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Abstract: In this paper. we propose a unitary tool for modeling and analysis of discrete event systemns monitoring. Uncertain knowledge of
such tasks asks for specific reasoning and adapted fuzzy logic modeling and analysis methods. In this context. we propose a new fuzzy Petri
net called Fuzzy Reasoning Petri Net: the FRPN. The modeling consists in a set of two collaborative FRPN. The first is used for the fault
dynamic state of the system by temporal spectrum of the marking. A monitoring tuzzy Petri (MFPN) net represents the fault tree. The second
model, RFPN (recovery fuzzy Petri net), corresponds to recovering activities. The two models form a dynamic loop for production system
monitoring and recovery, Production system is supposed to be modelized using various types of Petri nets, with the assumption that the

primary fault symptoms are known. These symptoms are considered in the monitoring FRPN and evolve in relation with all other derived
faults of the system. Synchronizing signals, corresponding to different warning levels and alarms, form the interface between these two tools.
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1. Fuzzy LOGIC Approach FOR Monitoring and Recovery

The complex analysis of re-configurable discrete event systems requires specific flexible, fast reasoning and
modeling methods. The field of the artificial intelligence seems very appropriate for menitoring and renewal
applications, In the class of modeling tools, fuzzy Petri nets [4, 6, 7] are very interesting tools for discrete event
systems characterized by an imprecise knowledge. I. Cardoso, R.Valette and D. Dubois have published in [3] a
very complete overview of the existing fuzzy Petri nets (FPN) approaches.

Chen [4] and Gao, Zhou, & all [8] have some important research contributions in fuzzy reasoning Petri nets. For
monitoring tasks modeling, we complete this approach by defining an extension of the FPN able to integrate, by
a fuzzy temporal approach, the instant of occurrence of a default or degradation of a discrete event system. The
recovery is the consequence of a reasoning based on a fuzzy logical rule basis, modelized by another FPN tool
with a similar typology. This FPN recovery model has a double interface, one with the monitoring (detection and
diagnosis) system and the second one with the studied (supervised) discrete event system. In theses interfaces,
information is transmitted by an emission/reception protocol, using a representation inspired by the synchronized
Petri nets [11], adapted to the fuzzy variables transmission.

In the next paragraph, we define the fuzzy Petri net for monitoring. Following, the recovery fuzzy Petri net is
introduced. An example of industrial study is presented at the end, for illustrate the interest of the proposed
modeling and analysis algorithms.
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2. Fuzzy Petri nets for Monitoring

2.1. Fuzzy Monitoring

Fuzzy Petri nets are used for fuzzy reasoning modeling, based on the static logic rules [4, 6, 7] according to their
evolution in time. In this sense, we propose a fuzzy Petri net for monitoring (MFPN — monitoring fuzzy Petri
net). By a fuzzy temporal approach, this tool permits us to model the dynamic behavior of a monitoring system.
The MEPN treats a fuzzy logic rule base obtained from the logic expression of the supervised system fault tree.
Inadequate for linear logical reasoning [8], the MFPN doesn't apply to the resources state modeling [2, 3, 12].
MFPN represents the union or the intersection of logical reasoning, while respecting the specific concepts of the
fuzzy logic [, 4, 6, 7]. Analysis possibilities of such a tool offers us refined information of every basic and
derived defect, by the transfer of fault signals temporally synchronized. We also show the impact of critical cases
and strategies (represented by the critical path in fault tree) to the strategy of the prognosis function.

2.2. Monitoring Fuzzy Petri Nets Definition

In the first part of our study, we treat the problem of a discrete event system monitoring. We suppose that the
surveyed system is modelized by a high-level temporal Petri net, able to include the fault symptom detection,
using appropriate devices like watching dogs [5].

The monitoring fuzzy Petri net - MFPN is defined as being the n-uplet: MFPN =< P, T.D, L, O, f, F, 7S, 'R,
o, B, A>, with: .
P={p, Pz,Dnl- the finite set of places modeling possible faults, identified at the discrete event system

level. Two types of faults characterize this fault set: basic faults and derived faults. The considered faults
can be as well transient that persistent;

T=4{t tr,..ta}-the finite set of transitions, representing the fault evolution, corresponding to the set of
logical fuzzy rules R. Every transition is associated to a fuzzy rule;

D={d, d,,...d,} -the finite set of logical propositions that defines the rule basis R;
] - T— P -the input function of places;
O: P — T - the output function of places;

f: T—> F - the function that associates to the every rule modelized by a transition, a function F describing the
credibility degree u = F() of the rule. The instant t corresponds to the detection of a fault symptom in the
surveyed discrete event system;

98 ={ s, S3,..., .51} - the set of fuzzy symptoms (signals) received by the monitoring system from the surveyed
discrete event system;

IR={r1 r2,.., .0} - the set of fuzzy recovery information (signals) emitted by the monitoring system. These
signals will be used by the recovery tool;

o P = [0,1] - the function giving a fuzzy value o, of credibility for each place p; corresponding to the logic
proposition d; €D. This parameter represents the possibility of apparition of the corresponding fault;

B : P — D - the bijective function that associates a logic proposition d, to each place p; €P;

3: P — [0,1] - the function that associates an acceptance/permissiveness warning threshold 4, of the fault
corresponding to each p, P of the critical path of the fault tree. These thresholds represent the starting point
of all recovery policy.

M, - the basic faults places initial marking. Every token of the marking Mp is associated to the fuzzy number 1
that means the certainty of the basic fault occurrence. By convention, places associated to the basic faults
are not represented in the global model of the MFPN.

Fach transition of the MFPN represents a fuzzy logic elementary proposition: _d,- — d,. The transition is
associated to a function F(2) describing the degree of credibility of the corresponding proposition at the time ¢
(firing possibility at time 7). The function g = F(t) represents the membership function c_)f the fuzzy variable ¢ to
the fuzzy set defined by the linguistic variable: “occurrence of the fault d” (ﬁg.l). Being variable in time, the
value of credibility 4 gives to every rule, a dynamic credibility character. Th$: 1_nterval [0 AT] represents the total
studied period. A fault is producing if it occurs in the interval [to, t...) and it is fully produced if its occurrence
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instant belongs to [ty AT] (fig.1).
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Figure 1: Fault Propagation Modeling Using MFPN.

Every place of the MFPN is related to a (basic or derived) fault of the supervised system. The marking of a place
1s associated to a fuzzy credibility value o in the interval [0, 1]. For the MFPN represented in the figure |, the
place p, is associated to the observed fault (new experience) and the place p; to the derived fault (conclusion).
The fuzzy value o, associated to the marking of the exit place, will be calculated using the generalized modus
ponens [1]. In our approach, we consider the operators: T(u,v)=min(u,v), L (u.v)=max(u,v) and the generalized
modus-ponens operator Torovabitisic(U, v)= u * v. The value o of credibility of the conclusion will be calculated
using the next formula (1) [4, 6, 7l

akzaj-;t,ﬂy,:% ()
j

We suppose [6] that a transition firing consumes copies of tokens of the places of the M,. This hypothesis is
justified by the respect of the logical reasoning principle: if a hypothesis is true. it always remains true.

Proposition 1 : The degree of truth M corresponding to a transition associated to proposition
(PrAaDIA..A D)y DY

which receive in a synchronous way the signals {? 80755 P, } s ;

yenay

min(a, - u,.a, CHy 0 )
min(af,a:,,...,ak)

if the transition receives temporal synchronized signals for the input positions and

i =0, ifthe transition does not receive any signal 7s;.

We specify that signals {? Sis s T8 } represent instants of elementary implication validation:
DI - D', Dy D", . . Dfpr

Proposition 2 : If a fuzzy implication transition doesn't receive its corresponding fuzzy symptom signal, we
consider the degree of truth p =0 for the transition representing the elementary logical proposition D* — D' .

The synchronization information between the supervised discrete event system model (temporal Petri net - TPN)
and the fault propagation corresponding model (monitoring fuzzy Petri net - MFPN) are illustrated in figure 1
using a fuzzy signal representation inspired by the synchronized Petri nets [I1].

3. Fuzzy Petri Nets for Recovery
3.1. The recovery problem in monitoring
The recovery action requests a new tool, able to integrate temporal synchronous fuzzy information of the

monitoring system, related to a base of fuzzy logic rules. This detailed information can describe the critical faults
associated to the critical path of the MFPN model.
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We propose thus a second tool called recovery fuzzy Petri net (RFPN), representing a fuzzy expert system.
Using the fuzzyfication of the embedded variable (the marking value of the place that receives the signal), the
fuzzy signals represent input variables for a mechanism of inference to a base of fuzzy logic rules (fig.2). This
base R is designed according to the strategy adopted for an optimal recovery. The so obtained RFPN model
represents a variant of a fuzzy controller for discrete event systems. The transitions of the model materialize the
generalized modus ponens operator, by the composition of input variables and the base of rules R. The outputs of
the RFPN are also synchronized fuzzy temporal signals. They are correction controls for the supervised system,
cither fuzzy recovery signals for the subsystems of the next decision level.

3.2. RFPN definition

The recovery fuzzy Petri net - REPN is defined as being the n-uplet :

RAPFR ={P.T.x,,D,X .Y, R, VSM,3.1,0,f,A, 1)

with:

P=P* U P" -the finite set {p,,pl,...phq} of input P* and output P/ places;

= {1 ...t} - the finite set of transitions specialized in inference/aggregation operations of logic rules

and fuzzy variables defuzzyfication;
X = {x1 e A } - the finite set of markings of p, € Pt places;

¥ = {J’us}’ze---)’q} - the finite set of output normalized variables, associated to the markings of
P, € P places;

D=D* U D’ - the finite set of the logic variables. D*, D ¥ are subsets of variables that are respectively in the

antecedence and in the consequence of the base of rules R;

R = U R",R" :D* - D’ -the fuzzy logic rules set. We supposes that the set R of rules can be incomplete
w=1}
from the point of view of the possibilities of exhaustive combination of the logical variables associated to
the D" and respectively D" ;

X' ={X,X,...X,.X,,..X,} - the finite set of membership functions, defined on the universe [0,1] of the

variables { X1, X7...x; ) associated to the logic variables of D" . k represents the number of input variables;

Y'={}.Y,,..Y, .Y, .Y, }- the finite set of membership functions, definite on the universe of variable

ql? g2 "y

{ L - } . partners to the logical variable {yl Ny o, I } of DY, q is the number of output variables;

2! S:{l‘l,f‘z,...f}“q,}‘ the set of received/emitted (fuzzy) signals for recovery/control. The signal r, induces a

vector of fuzzy numbers in the input places;

M, :P* sy = (0,0,..0)},_,, - the initial marking of the input places p, &P representing the corresponding null
vectors;

§:P > {"'1 o - } - function that associates a dimension v, to every input place. For an input place, v, is
the number of membership functions defined on the universe of the variable x;. For an output places, v, will

be equal to |

[:T, - PandO:T; — P - (places) input and output functions;

kxgq . -
f:P— U ¥ - function that associates to every place p;, the membership function v, corresponding to the
w=l

fuzzy description F* of the variable x, ;

A P* > [0,1] - function that associates to a place p, P* a threshold value of acceptance/permissiveness warning
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4 of the corresponding fault, from the point of view of the recovery. The parameter 4, is associated to places
belonging to the critical path of the fault tree;

—

XY 5 DY -a bijective function that associates a fuzzy set X; to a logic proposition D!': being in the

[}

antecedence of a logic implication :

—

:¥" — DY - a bijective function that associates a fuzzy set ¥ to a logic proposition D} being in the

consequence of a logic implication.

L

o9k 4
I h \
bozeosendl \ —
: J |
rit d ‘! | 4
v ey
1y ‘ |
Loy, DY D, <01 (1), oal(t), ||
Yu Yi Y

Figure 2: Recovery Modeling Using RFPN.
For the complex systems, the recovery action permits a modular approach (fig.3).

Proposition 3 : If a fuzzy signal represents the input of several modular recovery subsystems, it will be
multiplied by a simple transition.

Remark : The RFPN model is open and can have input interface places with elaborated information obtained
with other intelligent sensors. The presence of these places permits us to develop, by the different techniques of
the artificial intelligence, a distributed monitoring platform.
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Figure 3: Modular Recovery System.

Each input or output place of the RFPN is associated to a fuzzy description. For the input places, we describe the
marking variable of the place, whereas for the output places we describe the normalized control.

For each subsystem modelized by RFPN, we identify a transition specialized in a complex operation of input
variables composition. Each base of logic rules R represents the fuzzy implications describing the knowledge
base of the expert. Each implication respects the “if-then™ model represents the logical dependence of linguistic

variable {DXU D’} associated to the fuzzy sets {Xk,Yq}. The composition of K rules, requires an

aggregation mechanism using intersection or means, Two methods of approximate reasoning exist: the Al (the
aggregation of rules followed by the in ference) method and the IA (the inference of the every rule followed by
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K
the aggregation) method, that give almost the same results. We chose the first approach R = ﬂ .o R*, where
=1

ﬂ T represents the operation of aggregation using the T - triangular norm or X - mean.

Proposition 3 : [n order to obtain the fuzzy variable associated to the rule base R, we apply the ZMA approach
(Zadeh—Mamdani—Assilian) [1]. In this approach, a fuzzy rule R" is generally interpreted like a superposition of
simultaneously true logical propositions:

Ru @ Q(Xlu ’Q(X 2u 59(""Q(X k-1,u ’X ku )))) ® (Ylu) = R:DX (.;'l‘ o_i‘_\' O®)Dy

For an arbitrary input variable, modelized by a fuzzy set X', while applying the concept of generalized modus ponens,
we obtain a fuzzy exit set Y7, that will be obtained by the composition between fuzzy sets Rand X’

Y =RoX Y =supT(X,R):
re X
where T is the generalized modus ponens operator.
A defuzzyfication operation f_d will be necessary to get the exact value of Y. In fact, a specialized transition of

the RFPN is associated to the operations:

Y= f’if(sugT(x',ﬁ LR Y =S n'(supT(x‘,R)]

4. Industrial Applicétion

We considers the logic expression F of the fault propagation in a failure tree of a flexible production system of
our partner, the “[nstitut de Productique” of Besangon [10] :

F =[(atbtctd) ¥el+btce

where + and * operators represent the union or the intersection of the logic variables {a, b, ¢, d, e}. This
expression corresponds to the previous failure tree with the set of associates of rules (fig.4). The critical path
indicates places that send warning signals in the recovery model (fig.6). Output variables u; and u, represent
controls of the system. The logic reasoning between the MFPN model and the RFPN model, constitute the base
of the fuzzy logic rules (fig.5).
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Figure 4: Representation of the Function F Using Logic Blocks and MFPN.
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Figure 5: Fuzzy Rule Base for the Recovery.
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Figure 6: Modeling of the Real-Time Recovery System.

5. Conclusions

In this paper, we have proposed two fuzzy Petri net tools, MFPN - monitoring fuzzy Petri nets and RFPN -
recovery fuzzy Petri nets, able to modeling and analyze monitoring and recovery tasks of a discrete event
system, using a temporal fuzzy approach. The discrete event system and the monitoring and recovery models
communicate using fuzzy synchronous information. This approach permits us to give a finer spectrum of the
discrete event system failures. The use of the fuzzy logic and of the associated degree of credibility for a failure
event/evolution includes a prognosis point of view in the monitoring fuzzy tool.

[n order to improve our fuzzy Petri net tool, a future research is represented by the extension including the
negation and other logical operations as suggested in [8]. by keeping our temporal specification.
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