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1. Introduction

Decentralized control theory and design of interconnected dynamical systems is still receiving increasing
interest in the control community ([1], [2], {3]). One of the benefits of decentralized control is that large-
scale systems (LSS) can be decomposed into many subsystems [4],[5], and the control system design and
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implementation of each one of them can be performed independently. This simplifies the overall control
problem. Moreover the computational burden can be shared by all the control stations involved. The main
difficulty in designing decentralized control systems is the limited information available for the control
law [6],[7},[8]. The set of the control stations is constrained to have immediate access only to local
information and restricted access to other subsystems’ information [9]. This is exactly what characterizes
a non-classical information pattern. Actually, much work has been conducted so far aiming at the analysis
of stability of decentralized conirol problems and the development of decentralized stabilizers using
output or state feedback (see e.g. [10], [11]). Moreover optimal decentralized control algorithms have
been developed for dealing with large scale systems (LSS) of this type [12]. But it is well known that
optimal control is not very suitable for complex industrial systems or general large-scale systems since it
needs an accurate model of the controlled system, and it is sensitive to parameter variations and to the

existence of stochastic disturbanees.

An alternative control approach that does not have the drawbacks of standard optimal centrol and it is
suitable for complex large scale systems is the so called Model-Based Predietive Control (MBPC)
approach [13-16]. This approach was developed in the mid-seventies, and allows for model uncertainties,
it updates the output of the model by closed-loop corrections, and optimizes the control law on a moving
horizon. In this paper the decentralized control approach is combined with the model-based predictive
control approach where for the estimation of the interconnection trajectories ([17]) a general technique is
considered that takes advantage of the capability of fuzzy logic systems 0 uniformly approximate any
non-linear function to any degree of accuracy. Section 11 of the paper presents the problem formulation,
Section 111 introduces the concept of MBPC and deals with the computation of the local part of the
control algorithm. Sections IV, V and VI present the various models implemented for the calculation of
interconnection signals. Finally, Section VI presents a set of representative simulation results for
particular examples including some comparisons between the models, and Section VI gives some
concluding remarks. '

2. Problem Formulation

Consider a discrete-time, linear, peossibly time-varying large scale system which consists of N-
interconnected subsystems, & h of which has the following state space description:

K+ DEAXi) Biui®Eizilt) (1a)
xi(0)=Xiy (i=1,2,....N) (1b)
ymi(O=Cixi(t) (1)
where:

xj(t): is the nj-dimensional state vector of the ith subsystem at time t,

uj(t): is the rj-dimensional control vector of the ith subsystem at time t,

Yt is the pi-dimensional output vector of the model of the ith subsystem at time t, and

zi(t): is the gj-dimensional interconnection vector that describes the influence of all other subsystems
upon the ith one.

The vector z(t) is considered to be a non-linear function of the states of all other subsystems, i.c.

2,(1) = D, (} (O Xy (s Xia (D Ko Oy @), 1=12N @

where @,(°) is assumed to be known to the ith control station. It is remarked that the output ym;(t) of the
model may generally have a small difference from the real output y;(t) because of modeling errors or
noise which affect the whole system of parts of it.

Fimally the matrices A, Bj, Ej, and Cj are of proper dimensions, i.e. Aj €Mppxnj Bj € Mpjxrjs
Ej €Muxgyp Ci € Mpjxnj, where Mixs is the set of matrices of kxs dinmrensions. In this paper we consider
tinte invariant systems but the algorithm can be extended to slowly time-varying systems. The problem is
“tp find at every time the best control uj(t) for the ith subsystem, which leads the output current value
yift) to its setpoint wit)”. The control must be “the best” in the sense of minimizing a cost function which
will be defined later. Moreover, the cotitrol laws must be specified in a decentralized way, i.e. the control
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laws are assumed to be of the form ui(t):A;{I_g(t)) , i=1,2,...,N, where Aj() is a function of the available
infqrmation set Ij(t) of the ith subsystem defined as follows:

H={yi(1), ¥i2),..., yi®) ; uj(1), ui(2),...,ui(t-1) ; xi(0), Xi(1),......, Xi(O)}

L(0)=2

This means that Ij(t) involves not only the measurement of the current output yj(t) but also the past
outputs yj(r) , uj(r) r<t. The information set li(t) does not contain zj(t) which is necessary for the
computation of uj(f) but it is not available to the ith control station because it depends on the non-
available states of the other subsystems xj(t), j#i.

In the following, the predictive control technique will be used to satisfy the problem requirements. It will
be shown that the control laws are of the form :

wtFuc@rude) , 71,2, N (3)

where ujS(t) is the local part of the control, i.e. the part which is available to the ith control station, and

wd(t) is the mon-local part of the control law which depends on information not available to the ith
control station, and actually depends on zj(t) and predictions of it.

3. MBPC and Computation of the Loecal Part of the Control

Maodel-Based Predictive Control is a control algorithm which uses a model for open-loop predictions, optimizing
the comtrol inputs on a moving horizon and updating the outputs of the model by elosed loop predictions.
Espeeially, at each time t, the output yi{t+k) is predieted over a fiture period of time k=12,... Ly where
Lyis the predietion horizon. The predictions are symbolized by ypiét*'kft) and are determined by means
of a model, for example a state space model like (}a-1c). The predictions ypy(t+k/t) , k=1,2,... Ly depend
on future control values uj(t+k/t) , k=0,1,....L,—1 , where Ly, is the control horizon (LyglLy).

We assume that the control signal for time t' > t+Ly, remains fixed in the last value of the control horizon
 uj{t+Lg-1), ie.

ul(t+Lu+m)ﬁﬂi(f+Lu 1) k>0
The ith subsystem output predictions can be calcutated as:
Ypi(tH=ym(tH/DHgift+k/Y) @

where ym; is the prediction for the output derived by the available model, using (1a, b) :

ylt+k/t)=C {Atx(t)-a-iA' Byu,(t+k- _]/t)+ZA' 'Ez,(t+ k- ]/t}} &

=1
k=121,

and qjt+k/t) is the closed-loop correction vector based on the available information set at time t. A
recommended form for qj(t+k/t) is the following:
gt +k/1)=y,(1)-yult) (6)
where yj(t) is the measured value of the output veetor at time t.
A reference trajectory ri(t+k/t), k=1.2,... Ly is defined over the prediction horizon, which describes how it
is desirable for the output vector yi(t) to move to its set-point wi(t), i.e.
r(t+k/t)=w,t+k/t)+ vt +k/t) )
where vi(t+k) is a correction vector based on the previous error information set {wi(t)-vi(t), wi(t-1)-yi(t-1),...,
wi(yi(D}. _
A simple form which gives good results is the following:

o (ki) =, -y, 0] ®
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where 0<a<l is a tuning parameter that specifies the desired clos&d—koop'&ynémic (a=0:fast control;
a=1:slow control). ‘ '

The reference trajectory is initiated at the current measured output i.e. ri(tF=yi(t).

It is noted that if the future set-point values wit+k/t), k=1,2,....Ly are unknown at time t, one can assume that:
wilt+Hi/t) = wilt) , k=1,2,...Ly )
All the above issues are illustrated in Fig.1.

The cost function for the ith control station has the form:

L L, -}
L= -;-‘:Z %:i(s +k/D -yt +k/t)§;m + Y +k/t)ﬁ;ﬂ} (10)

k=L, k=0
where Q,(k)20 fork=Lo,....Ly, and R;(k)> 0 for k=0,...Ly-l.

Since Jift) varies with time t and has a moving optimization horizon, only the first term in the optimal
solution is implemented to control the jth subsystem. The optimization parameter Lo determines, together
with Ly, the wooingidenee horizon” during which the predicted output has to follow the reference
trajectory over the time interval ft+Lg,...t+Lyl.

Controlled

Variable

yi(t)
Manipulated,

Variable

ui()
Figure 1. The Reference Trajectory, the Setpoint Trajectory, the Prediction Horizon, and the
. ‘Coincidence Horizon

The basic concepts of the MBPC structure (applied to the ith subsystem) are illustrated in Fig.2.

”&

Output |
Predictor -

P

,L--——-‘--hinj-:,—._.- s i,y . . e i . -

Figure 2. The Basic MBPC Structure
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The minimization of the cost function (16) over the future control scenario (sequence)
U, () =[u,(t/1),....u;(t+ L, =1/0)]", is straightforward (sce [3] for the complete proof):

0, (1) = G () + G (1) (10a)
a5 (1) =D, ()7, (1) a (10b)
HOES AGEA() 7 (10¢)

where the gain matrices f)i (t) and ]:Zi(t) depend on the ith subsystem parameters and the weight matrices
Qi(t), and Ry(1) of the cost function. The extended vector ¥,(t) depends on information which is fully
available to the ith control station, namely: current and future values of the closed-loop correction vector
qit) in (6), the distance between the reference trajectory and the setpoint vi(t) in (8), the setpoint wi(t)
itself in (9), and the associated subsystem’s parameters. On the other hand the extended vector
z(t) =[z,(t/1),...,z;(t + Ly —1/t)]" depends on present and future values of the interaction vectors. None
of the previous vectors is available to the ith control station because all these vectors depend on the states
(present and future) of the other subsystems. So, it is required to approximate or to predict them using
interaction models. In the sequel, an adaptive fuzzy, a neuro-fuzzy and a neural predictor are employed,
focused on the approximation of the present and future values of the interconnections necessary for the
computation of the non-local part of the control.

The method is implemented here, for the case of LSS that have an m-step delay sharing information
pattern. A decentralized control problem is said to have an m-step delay sharing information pattern
when it permits the spreading of its information through the subsystems after a delay of m time umits.
Clearly, each control station obtains instantaneously all the information about its associated subsystem,
and after a delay of m time units all the information available to a/l control stations. For the problem
considered here, this means that at time t, in the ith control station, the vectors Xj(t-m), j=i and all the past

values xj(t-m-k), k>0 are known. Then one can calculate zj(t-m) using (2). Without loss of generality, it
can be assumed that the jth component of the vector z{t-m), denoted as z/(t—m), is the output of a
MISO non-linear system:

Z:(t -m) = F'}(Z'J(t —m- l)szij(t —m- 2)3"'!Zij(t —m- p)) (l 1)
where p21 is the order of the model (design parameier). The task of the fuzzy system implemented here is
to estimate the function F/() at every time t for the kmown set of numerical data

{z}(t - m),Z}/(t—m —1),z)(t —-m - 2),...,z/(t —m - p)} . Afier this estimation, F/(-) becomes available and
can be iteratively used as: :
Zi(k/Y)=FE @/ (k-1/1),Z(k-2/1),...,Z (k- p/t)) a2)

k =t—m+l,t-m+2,...,t+Ly o |

for the calculation of the extended vector Z(t) and the non-local part of the control in (10¢). It is noted

that the estimation of F‘?(-} is updated on-line at every time t, since new input - output data are available.

4. Adaptive Fuzzy Predictors Based on Lookup Tables as Approximators
for the Interconnections
In this section, a simple and effective method is presented for adaptive fuzzy system design based on the

work of Wang [18], which performs a one-pass operation on the numerical input-output pairs. In the
following, a brief description of the proposed fuzzy system used is given.

Consider a set of desired input-output data pairs is given:
(7% y O (x P, x5y P, (13)

where X, and x; are inputs, and y is the output. This simple two-input one-output case is chosen in order
to emphasize and clarify the basic ideas of the proposed approach; extensions to general multi-input-
multi-output cases are straightforward and will be discussed later in this section. The task here is to

Studies in Informatics and Control, Vol.12, No.1, March 2003 2



generate a set of fuzzy rules from the desired input output pairs of (13) and use these fuzzy IF-THEN
rules to determine a fuzzy logic system. This approach consists of the following five steps:

Step 1: Divide the Input and Output Spaces into Fuzzy Regions

Assume that the domain intervals of X, X; and y are [x7,x; LIx;,x;}and [y~,y"], respectively, where

the domain interval of a variable means that most probably this variable will lie in this interval (the
values of a variable are allowed to lie outside its domain interval). Divide each domain interval into 2N +
1 regions (N can be different for different variables, and the lengths of these regions can be equal or
unequal) and assign to each region a fuzzy membership function. It is recommended that a normalization
procedure of the data in the interval [0,1] takes place before they feed the fuzzy system. Figure 3 shows
an example where the domain interval of x;, is divided into seven regions (N = 3), and the domain region
of x is divided into five regions (N = 2). The shape of each membership function is triangular; one vertex
lies at the center of the region and has membership value unity; the other two vertices lie at the centers of
the two neighboring regions, respectively, and have membership values equal to zero. Of course, other
divisions of the domain regions and other shapes of membership functions are possible.

Step 2: Generate Fuzzy Rules from Given Data Pairs

First, determine the degrees of the given xP,x{ and y?in different regions. Second, assign a given
x® xP or y® o the region with the maximum degree. Finally, obtain one rule from each pair of desired

input-output data according to their associated degrees. The rules generated in this way, are “AND” rules,
i.e. rules in which the conditions of the IF part must be met simultaneously in order for the result of the
THEN part to occur.

1 f b2 b b4 3

o8\ 08

06 0.6

o4} [\ 04

02}/ 0.2

of ) —
¢ o0z 04 08 08 1 0 o0z 04 08 08 1

| x '

Figure 3. Membership Functions Examples

For the problem considered here, i.e. the problem of generating fuzzy rules from numerical data, only
" AND" rules are required since the antecedents are different components of a single input vector.

Step 3: Assign a Degree to Each Rule

Since there are usually many data pairs, and each data pair generates one rule, it is highly probable that
there will be some conflicting rules, that is rules which have the same IF part but a different THEN part.
One way to resolve this conflict is to assign a degree to each rule generated from data pairs and accept
only the rule from a conflict group that has maximum degree. In this way not only is the conflict problem
resolved, but also the number of rules is greatly reduced. The following product strategy is used, for the
assignment of each rule with a degree: for the rule “IF x,, is A and X, is B, THEN y is C,” the degree of
this rule, denoted by D(Rule), is defined as

D(Rule) =p, (x!)p‘n(.xz)uc()f) (14)
where p; (x) is the membership function value of fuzzy set L for the crisp value X.

In practice, a priori information about the data pairs is often available. For example, if an expert checks
given data pairs, the expert may suggest that some are very useful and crucial, but others are very unlikely
and may be caused just by measurement errors. Although it was not necessary to implement it in our
examples, generally the designer can assign a degree t0 each data pair which represents the belief of its

usefulness. Suppose the data pair (x{”,x{",y") has degree i then the degree of Rule is redefined as
Y 1 %2

D(Rule) = (%, ) (%5 (Y (15)
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That is, the degree of the Tule is defined as the product of the degrees of its components and the degree of
the data pair which generates this rule. This is important in practical applications because real numerical
data have different reliabilities. For good data, higher degrees are assigned, whereas for bad data lower
degrees are assigned. In this way human experience about the data is used in a common base as other
information. If one emphasizes objectivity and does not want a human to Jjudge the numerical data this
strategy still works by setting all the degrees of the data pairs equal to unity.

Step 4: Determine a Mapping Based on the Fuzzy Rule Base

The following defuzzification strategy is used to determine the output control y for given inputs (x,,x,).
First for given inputs (x;,x,), the antecedents of the ith fuzzy rule are combined using product operations

to determine the degree of “i)‘ of the output control corresponding to (x,,x,) that is,
Mos =My (X my, (x,) (16)

where O' denotes the output region of Rule i, and I; denotes the input region of Rule i for the jth
component. Then the center of gravity (COG) defuzzification formula is used to determine the output

i =i

Yy
y=£eto) a7
Zizluoi

where y' denotes the center value of region O' (the center of a fuzzy region is defined as the point which

has the smallest absolute value among all the points at which the membership function for this region has
membership value equal to 1), and M is the number of fuzzy rules in the fuzzy rule base.

From Steps 1 to 4 one can seeﬂ;atthepfqaosedmethodisshnpleandsvdghﬁrwmdmmesenseﬂmhisa
one-pass build-up procedure that does not Fequire time-consuming training; hence, it has the same advantage
that the fuzzy approach has over the neural approach, namely, it is simple and quick to construct.

This four-step procedure can easily be extended, to general multi-input-multi-output cases. Steps 1 to 3
are independent of how many inputs and how many outputs there are. In Step 4, p; in (16) needs to be

replaced by u;_ » where j denotes the jth component of the output vector ( 0; is the region of Rule i for
the jth output component; My » is the same for all j), and the COG formula (17) must be changed to

i ot

i=1" O} 7 j
y, =2t (18)
Z‘.:t”();

where ¥, denotes the center of the region ol

S. Adaptive Neuro — Fuzzy Predictors as Approximators for the Decentralized
Part of the Control

In this section the proposed neuro-fuzzy predicior is presented.

The configuration of the fuzzy logic system is shown in Figure 4 where the fuzzy rule base consists of a
collection of fuzzy IF-THEN rules, and the fuzzy inference engine uses these rules to determine a
mapping from fuzzy sets in the input universe of discourse to fuzzy sets in the output universe of
discourse based on fuzzy logic principles. As real world variables are numbers, fuzzifier and defuzzifier
modules are incorporated to the system.
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____________________________________ | . Fuzzy System
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!  Fuzzifier =l F“ZZYE In 64‘—-—' Defuzzifier |-

Figure 4. Neuro-Fuzzy Predictor

The fuzzy predictor is a MISO system. The input vecior Jength is denoted by N. All elements of the fuzzy
system are described next :

Fuzzifier :

The fuzzifier maps crisp points in % to fuzzy sets defined in R. The fuzzifier outputs are singletons fuzzy
setswiﬂitheirmiquenotmovahwsawﬂievalueofﬁle cmespmdingm!mberinpﬂ.Aﬁnzysﬁ ‘
A defined on R is called si if for a unique xe®R A(x)~1 and for all other ye®R A(y)F0. Non-
Singleton fuzzifier are only used to reflect the measuring uncertainty of the corrupted by noise variables
fed in the fuzzy system. Inﬁseﬁzzypredicwrﬂaeuseofm-smgkmmﬁﬁawmﬂdmﬂoMea
significant computational cost overhead and only a minor improvement in prediction results.

Fuzzy Rule Base : _
The fuzzy rule base consists of a collection of M (=1,2,...,M) fuzzy 1F-THEN rules of the general form:

R':if X,isF and X,isF, and..and X, isF, then YisG'

Where F! (i=1,2,...N) and G are fuzzy sets, X; (i=12,...,Ny and Y are the input and output linguistic
variables, respectively. These fuzzy JF-THEN rules are mostly used as they provide a comvenient
framework for a straightforward mapping from the fuzzy input space 1o the output one. As the fuzzifier is
singleton the linguistic variables X; are singleton fuzzy sets. Output linguistic variables are also chesen 10
be singleton fuzzy sets for computational cost reasons. As we will see next, both “Fuzzy Inference
Engine” and “Defuzzifier” modules have dramatically decreased computational burden due to the use of
singleton output linguistic variables. Moreover, this choice does not seem to influence at all the quality of
the fuzzy systems used in control applications.

F}’ fuzzy sets are Gaussian membership functions (figure 5)

x-%Y
ﬂ.{?i(xi)=ex "(1 ,,)
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Figure 5. Gaussian Membership Function

Gaussian membership functions provide good generalization for the fuzzy system which is very important
as the input space is multi-dimensional (usually 4-dimensional). A narrow membership function, like
triangular, would need at least four times more training data to cover the whole i'npm space and to give

Fuzzy Inference Engine :

The inference engine combines the information stored in the fuzzy rule base with a number of past values
of the interconnection signals to predict future values of those signals. The inference engine is
implemented with the product fuzzy implication :

ﬂA»B({:y)zﬂA(E)'ﬂB(y) 19
where p, is defined according to the product operation rule : )

”A({) = Hrx..xF, (-E) . J”;f, (xl) “Hrs (xz)’f'ﬂf,\, (xN) (20)

From the common fuzzy implications (Min, Arithmetic, Maxmin, Boolean) this is the only one that can
be used in a fuzzy system trained by the back propagation (BP) algorithm, since BP requires the
calculation of some derivatives associated with the fuzzy system function.

Defuzzifier :

The defuzzifier performs a mapping from fuzzy sets space to real numbers. Having used singleton fuzzy
sets as output membership functions, the defuzzifier performs a non-linear interpolation using the real
numbers each of which is the only non-zero element of the corresponding singleton output. So it is logical
to utilize the center average defuzzifier which gives as output the most probable value. The center
average defuzzifier is defined as -

55 lu7)
TS 6)

where 7' is the center of the output fuzzy set G' of rule 1.

2D

Having defined all the modules of the fuzzy system we can now extract its corresponding function which
has the form;

Studies in Informatics and Control, Vol. 12, No.1, March 2003 . 61



W )=oi)-a, LI 0y oeimf o
| ; Gy

where a,, a,, and o, are the learning steps used for the three sets of parameters.

6. Neural Estimation for the non Local Part of th;‘ Control

Multilayer Perceprions (MLPs) are networks where the processing units (neurons) are arranged in layers.
The nodes of each layer take as input the outputs of the nodes of the previous layer and perform 3 non-
linear (usually sigmeidal) transformation on them in order to Produce their outputs. The units belonging
to one layer are connected only to the nod i

- (Fig. eams by adjusting Ve fopagation algorithm, which

computes the error 1© actual and the desired output for a number of training patterns (supervised
- learning) and “backpropagates” it to the units which adjust their assossiated weight valyes so that the
actual response of the network moves closer to the desired response. To express the above in a formal
mathematical way, the output of the i-th node is assumed to be:

9, =6(Zwy.+91} o-(x):]/(]-—e"') 27
J

where wij is the weight corresponding to the connections from node j to node i, and 0j a fixed value called
“threshold”. The algorithm minimizes the value of the “energy” function

E(w) = Z(ty-o0,)? . 28)
)

.Where tp, Op are the desired and the actual output when the netwerk receives as input the pattern p. To do
s0, it uses the delta rule, thus

wii(n+1) = Wij(n) —n- VE(w) 29)

mapping function)
In this paper a multi-layer percepiron is used at each contrel station to predict the interaction trajectrories
over the prediction horizon, )

Figure 7. A Multi-layer Perceptron with twe Hidden Layers

An estimation of k), kEO,],...,LY-I can be obtained by an appropriate model of zj(t-m) as a function of zj(t-
m-) j=1,2,....p, where P is a design parameter, For this purpose the vector Zji{t-m) is compited as the ouiput of an
MLP with inputs the 2i(t-m) values, j=1.2,...p.  this case of course the training s done on-line since each
estitnated value s used for the estimation of the next ene. The training algorithm is a variant of the standard back-
propagation algorithin. That is, the energy function to be minimized is the following:
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E(w) = Z(t, - 0,) (30)
P

where wij is the weight of the conmection from node j to node i, and K2, ny are appropriate constants.
The extra term added inereases the stability of the algorithm and the generalization capability of the
network by reducing the number of active weights (i.e. weights with values not practically equal to zero).
The weights are again adapted according to the delta rule where the gradient of the new energy function is
computed. The initial weight values are random but small, so that the derivatives of the network output
atiain their maximum values. During the first m time-steps before the real value of the predicted variable
is communicated to the subsystem, the network output is random. From that time on, the network is
trained on-line such that to minimize the energy function (30), where p increases as more real values are
communicated to the subsystem. The training stops when the value of E(w) becomes smaller than a preset
Timit depending on the specifications of each problem.

7. Simulation Results

Here, two simple but nemirivial examples of the application of the proposed predictors to the
decentralized centrel scheme are provided. These examples illustrate the predictors’ capabilities and
effectiveness, and provide a comparison of their performance in the specified task. :
- System (i) ‘

This system consists of two subsystems and a 3-step delay sharing information patiern. The poles of the
first subsystem are -25+10i (in the s-domain) and the ones of the second subsystem are -5135i. For both
subsystems a discrete-time state-space model was derived using the Cmiml Toolbox of Matlab. The
Model Based Predictive Controller has the following parameters: L.~1, L,=10, L,=8, a=0.4, Q=1, R=10
3] (1 = the identity matrix of proper dimensions) for both subsystems. :

" The interaction model is:

z] —J X](Z} + 2x2(2)

2=%" — % |
The interaction gain matrices in the siate space model are E;=[0.3 0.1}, E;=[-0.4 0.3]. Four past values of
the interconnection signal (that is p=4 in (11) and (12)) were used as input variables in all medels to
predict the next value of the interce on signal. The plots of Fig. 8a show the oulpuis of the iwo
subsystems in the case where the M centroller acts alone and no care is taken concerning the
interconnections. Figures 8(b-d) show the outputs of the subsystems when each one of the three proposed
models is used to predict the interconnection signals. ‘

(a) No Decentralized Control
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(d) Neural Predictor

Figure 8. Simulation results of system (i). (a) no decentralized control, (b) results with fazzy
predictor, (c) results with neuro-fuzzy predictor, (d) results with neural predictor

System (i)
This system consists of two “harder” subsystems and a 3-step delay sharing information pattern. The
poles of the first subsystem are -8+60i (in the s-domain) and the ones of the second subsystem are -1+50i.
The Model Based Predictive Controller has the following parameters L=1, Ly=7, L=5, «=0.5, Q=I,
R=10"1, for both subsystems. The interaction model is:

= (22 (423
21 =X = 3X2

2=/ (M +1)
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(c) Neurofuzzy Predictor

(d) Neural Predictor

Figure 8. Simulation results of system (i). (a) no decentralized control, (b) results with fuzzy
predictor, (c) results with nearo-fuzzy predictor, (d) results with neural predictor

System (ii)
This system consists of two “harder” subsystems and a 3-step delay sharing information pattern. The
poles of the first subsystem are -8+60i (in the s-domain) and the ones of the second subsystem are -1+50i.
The Model Based Predictive Controller has the following parameters Lo=1, Ly=7, Ly=5, o=0.5, Q=I,
R=10"1, for both subsystems. The interaction model is:

= 22 (22
Z1 =X, = 3}(2

="/ (x| + 1)
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The interaction gain matrices in the state space model are E,=[0.6 0.2], Ef{ﬂﬁ -0.1]. Four past values of
the interconnection signal were used as input variables in all models to predict the next value of the
of the two subsystems in the case where the

interconnection signal. The plots of Fig. 9a show the output y
is taken concerning the interconnections. Figures 9(b-d) show the

MBPC controller acts alone and no care 1
outputs of the subsystems when each one of the three proposed models is used to predict the

interconnection signals.

- () Neurofuzzy Predictor
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lized coutrol, (b) resujts with Tuzzy
ults with Beuro-fuzzy Predictor, (d) resyjtg with neura] Predictor
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