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Abstract: This paper investigates the use of a wavelet denoising unit based on the wavelet mutiresolution analysis on 
wavelet networks instead of neural networks on which previously reported works have been performed. This full 
wavelet compound will certainly provide the possibility of building up two denoising analysis models. The most 
straight forward model is setup by placing the wavelet denoising unit ahead of the network input layer. In other 
words, the inputs data embedded in a white Gaussian noise of a wavelet network are firstly denoised then fed to the 
network. An alternative model is also investigated in which the denoising unit will be placed at the output level of the 
net since a wavelet network is may be considered as a first step smoothing unit. In this analysis version, the noisy 
signal is fed to the wavelet network and the corresponding output is then applied to the denoising unit. 
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1. Introduction 

Since their appearance wavelets have shown the ability to solve different kind of problems in 
different domains including numerical analysis, signal processing and mathematical modelling. 
Looking back to the 80’s, Morlet and Grossmann had the idea to use a dilated and a translated 
function ψ(t) called a wavelet which is well localized in time and frequency [14]. Meyer, Mallat 
and others had the possibility to seriously contribute to this early work until the paper of Ingrid 
Daubechies in 1988 that brought the mathematical concept to signal processing, statistics and 
numerical analysis. However, the most powerful and advanced feature of wavelets is the 
multiresolution analysis, by which a signal can be decomposed into different time-scale 
approximations and details. In other words, a signal ( )f t  is broken down into two different 
types of signals. In one hand, signals that carry the approximations of the original signal, and on 
the other, signals that carry the details. It is likely to be considered as the "Mathematical 
Microscope"[1]. This characteristic will certainly help reducing any presented noise since the 
signal is totally decomposed to the finest detail. Indeed, wavelet thresholding techniques have 
proved to be the most powerful denoising tool since the work of Donoho and Jhonstone [5-8]. 
Therefore, it should be absolutely useful in every domain that deals with noisy data including 
neural and wavelet networks.  

During the last decades neural networks ( NN ) have not given up showing their ability and 
success in solving system processing problems, approximating functions etc. On the other hand, 
the appearance of the wavelet theory has made it even more successful and powerful by creating 
analogous networks called the wavelet neural networks in which wavelets are used as the 
activation functions of the hidden neurons in the conventional neural network. Wavelet 
networks are traced back to the work of Daugman [3] in which Gabor wavelets were used for 
image compression. They are introduced as a special feedforward neural network, and they 
became more popular after the work of Pati [15], Zhang [17], and Szu[16]. They have been 
applied to many different areas and applications such as nonlinear functional approximation and 
nonparametric estimation [20], system identification and control tasks, modelling and 
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classification. The generated wavelets used in networks are the dilated and the translated 
versions of a mother wavelet which could be in a continuous or a discrete form.  

In this paper, the most wavelet advantages are exploited including the wavelet networks as well 
as the wavelet multiresolution analysis for denoising. Basically, two possible denoising process 
models are introduced. In the first model, the inputs data of any static or dynamic wavelet 
network are firstly denoised based on the wavelet multiresolution analysis. Then, they are fed to 
a wavelet network having as activation functions some dilated and translated versions of a 
certain mother wavelet. In the second model, however, the denoising unit is added at the 
network output level. In other words, the network takes the noisy signal as the input and the 
corresponding output is then denoised. As far as the adjusted wavelet network parameters are 
concerned, it should be noticed that their initialization process is somehow delicate, and their 
number is important. Unlike neural networks in which the weights could be initialized 
randomly, wavelet networks require a greater care in choosing the initial values of the 
parameters, especially, the dilations and the translations. 

This paper is organized as follows: In section II, the related works are presented followed by the 
proposed denoising process models in sectionIII. Afterwards, the multiresolution analysis and 
the wavelet networks are introduced in section IV and V respectively. The simulation results, 
however, are discussed in section VI. Finally, the last section will conclude the paper. 

2. Related Works 

Denoising neural networks data has been a serious treated issue and a lot of interesting works 
have been carried out in various domains using different approaches. For example, in [22] a 
thresholding neural network TNN has been developed for adaptive noise reduction. It is based 
on using an infinitely differentiable soft and hard thresholding functions as activation functions. 
Then, the network is subsequently trained by gradient based techniques. Noisy images and 
different commonly used signals such as Blocks, Doppler, Bumps etc. were used to illustrate the 
application of the TTN. Noisy images have also been treated differently in [21]. The treated 
noisy image is first wavelet transformed into four subbands, then, a trained layered neural 
network is applied to each subband to generate denoised wavelet coefficients. The denoised 
image is thereafter obtained by applying the inverse transform. Within the same framework, a 
set of successive works has been performed in [10-12] to reduce the influence of noise in time 
series prediction. Throughout this whole work, the denoising process has experienced various 
phases. The starting phase consists of placing a denoising unit based on the wavelet 
multiresolution analysis ahead of a neural network input layer [10]. In other words, the data of 
the network input layer is denoised before getting processed. Successively, this idea has been 
developed up to integrating two special denoising layers based on the wavelet multiresolution 
analysis into the layered network [12].  

Briefly, it is obvious that the main previous work has dealt with the neural networks platform 
and with the use of the classic denoising approach which is based on denoising the data before 
getting processed. In the contrary, this presented work has totally converged the data processing 
towards the wavelet networks platform instead, and has brought an additional dual denoising 
approach. In other words, neural networks are replaced by wavelet networks and the wavelet 
denoising unit is added at the output level of the used network and so the data is processed 
before getting denoised. In fact, this approach may be considered as a double denoising process 
since the wavelet network processing phase could be considered as a smoothing unit. 

3. Proposed Denoising Process Models 

As mentioned earlier, the wavelet network denoising process is ensured by combining wavelet 
networks and wavelet denoising units based on the wavelet multiresolution analysis. The use of 
these two basic components provides two possible denoising process models which will be 
investigated in this paper. In the first model, the denoising unit is placed ahead of the network 
input layer as shown in Figure 1.a. In other words, the inputs data are firstly denoised then fed 
to the wavelet network. As far as the denoising unit is concerned, it is also based on the wavelet 



Studies in Informatics and Control, Vol. 17, No. 4, December 2008 455

multiresolution analysis which decomposes the data into different time-scale approximations 
and details coefficients. However, to discriminate the noise from the useful information, a 
certain threshold is applied to the generated details coefficients. The denoised data, which will 
be input to the network, is then reconstructed using an inverse transform. An alternative 
configuration is also possible to build up a second model in which the denoising unit will be 
added at the output level instead, as shown in Figure 1.b. In other words, the inputs data are 
directly fed to the wavelet network and the corresponding output is applied to the denoising unit 
discussed lately.  For the sake of simplicity and clarity, both models are represented using a one 
dimensional wavelet network. 

4. Denoising Based on Multiresolution Analysis 

4.1 Multiresolution analysis 

Since the denoising process is based on wavelets, the noisy signal could be decomposed in order 
to discriminate between the significant and the contaminated information. To do so, it is 
necessary to use the most advanced feature of wavelets which is the multiresolution analysis 
where a signal can be decomposed into different time-scale approximations and details. This 
analysis is carried out by means of two types of functions, wavelet functions as well as scaling 
functions. 

4.1.1 Mathematical analysis 

Mathematically speaking, the multiresolution analysis is based on a sequence of embedded 
subspaces  Î ¢jV   of  2L  (space of square integrable functions ) [13]. 

2
1 0 1 2-Ì Ì Ì Ì Ì ÌK KV V V V L        (1) 

For a function ( ) Î jf x V , there exits a set of scaling functions: ( ) ( )f f= - Î ¢k x x k k , with 
2( )f Îx L  so that ( )f x  could be expressed as follows [13]:  

( ) ( )k
k Z

f x a x kφ
∈

= −∑          (2) 

For instance, if ( )xφ  is compressed and translated with a small step size more details could be 
detected. In the contrary, if ( )xφ  is stretched and translated with a wider steps coarse 
information are detected. Hence, it is clear that the extraction of various information is tightly 
related to the size of the subspace and the spanning set of functions. Basically, these functions 
have the following forms: 

2
, ( ) 2 (2 )

j

j k
jx x kφ φ= −          (3) 

Where ( )xφ is called the scaling function and j is the scaling index.  

Furthermore, a signal can be better described not only by using the scaling functions , ( )j k xφ , 

but also by introducing another set of functions called wavelets , ( )j k xψ  orthogonal to , ( )j k xφ . 
Similarly, these wavelets are obtained by scaling and translating the mother wavelet  ( )xψ :   

2
, ( ) 2 (2 )

j

j k
jx x kψ ψ= −         (4) 
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They are introduced throughout the subspace jW which is the orthogonal complement of jV  in 

1+jV . This relation is stated by the following equation: 

1+ = Åj j jV V W          (5) 

Where the operator ⊕ stands for the direct sum. In other words, each element of  1+jV  can be 

written, in a unique way, as the sum of an element of jW  and an element of jV . However, it 
should be mentioned that the scale of the initial space is arbitrary and the value of j could have a 
positive value as well as a negative one. For instance, if the scale of the scaling space starts at 0, 
then the nested subspaces Î ¢jW  are generated such that each jW represents the refinement of 

0W , and their direct sum is 2L . 

2
0 0 1 2= Å Å Å KL V W W W         (6) 

Then, any function 2( ) Îf x L  could be expressed as follows: 

0 0
0

, , , ,( ) ( ) ( )j k j k j k j k
k j j k

f x a x d xf y
Î ³ Î

= +å å å
¢ ¢

      (7) 

Generally, the value j0 is fixed so that the coarsest information of the signal is obtained. The 
coefficients in this expansion are called the discrete wavelet transform. 

4.1.2 Signal processing analysis 

From a signal analysis point of view, the multiresolution analysis is a hierarchical 
decomposition of a signal into successive approximations that are themselves decomposed in 
turn as illustrated in Figure 2. In other words, a signal is broken down into two different types of 
signals. One type represents the approximations, and the other represents the details. It is clear 
though that for each level j, a j-level approximation Aj is generated as well as a j-level detail Dj. 
This decomposition is represented in Figure 2 for an arbitrary signal f. On the other hand, f 
could be reconstructed in terms of the generated approximation and details as given by the 
following expression: 

f  =  A3 + D3  + D2   +  D1        (8) 

To have a closer look at the decomposition process, figure 3 illustrates a three level 
decomposition of a noisy version of the signal 1( )f x  given in (27). 

4.2 Wavelet based denoising 

Noise reduction has been and certainly will be the most treated issue on signals based 
applications since the significant information on the used signal could not be avoided from 
being contaminated by noise. Indeed, different techniques and algorithms have been applied to 
carry out this task in the time domain as well as in the transform domain. Unlike Fourier based 
techniques which is a spectrum localization dependent, wavelet based techniques provide both 
time and frequency localization [2] features presented as coefficients on which the denoising 
process is applied. As far as the transform domain is concerned, the recent introduction of 
wavelet transform is considered to be the most denoising powerful tool. Certainly, this is due to 
the multiresolution analysis that decomposes the signal up to the finest detail. Virtually, it is 
considered as a microscope that focuses on the noise spread throughout the different levels 
coefficients. Once the noisy signal is broken down, a thresholding of the generated wavelet 
coefficients is applied in order to discriminate the signal from the noise. The main idea is based 
on eliminating the wavelet coefficients of the noisy signal less then a certain threshold. 
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4.2.1 Soft and hard thresholding 

Basically, the performance of the thesholding process is tightly related to the choice of the 
thesholding function in the first place then to the setting of the threshold value. The commonly 
used functions are the soft and the hard thresholding functions. Donoho and Johnstone [6], [7] 
have proposed the soft thresholding function η(x) defined by the expression given in (9) and 
represented in figure4. This function is also called the shrinking function. The name shrinking 
comes from the fact that all the wavelet coefficients are reduced.  

( ).( )
( )

0

sign x x if x
x

if x

τ τ
η

τ

 −= 
≤

f
      (9) 

Also, they proposed the optimal threshold  called the "universal threshold" such that [7]: 

2 ( )Log Nt s=          (10) 

Where s  denotes the estimated standard deviation of the noise and N denotes the number of the 
coefficients in the detail signal ,j kd . As an estimation of σ they suggested the median value of 

the wavelet coefficients ,j kd  [6]: 

,( )
0.6745

j kmedian d
s =          (11) 

Level dependent thresholding: Since the noisy signal could be decomposed into different 
levels, it is possible to assign a threshold parameter to each level. In fact, Jhonstone and 
Silverman [9] proposed the use of level-dependent thresholds for extracting signals from 
correlated noise. The corresponding expression for a given level j is defined by the following 
equation:  

2 ( )j j jLog Nτ σ=          (12) 

As for the hard ( keep or kill ) thresholding function, the corresponding expression is defined 
below in (13) and represented in figure 5. Compared to soft thresholding, hard thresholding 
conserves the coefficients and generates discontinuities at the locations x τ= ± . Whereas, soft 
thresholding avoids this phenomena, shrinks out the coefficients and produces some signal 
attenuation. However, it should be noticed that the use of one function or the other depends 
really on the considered application.  

( )
0

x if x
x

if x

τ
η

τ

= 
≤

f
        (13) 

4.2.2 Wavelet thresholding 

As mentioned earlier, nonlinear thresholding was first proposed by Donoho and Johnstone [5], 
[8] to denoise signals embedded in white Gaussian noise. Basically, the denoising process can 
be summarized up to the following three major steps [5]: 

For instance, let  ( )y n  be the discrete noisy signal, ( )x n  the noise-free signal and ( )nω  the 
additive white Gaussian noise with a zero mean and a variance σ2, such that: 

( ) ( ) ( )y n x n nω= +          (14) 

with 1, 2, ,n N= K .  
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Step 1: Compute the wavelet coefficient ( )y n%  of the noisy signal ( )y n  using the Fast Wavelet 
Transform FWT. The resulting sub-signals will be composed of the approximation coefficients 
at the coarsest level and the details coefficients. 

Step 2: Threshold the details wavelet coefficients on each level using the soft thresholding 
function defined in (9).  

Step 3: Perform the inverse transform of the thresholded signal which include the approximation 
coefficients and the thresholded details.  

5. Wavelet Networks 

5.1 Wavelet network structures 

Based on the wavelet theory, Zhang and Benveniste have proposed the wavelet network as an 
alternative to the feedforward neural networks for approximating arbitrary nonlinear functions 
[17]. These types of networks are similar to the one hidden layer neural networks in which the 
coefficients can be considered as the connection weights and the wavelets as the activation 
functions (wavelons). The generated wavelets used in networks are the dilated and translated 
versions of a mother wavelet ( )xψ  which could be in a continuous or a discrete form. In 
general, the continuous form of ( )xψ is: 

,
1( ) *a b

x bx a and b
aa

y y
æ ö- ÷ç= Î Î÷ç ÷çè ø

¡ ¡      (15) 

Where a and b represent the dilation and the translation respectively. A discretized form may 
also be generated if   2 ja -=  and  2 jb k -=  with ,j k Î ¢ . 

So, the corresponding expression will be as follows [2]:  

2
, ( ) 2 (2 ) ,

j
j

j k x x k j ky y= - Î ¢        (16) 

Compared to neural networks, wavelet networks use an important number of parameters that 
may be updated. They include weights, translations, dilations and direct terms coefficients. 
Certainly, this will provide more flexibility to derive different network structures. The most 
simple one- dimensional input structure is represented by the following expression:  

1
( )

wN j
j

j j

x t
y x w

d
y

=

æ ö- ÷ç ÷ç= å ÷ç ÷ç ÷è ø
        (17) 

Wavelet networks are inspired by the one dimensional discrete inverse wavelet transform given 
by the expression below [19]. 

2

,
( ) ( , ) ( )

j
j

j k
y x w j k x ka y a b

+

- -

Î Î
= -å

¢ ¢
      (18) 

Where the ( , )w j k is the discrete wavelet transform of ( )y x , and α and β are the dilation and the 
translation step sizes respectively.  

A more general structure is stated in [18] and represented in Figure 6 that takes into account the 
multidimensional continuous wavelets as well as the linear property to deal with non linear 
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approximation problems. In this expression direct terms are added: 

0
1 1

( ) ( )
W iN N

j j k k
j k

y x w x a x a
= =

= Ψ + +∑ ∑       (19) 

Where:  a0 is a scalar quantity added to deal with the nonzero mean functions. wN  is the number 

of wavelets, Ni is the number of the input variables, 1 2( , )T
Nix x x x= K  is the inputs vector and 

( )j xΨ  is the following product: 

1

( )
iN

k jk
j

jkk

x t
x

d
ψ

=

 −
Ψ =   

 
∏  

In this case, the multidimensional wavelets are formed by the product of Ni mono-dimensional 

wavelets. k jk

jk

x t
d

ψ
 −
  
 

 is a dilated and translated version of the mother waveletψ . 

5.2 Parameters initialization and learning algorithms 

5.2.1 Learning algorithm 

To adjust the parameters of the above networks different types of algorithms could be used. 
Namely, the gradient-based techniques and the second order methods etc. In this paper, a 
stochastic gradient algorithm is carried out to approximate a certain function ( )df x . In other 
words, the parameters are adjusted after each input/output observation. The training is 
performed by recursively minimizing the criterion (20) using a gradient based technique. 

21( )
2 nn dJ y fθ  = −           (20) 

Where ny  is the output of the network and 
ndf is the desired output for the example n ( ny  and  

ndf  are scalar quantities). The parameter vector θ  includes: the scalar term a0, the weights jw , 

the dilations ,j kd  and the translations ,j kt . Therefore, the gradient expression is may be given 
by (21) as follows:  

( )
n

n n
n d n

y yJ y f e
q q q

¶ ¶¶ = - =
¶ ¶ ¶

       (21) 

Where ( )
nn n de y f= -  represents the error between the output of the network and the desired 

output for the example n. 

With also: 
n

n

x x

y y
q q =

¶ ¶=
¶ ¶

 

5.2.2 Gradient calculation 

At this level, it would be very helpful to have an idea about the calculation procedure of the 
gradient with respect to each adjusted network parameter. This task is carried out on the wavelet 
network structure that does not include the direct terms. The corresponding expression of ( )y x  
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is given in (22). It should be noticed that this is the same structure that has been used for the 
simulated results: 

0
1

( ) ( )
wN

j j
j

y x w x a
=

é ù
ê ú= Y +ê ú
ê úë û
å          (22) 

Where :   
1

( )
iN

k jk
j

jkk

x t
x

d
ψ

=

 −
Ψ =   

 
∏  and a0 is a scalar term.  

So, for ( )y x  given in (22) and for a given example n, the corresponding gradient expressions 
with respect to the scalar term a0, the weights jw , the dilations djk and the translations tjk are 
given below respectively: 

0
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a
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Where:     
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Where:  'y  is the first derivative of the function y  with respect to its argument. 

1* . .'n nL jL k jk
n j
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x t x tJ e w
t d d d
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¹
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Õ     (26) 

5.2.3 Parameters Initialization 

In neural networks, the updated parameters may be initialized in a random manner having some 
values capable to produce neuron outputs that lay in the linear part of the sigmoid. Unlike neural 
networks, wavelet networks require a great care in choosing the initial parameters especially the 
dilations and the translations. In fact, these two parameters depend on the input domain in which 
the examples are distributed since wavelets are characterized by a very fast decay. For example, 
if the translations are initialized outside the examples domain or the dilations are set to small 
values, then, the wavelet output will be approximately zero and so its derivative. As a result, the 
training algorithm will not hold since it is a gradient dependant.  

6. Simulation Results 

At this level, the denoising unit along with the wavelet network will be tested in the functions 
approximation and the image processing domains. The approximated functions f1(x), f(x1,x2) are 
a mono and a two variable functions [17] given in (27) and (28) respectively. They are 
presented as a sequence of 200 examples uniformly distributed over the interval [-10,10], and 
are shown in figure 7 and figure10 respectively. As for the image, it is a TIFF 256x256 image 
named "cameraman.tif", shown in figure 14, and it is extracted from the Mathlab image 
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processing toolbox. To get processed, this image is fed to the network as a one dimensional 
vector built up by concatenating the rows of its corresponding matrix. The simulated results will 
be generated out of two alternative configurations depending on the position of the denoising 
unit with respect to the network. In the first configuration, the denoising unit will be placed at 
the network input level. Whereas, in the second one, the denoised unit will be placed at the 
output level instead. The used wavelet network activation functions, which may be called 
wavelons, are some dilated and translated versions of a mother wavelet called the Gaussian 
derivative having the following expressions: 

 

2

2( )
x

x xey
-

= -   and 

2 2
1 2( )

2
1 2 1 2( , )

x x

x x x x ey
+-

=   in the one and the two dimensional cases 
respectively.  

[ ]
1

0.05 0.5

2.186 12.864 10 2
( ) 4.246 2 0

10 sin (0.03 0.7) 0 10x

x if x
f x x if x

e x x if x- -

ìï - - - £ -ïïï= - £íïïï + £ £ -ïî

p
p   (27) 

2 2
1 2 1 2 1( , ) ( ) sin(0.5 )f x x x x x= -        (28) 

At this stage, it should be mentioned that the wavelet used by the denoising unit, for all the 
treated cases, is the symlet 4. While, the number of the decomposition levels denoted by L is set 
to L= 4 for the functions 1( )f x  and 1 2( , )f x x , and L= 2 for the image.  

● Denoising unit at the input level 

In this case, the image and the two functions will be approximated with a denoising process 
carried out at the input level. The general expression of the noisy functions is as follows: 

( ) ( ) ( )nf x f x xw= + . Where ( )f x  is the free noise function and ( )xw  is a zero mean white 
Gaussian noise with a 10dB SNR (signal to noise ration). The noisy versions of 

1( )f x and 1 2( , )f x x , are shown in figure 7 and figure 11 respectively. Similarly, the noisy 

image is expressed as follows: n wG = G+ G , and is represented in figure 15. Where Gis the 
free noise image shown in figure 14, and wG  is a zero mean white Gaussian with a 10dB SNR. 
As far as the used wavelet networks are concerned, the corresponding outputs 
representing 1( )f x , 1 2( , )f x x and the processed image are depicted in figure8, figure12 and 
figure 16 respectively. In addition, the corresponding training parameters are listed in table1.  

● Denoising unit at the output level 

In this alternative configuration, the previous functions and the image are processed having the 
denoising unit placed at the output level of the network. In other words, the noisy data is fed to 
the wavelet network and the corresponding output is then de-noised based on the wavelet 
multiresolution analysis. In this case, the wavelet network outputs representing 

1( )f x , 1 2( , )f x x  and the processed image are depicted in figure 9, figure 13 and figure 17 
respectively. It should be noticed that the same training parameters are used, and they are listed 
in table1.  

Based on the simulated results and their corresponding mean square error values shown in table 
1, the best performance is provided by the model with the denoising unit added at the input 
level. Nevertheless, the model with the denoising unit added at the output level has also 
generated very satisfactory overall results. Furthermore, it has shown that a wavelet network 
with a noisy input could be considered as a predenoising unit since it undergoes throughout the 
training process some kind of signal smoothing at the output. 
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7. Conclusion 

Noise reduction has been and certainly will be the most treated issue on signals based 
applications including wavelet networks data. However, the most powerful tool to carry out this 
task turns out to be the denoising based on wavelets. Therefore, it would very convenient to 
process the noisy inputs or outputs data of any static or dynamic wavelet networks by a wavelet 
based denoising unit. The position of this type of unit with respect to the wavelet network 
provides the possibility to generate two different denoising models. One model includes the 
denoising unit at the network input level, and the second one at the output level. It is clear 
though that the model with the denoising unit added at the input level has generated more 
satisfactory results than the second model. However, when the denoising unit is placed at the 
output level, the whole denoising process is may be considered to be carried out twice. The first 
is totally related to the wavelet network which undergoes throughout the training process some 
kind of signal smoothing at the output. In fact, the performance of this process is quite 
interesting since it preserves at least the main shape of the free noise data. In other words, the 
wavelet network could be considered as a first step denoising unit. The second process, 
however, is carried out on the generated network output using the based wavelet denoising unit. 
Placed whether at the input or at the output of the network, the performance of the denoising 
unit depends on the type of the used wavelet and the number of the decomposition levels. As far 
as the wavelet networks are concerned different networks structures could be processed with a 
special care that should be taken towards the network parameters initialization phase. Unlike 
neural networks, wavelet networks require a great care in choosing the adjusted parameters 
especially the dilations and the translations. 
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