Tuesday , December 11 2018

Recurrent Neural Networks in Linear Systems Controlling

P. C. PATIC1, R. M. ZEMOURI R.2, L. DUŢĂ1
1 Valahia University of Târgovişte,
18-24, Unirii Ave., Târgovişte, Romania
patic@valahia.ro, duta@valahia.ro

2Laboratoire d’Automatique du CNAM,
21, Rue Pinel, 75013 Paris, France
ryad.zemouri@cnam.fr

Abstract: This paper presents an application of an ANN (Artificial Neural Network) of a RNRF type (Recurrent Network with Radial basis Function) in controlling a linear system. The performance of ANN-based control solution is compared with a classic controller and the results show that ANN behaves better than the classic controller. MATLAB simulation performed show that the coupling between the ANN and a proportional controller gives the best performance.

Keywords: Human-machine interface, usability criteria, end-user development, risks.

>Full text
CITE THIS PAPER AS:
P. C. PATIC, R. M. ZEMOURI R., L. DUŢĂ, Recurrent Neural Networks in Linear Systems Controlling, Studies in Informatics and Control, ISSN 1220-1766, vol. 19 (2), pp. 153-158, 2010.

1. Introduction

The linear systems control is today an important research and development area in control engineering. In the real world, however, many processes are characterized by a nonlinear dynamic behavior which makes impossible to use conventional tools for automatic control. The same applies to systems for which mathematical models are incompletely specified or of a poor quality. There is currently no systematic theory to be applied to control such processes. To solve this problem, one solution is to use a learning phase to identify the process model or controller. The term ‘learning’ is about changing the structure and/or system settings in order to improve its future performance, based on previous experimental observations [1, 4]. Some adaptive controlling methods have been developed, to enable the evolution of controller depending on the task [3, 9]. The structure of the controller being already chosen, those methods allow fixing a number of parameters of this one. If the general principle used by these algorithms is similar to learning done by ANN, adaptation is done by a simple setting of a small number of coefficients of the control loop without storage capacity [5]. Systems with learning characteristics such as ANN (Artificial Neural Networks) can be successfully utilized in control problems such as the decision support or situation recognition [4, 6, 12, 13]. In this case we speak about learning in command rather than adaptive control.

This article consists of three parts. Section I reviews a dynamic variation of ANN that one of the authors of this paper proposed in a previous work [21]. Section II presents the basic principles and some methods of neurons control technique. Finally, Section III presents the tests and the obtained experimental results.

REFERENCES

  1. Baker, W. L., J. A. Farrell, An Introduction to Connectionist Learning Control Systems, In D. A. White and D. A. Sofge, editors, Handbook of Intelligent Control, Van Nostrand Reinhold Ed., 1992, pp. 35-64.
  2. Chappelier, J. C., RST: une architecture connexionniste pour la prise en compte de relations spatiales et temporelles, Thèse de doctorat, Ecole Nat. Sup. des Télécomm., 1996.
  1. Costaftis, M., Comportement et contrôle des systèmes complexes: introduction aux méthodes algébriques, qualitatives et fonctionnelles, Diderot éd., Arts et Sciences, 1997.
  2. Elfelly, N., J.-Y. Dieulot, P. Borne, A Neural Approach of Multi-model Representation of Complex Systems, International. Journal of Computers Communication & Control-IJCCC vol. 3, no. 2, 2008, pp. 149-160.
  3. Elman, J. L., Finding Structure in Time, Cognitive Science, vol. 14, 1990, pp. 179-211.
  4. Filip, F. G., K. Leiviiska, Large-scale complex systems, Springer Handbook of Automation (S. Y. Nof , Ed.). Springer, Berlin, 2009, pp. 619-638.
  5. Gauthier, E., Utilisation des Réseaux de Neurones Artificiels pour la Commande d’un Véhicule Autonome, Thèse de doctorat, Institut National Polytechnique de Grenoble, Janvier 1999.
  6. Ivanescu, M., M. C. Florescu, The Control of Hyper-redundant Manipulators by Frequency Criteria, Studies in Informatics and Control vol.18, no3, 2009, pp. 279-288.
  7. Jordan, M. I., D. E. Rumelhart, Forward Models: Supervised Learning with a Distal Teacher, Cognitive Science, vol. 16, 1992, pp. 307-354.
  8. Kawato, M., Schemes and Models for Control of Arm Trajectory, In W. T. Miller, R. S. Sutton, and P. J. Werbos editors, Neural Networks for Control, MIT Press, 1990, pp. 197-228.
  9. Narendra, K., A. M. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood, NJ, 1989.
  10. Narendra, K. S., K. Parthasarathy, Identification and Control of Dynamical Systems Using Neural Networks, IEEE Transactions on Neural Networks, vol 1(1), 1990, pp. 4-5.
  11. Patic, P. C., Neural Approaching of the Materials Processing Establishing Problem, Scientific Bulletin of the Electrical Engineering Faculty, 2006, pp. 57-59.
  12. Pomerleau, D. A., Neural Network Perception for Mobile Robot Guidance, Kluwer Academic Press, 1993.
  13. Psaltis, D., A. Sideris, A. Yamamura, A Multi-layer Neural Network Controller, IEEE Control Systems Magazine, no. 8, 1988, pp. 17-21.
  14. Simpson, P. K., Fuzzy Min-max Neural Networks – Part II: Clustering, IEEE Transaction on Fuzzy Systems, Vol.1, 1993, pp. 32-45.
  15. Stergiou, C., D. Siganos, Neural Networks, (http://www.docstoc.com/ docs/15050/NEURAL-NETWORKS-by-Christos-Stergiou-and-Dimitrios-Siganos) on-line 2007
  16. Widrow, B., F. W. Smith, Pattern-Recognizing Control Systems, Proceeding of Computer and Information Sciences, 1964.
  17. Zemouri, R., D. Racoceanu, N. Zerhouni, Recurrent Radial Basis Function Network for Time-Series Prediction, Engineering Applications of AI, The International Journal of Intelligent Real-Time Automation, journal IFAC, Elsevier Science, vol. 16, Issue 5-6, 2003, pp. 453-463.
  18. Zemouri, R., D. Racoceanu, N. Zerhouni, Réseaux de neurones à fonctions de base radiales: application au pronostic, Revue des sciences et technologies de l’information – RSTI, série Revue d’intelligence artificielle- RIA, vol. 16, nr. 13/2002, ISBN: 2-7462-0568-8, Ed. Hermès – Lavoisier, Paris, 2002, pp. 307-338.
  19. Zemouri, R., Contribution à la surveillance des systèmes de production à l’aide des réseaux de neurones dynamiques: Application à la e-maintenance, Thèse de doctorat, Université de Franche-Comté, Nov. 2003
  20. Zhang, Y., P. Sen, G. E. Hearn, An On-line Trained Adaptive Neural Controller, IEEE Control Systems Magazine, vol. 15(5), 1995, pp. 67-75.

https://doi.org/10.24846/v19i2y201005