on analyzing 
the distribution of parameters on the overall 
experimental results by adjusting the different 
pruning rates for different convolutional layers.
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Table 6. The final results in the experiments based on ResNet18 and ResNet50

ResNet18 on Oil 
Dataset

Pruning FLOPs (%) None 83.16 90.19 95.33 97.22 98.67
Δ Acc Top1 (%) 84.79 -2.28 -3.33 -4.07 -4.91 -7.33
Δ Acc Top5 (%) 93.91 -1.20 -1.32 -1.85 -2.73 -2.89
Loss 0.1483 0.3090 0.2118 0.3373 0.3838 0.4236

ResNet50 on Oil 
Dataset

Pruning FLOPs (%) None 83.41 90.66 95.62 97.45 98.85
Δ Acc Top1 (%) 86.65 -0.43 -0.64 -1.90 -4.54 -9.18
Δ Acc Top5 (%) 94.62 +0.08 +0.15 -0.26 -1.96 -4.50
Loss 0.1166 0.2099 0.2584 0.3137 0.4183 0.6360

Table 7. Comparison of the proposed method with other methods

Experiments Pruning FLOPs (%)
Δ Acc Top1 (%)

L1-Norm HRank The Proposed Method
LeNet-5 on Oil Dataset 83.2 -6.7 -1.88 -0.62
VGG16 on Oil Dataset 95.82 -4.43 -1.65 -0.3

ResNet18 on Oil Dataset 83.16 -8.92 -2.33 -2.28
ResNet50 on Oil Dataset 95.62 -6.83 -3.13 -1.9
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