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Abstract: Much work has been done on analysis and control of continuous or discrete time-delay systems. However, the
discretization of continuous time-delay systems has not been extensively studied. This paper introduces an original approach to the
discrete approximation of continuous-time linear anisochronic models by discrete models for the purposes of numerical modelling,
simulation, identification and control. Depending on the required numerical accuracy of the approximation, this method employing
the Taylor series enables us to determine the order and the resulting structure of a discrete linear model appropriate for numerical
processing. The technique is simultaneously applied, more in greater detail, to a continuous anisochronic model of the 2™ order
which is often used in applications including various forms of delays that are very closely related to the existence of continuously
distributed parameters. In addition, this work includes derived, original formulae which enable us to convert directly an original
continuous linear anisochronic model of the 2™ order into the corresponding discrete approximation. Finally, an example is given of
the application of the method, and a measure of agreement is shown between the original continuous anisochronic model
representing the systemn and a discrete approximation of it.
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1. Introduction

The rapid dev‘elopment of digital technology has affected the fields of modelling,h simulation,
identification and control of so-called hereditary systems, i.e. systems where time delays and latencies are
an essential feature of process dynamics.

Time delays and latencies are closely conmected with mass, energy and information transport.
Considerable attention has therefore been paid to these systems in recent years. To describe such models,
so-called anisochronic models (as opposed to isochromic models) are nowadays often applied.
Anisochronic models enable nmmlti-parameter systems (multi-dimensional systems) to be described
including not only transport delays of these input variables but also intemnal delays of their state variables.
For more detailed information about anisochronic models, see e.g. [7] and [9].

The linear models represented by the matrix differential equation (1) and the matrix equation (2) are
anisochronic models which have been often used.

J'c(t):i/L-x(t—S,)+i:Bj-u(t~tj) (e))
=0 j=0 "

W) =C-x(t) )
where, X(7) is the first derivative of state vector X attime f, x(f—3,) isthe state vector at time

I=9,,u(t—1,) is its input vector at time /-7 ,
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4;,i=0,1,---,m and B,,j = 0,1,---,n and C are particular constant matrices,

9,=0, 9,>0,i=12,---,m, and 1, =0, 7, >0,j=1,2,---,n are the delays of the state

variables and of the input variables respectively.

If anisochronic model (1) is to be used for digital modelling, simulation, identification or control, it is
necessary to find the corresponding discrete approximation of this linear model.

In the case of discrete approximation of continuous linear models where the influences of transport delays
are not considered, the field of theory of alternative discrete model design has been well covered, see, e.g.
[3]. Although much work has been done on analysis and control of continuous time-delay systems, there
are only a few published methods of discrete approximation of linear anisochronic models for cases
which respect internal and external point delays. The basic reason is that the characteristic equations of
anisochronic models are not algebraic but transcendental. Such equations admit an arbitrarily large
number of roots in the complex domain, and each of the roots tends to influence the resulting response of
the system even in the case of an unlimited set of roots. For this reason not all the roots of the
characteristic equation can be determined, as required in common methods of classic discrete
approximation of continuous models. This problem has been solved by searching for dominant roots {4},
[6]. [8], using FIR filters [5] or with the help of recursive solution of the state vector [2]. In this paper the
proposed discretization method does not reguire determination of the roots of the characteristic equation,
and allows us to design the discrete model with respect to the required accuracy.

2. Discrete Approximation of a Linear Anisochronic Model

In order to avoid looking for the roots of the characteristic equation of an anisochronic model, the Taylor

series expansion (3) evaluated in the neighbourhood of the operating point () is used to obtain its
discrete approximation.

X(t +A) = x(£) + (1) A+ E(O) - B+ F (1) -4+ | 3)

where A is a step of discrete approximation

={0)

The derivatives of the state vector can be obtained using equation (1); e.g. it holds for
.y £}

B(fy=Y A-%(t—=9;)+ ) B, u(t-7,). @
i=0) J=0 .

The goal is to obtain a model suitable for digital control where the input vector changes only at discrete

moments. Assumption (5) can be accepted for time instants t=k-A k=012,

u(t—1,)=[0] for j=0,1,---,n (5)

0} .
where [ ] is the vector of zeros.

Applying formula (1) once again, formula (4) yields

¥(t) = iAﬂ | > Ay x(t=9, ~9,)+ > B, -ut=9,-1,) |=
g e

il=0 i2=0
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=Z Z Ay - 4, -x(f—Sj_; _8i2)+ZZAH By ut-9,-1)). (6)

1=0i2=0 =0 j=0

Each state vector derivative occurring in the Taylor series expansion (3) can be evaluated by application of the
ethod introduced above, and the resulting formula (7) is obtained after substitution info those derivatives.

x(t+A)=x(t)+A-(Zm:A,.] -x(t—9i1)+iBj -u(t-—‘cj)J-!-
J=0

il1=0

+g—f-[z Z Ay Ay -x(t-9, -3,.2)+ZZA,.1 ‘B, -u(t-9, —TJ.)J+

11=0i2=0 120 j=0
m m m
+é_j‘(z 2 Z A A Ay -x(1—- 9, -8, - 9,5)+
11=012=03=0
m m n
+ZZZ41'A"2'BJ'u(f"‘gii“giz-fj)J"“"' (7
i1=012=0 j=0

The number of elements of the Taylor series expansion is optional and should be chosen with respect to
the required accuracy of the a proximation. This results from the fact that the approximation error of

Taylor’s polynomial of the /" order at time £+ A is vector e(t + A),

I+1

ey~ ®

e(t+A)=

where £ € (f,+A). The particular value of the (I+1D)" state vector derivative at time &, ie.

x(m)( &), can again be calculated according to formula (1),

If the time arguments of the state vectors or the input vectors are not commonly integer multiples of the
discrete approximation time step A, it is necessary to apply a method that uses known vectors obtained at
time instants £ -A, where k = 0.1,2,--- and which thus enables the state vectors to be estimated.
Various interpolation methods 4] can be utilized for this purpose. So-called linear interpolation is one of
the simplest methods and is satisfactory in most cases. Interpolation using spline functions is a more
sophisticated method that takes advantage of the application of formula (D).

3. Discrete Approximation of a Anisochronic and Order Model

In this section, the described common method of discrete approximation will be applied to a linear
anisochronic model of the 2™ order with the s-operator transcendental transfer fimction 8)

K ¥
G(s)= 8
(<) (T -s+1)-(T-s+e™*%) L

where K is the static gain, T is the transport delay of the input, 7', 7, are time constants, and 9 is the
feedback delay (which is determined by the location of the inflex point of the transient response, see Fig.1)

Transfer function (8) corresponds to differential equation ]

L-T-3(0)+T - () +T, ‘j;(t~8)+y(z‘—9)=K-u(t—‘t) 9)
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Because of its considerable universality (its structure remains the same regardless of the plant which is to
be approximated), this model has been used increasingly in recent years for describing real processes in

practice, e.g. [11,[6].[71[9].

Using the standard method of successive integration, model (9) will be transformed into the state-space
representation. :

xl(t):‘_xﬁﬁ‘ﬂ_]{.u(t_,g)

TN
5 7 X (t)  xa(t=9) (10)
%, (1) =%(1) - le e
y(t) = —%”'—%) 1)

Then, the set of equations (10) can be modified as given by (12), which corresponds to the matrix
notation (1) .

J'c(t)on-x(t)+Ai-x(t——8)+Bl-u(t-‘c). (12)
x,(?)
where  x(7) :[ } and

x, (1)
0 0
Ao{l ;1} (13)
i
o oL
4=| 1 (14)
07
-K
B, = } . (15)
L0

By applying the technique introduced in section 1, the elements of the Taylor expansion series (3) can be
determined with the use of formula (12). As it holds

0 0

the state-space model representation below can be derived

x(t +A) = Do (A) - x(1) + 4 L@, (A)-x(1-9) + 4" D, (A)-x(t-2-9)+

+A43 - Dy(A) x(t-3-9)+ -+ D ()5 u(t -1+ a7
+4,-®,(A)- B, u(t-1-9)+ 47 @;(A)- By u(t—1—2-9)+

where @ (A) is the fundamental matrix which is defined by the infinity series
‘I’O(A):eA“'A:I+A0-A+A02‘A72+A03-%%+--- (18)

where [ is the unit matrix, and it holds for ®,(A),i=1,2,3, - that
A

®,(A) = [®,_,(x) dx. (19)
0

The fundamental matrix ®(A) may easily be derived by the inverse Laplace transform
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(20)

t=A

' N -1
Gy (&)=L [s-1-4T"]
where L' denotes the inverse Laplace transform, and s is a complex variable which is related to
the Laplace transform. :

-

It follows from formulae (13) and (20) for @,(A)

1 0
Dy(A) = —A -A | : (21)
~h-(e -1) f

By recurrent computation using (19) and @21), ®,(A),i=1,2,3,-- can be evaluated. Thus, for
example, it holds for @, (A), D,(A), D,(A) that

[ A 0

R E-{A-]} .,.]I.e}?] y;.[l_e:ﬁé] (22)
f a2 0

®,(A) = ﬂ»[%z—ﬂ-A—le-e:TTA”}z] TI-[A—T,H;-e—T?J 23)
r 2 .

= 3’1[%‘%2"7] +Tn3e%+fizﬂ—TfJ TI(ATZ”IA—TIZB%”IZJ -

If the formzilae introduced above are utilized to obtain the discrete approximation of the anisochronic
model represented by the operator transfer function (9). i.e. by differential equation ( 10) with parameters
T=25T1=1s,K =1, 9=032s, 1=045 s, then the resulting anisochronic model discrete

approximation with the discrete time step A = 0.1s is

x(k+1) =P -x(k)+ A, -x(k-3.2)+P, x(k—6.4)+ P, - x(k—9.6) +---

o+ Uy -u(k—4.5)+ U, Uk=17.7+U, -u(k-10.9) +---

Wk)=C-x(k) (25)

1 0

-3
-2.41910 -0.048
where £y =®,(A)= [0 65" omas J,

24191073 —0,048

]’PizAi'(Dl(A)z[

-5 -3
4.063-10 -1.209:10
P =47 @,(A) = ,C=[0 -05],
~5 -3
4.063-10 -1.209-10

P g = | -0.1
-5.106-10 2.032:10
3:A13'(D3(A): 7 . :L‘():(D](A)'B]:[ _3J,
-5.10610"/ —2.032:107° -4,837-10

8.1291077 -1.0211076
U1=A1-(I)2(A)-B]=[ _SJ’U2=A12'(D3(A)'31:[ ‘6}’
8.12910 -1.02110
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and it holds for the discrete time k that £ =k -A. The decreasing influence of the former state-space
variables and also of the inputs can be observed on the previous formulae, and consequently the order of
the discrete model may easily be set with respect to the required accuracy. Simultaneously, it is easily

seen that the columns of particular matrices F,7 = 1,2,--+ and of each vector U, j = 1,2,:++ contain

the same values.

For the case of considering only marices £, R, P, and vector U, for a discrete model, the transient

responses (Fig.2) and frequency responscs (Fig.3) of the two compared models are shown to demonstrate
agreement between the anisochronic model (9) and its discrete approximation {(25).

The influence of former values of the state variables and of the inputs are neglected (elements of matrices

P,,i=3,4,--- and vectors Uj,j =1,2,--- areless than 1074,

4. Conclusion

Discrete approximation of continuous systems is a necessary step when their models are to be numerically
implemented. The original method of discrete approximation of a linear anisochronic model introduced
here can be applied to the field of numerical modelling, simulation, identification and control of systems
with external and internal delays. The method does not require knowledge of the roots of a characteristic
transcendental equation, and allows the structure and the order of the discrete model to be estimated in
relation to the required accuracy of the approximation. The method also enables derivation of expressions
(17), (18) and (19). which are applicable to the wide class of hereditary systems described by the
anisochronic model. Further research will be aimed toward further generalization and seeking for explicit
formulae applicable in the field of technical cybernetics.
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