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Abstract: The linear tubular switched reluctance stepping motor is widely used in applications requiring high-
precision linear positioning operations. But, the position evolution of this kind of stepping motors is oscillatory in the 
case of an open-loop control. In order to damp the position response of such motor, the bang-bang control is adopted. 
This classical control is simple to implement in practice. However, its successful application is dependent on the 
suitable determination of the switching instants for which there are no systematic methods allowing their 
determination. In this paper, a study allowing the determination of the switching instants of the bang-bang control is 
presented. This study is based on a stability analysis performed by Lyapunov’s direct method which is suitable for the 
studied nonlinear system. The validity of the proposed method is proven by numerical simulations and in practice by 
the use of a test bench.  

Keywords: Linear Tubular Switched Reluctance Stepping Motor, overshoot, Lyapunov fuction, Bang-Bang control 

Kamel Ben Saad was born in 1976 in Tunis, Tunisia. He graduated in 2000 from “Ecole Nationale d’Ingénieurs de 
Tunis” (ENIT). He also received his master degree from ENIT in 2001 and his PhD degree in Electrical Engineering 
from “Ecole Centrale de Lille” and ENIT in 2005. He is currently Assistant Professor at the ENIT. His research 
interests are in the area of machines, classical and intelligent control. 

Mbarek Ahlem was born in 1980 in Nabeul, Tunisia. She graduated in 2005 from Ecole Nationale d’Ingénieurs de 
Monastir. She received her master degree in Electrical Engineering from “Ecole Nationale d’Ingénieurs de Tunis” 
(ENIT) in 2007. She is currently a PhD student in ENIT. Her research interests are in the area of stepping motors control. 

Mohamed Benrejeb was born in Tunisia in 1950. He obtained the Diploma of “Ingénieur IDN” in 1973, The Master 
degree of Automatic Control in 1974, the PhD in Automatic Control of the University of Lille in 1976 and the DSc of 
the same University in 1980. Full Professor at “Ecole Nationale d’Ingénieurs de Tunis” since 1985 and at “Ecole 
Centrale de Lille” since 2003. His research interests are in the area of analysis and synthesis of complex systems 
based on classical and non conventional approaches.  

1. Introduction  

The Linear Stepping Motor divides linear distances into discrete incremental movements called 
steps. The major advantage of this kind of motor, in comparison with a rotary stepping motor, is 
that the huge part of the supplied mechanical power is converted directly to linear motion. 
Indeed, the rotary stepping motor needs the use of rotary to linear conversion devices such as 
leadscrews which introduce additive mechanical loses [1-3]. The predominant inertia is the 
leadscrew rather than the load to be moved. Thus, most of the motor torque goes to accelerate 
the leadscrew. So, the linear stepping motor is considered to be the most economical linear 
motor positioning solution [1-3].  

The studied actuator is a Linear Tubular Switched Reluctance Stepping Motor (LTSRSM) 
characterized by four phases. Such motor represents the linear counterpart of the rotary variable-
reluctance stepper motor. Its cylindrical mechanical geometry allows simplicity of construction. 
The LTSRSM is simple to use and it is characterized by its precision of positioning in open-
loop operation. Moreover, it offers solutions to a variety of applications requiring high linear 
positioning precision. Nowadays, they are widely used in automobile industry, machine tools, 
robotics domains and electronic industry [4]. 

As all stepping motors, the step response of the LTSRSM is generally very oscillatory. In application 
requiring frequent accurate positioning this poorly damped response can be a great disadvantage [5-
6]. For example, if the studied actuator is used to insert pins in plastic packages of some electronic 
components, the oscillations can induce the destruction of the pins or a bad insertion.  
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There are several solutions allowing the elimination of such oscillations. We focused in this 
work on the bang-bang control solution which is an open-loop control technique. Such control is 
easy to implement. However, the determination of the switching instants constitutes the major 
difficulty in its application. Generally, the switching instants are determined experimentally. 
Such an approach is very difficult to perform. 

In this paper, a method allowing a theoretical determination of such switching instants is 
presented. It is based on a stability study of the LTSRSM by application of Lyapunov’s 
direct method. The verification of the proposed approach is carried by numerical 
simulations and experimentally.  

This paper is organized as follows: in section 2 the studied stepping motor structure and 
mathematical model are presented. The problem statement is introduced in section 3. Section 4 
presents the proposed method for the motor oscillations suppression. Finally, the simulation 
results and the experimental results are given in section 5.  

2. Studied Machine Description   

2.1 Studied machine structure  
The studied LTSRSM has four electrically identical phases, denoted by A, B, C and D. The 
linear motor’s moving element is called forcer or plunger, and the stationary one is called stator, 
Figure 1. The stator as well as the plunger are equally teethed. A linear switched reluctance 
stepping motor operates on the same electromagnetic principles as a rotary variable reluctance 
stepping machine. When a current passes through one phase winding the plunger tooth tends to 
align the stator tooth; that is it produces a force that tends to move the plunger to a minimum 
reluctance position. 

The studied motor has 0,2 mm air gap. The elementary step is about 2,54 mm for a total course 
length of 100 mm.  
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b- LTSRSM structure 

  
Figure 1. Studied LTSRSM  

2.2 The mathematical model of the LTSRSM  
The approach for the elaboration of the dynamical consider the LTSRSM as a rotary switched 
reluctance stepping motor by cutting, along the shaft over its radius, both the stator and rotor 
and then rolling them out.  
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The phase j voltage of a linear switched reluctance stepping motor can be expressed by 
equation 1 [7-9]: 

j
j j j

d
U R i

dt
Φ

= +          (1) 

the subscript j indicates the phase A, B, C or D.  

The LTSRSM is supposed to be non saturated. So, the fluxes jΦ  are expressed, in this case, 
as follows:  

k

j jp p
p 1

L i
=

Φ = ∑          (2) 

Substituting the fluxes expression, equation 2, into equation1, it becomes: 
k

p jp
j j j jp p

p=1

di dL
U = R i + (L + i )

dt dt∑        (3) 

with:  
k

jp jp jp q

qq=1

dL L L didx= +
dt x dt i dt

∂ ∂

∂ ∂∑         (4) 

Replacing jpdL
dt

 by its expression in equation 1 by the equation 4, the phase voltage is given by:  

k k
p jp jp q

j j j jp p p
qp 1 q 1

di L L didxU R i (L i i )
dt x dt i dt= =

∂ ∂
= + + +

∂ ∂∑ ∑      (5) 

Using equation (5), the following parameters can be identified: 

- the saturation  back EMF voltage:  
k k

jp q
p

qp 1 q 1

L di
i

i dt= =

∂

∂∑∑ ,  

- the movement back EMF voltage: 
k

jp
p

p 1

L dxi
x dt=

∂

∂∑ .  

For the non saturated linear stepping motor, the saturation back EMF voltage can be neglected.  
Moreover, because of the non-magnetic separation, the statoric phases are supposed to be 
magnetically decoupled. So, the mutual inductances jpL , for j ≠ p, are very small and they can 
be also neglected. Thus, the phase j voltage expression, is simplified into: 

j jj
j j j jj j

di L dxU R i L i
dt x dt

∂
= + +

∂        (6) 

The linear switched reluctance stepping motor inductances are supposed to be sinusoidal. For 

the case of a four phases LTSRSM, the inductance characteristics are  
2
π  off phased. Hence, the 

studied machine inductances are given by the following four relations: 

A 0 1
2πL (x) L L cos( x)
λ

= +         (7) 
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B 0 1
2π πL (x) L L cos( x )
λ 2

= + −         (8) 

C 0 1
2πL (x) L L cos( x π)
λ

= + −         (9) 

D 0 1
2π 3πL (x) L L cos( x )
λ 2

= + −         (10) 

The mechanical equation of the studied machine is described by the following second order 
differential equation [3]-[6]: 

2

0 C2
dx dx dxm F(x) ξ F sign( ) F

dt dtdt
= − − −       (11) 

where F(x) is the resultant of the forces developed by the four machine phases: 

A B C DF(x) F (x) F (x) F (x) F (x)= + + +       (12) 

In case of a non saturated machine, the phase j statoric force is determined by the following 
expression: 

j2
j j

L1F (x) i
2 x

∂
= −

∂
         (13) 

So, the theoretical force characteristics, for each machine phase, are sinusoidal and can be 
expressed by the following relations:  

21
A A

πL 2πxF (x) i sin( )
λ λ

= −         (14) 

21
B B

πL 2πx πF (x) i sin( )
λ λ 2

= − −         (15) 

21
C C

πL 2πxF (x) i sin( π)
λ λ

= − −         (16) 

21
D D

πL 2πx 3πF (x) i sin( )
λ λ 2

= − −         (17) 

By considering the expressions of the inductances and the forces, the mathematical model of the 
LTSRSM is given by the following system composed by five nonlinear differential equations:   

0 1
A

A A 1 A
di2πx 2π 2πxU Ri L L cos( ) L sin( )v i

λ dt λ λ
 = + + +  

     (18) 

0 1
B

B B 1 B
di2πx π 2π 2πx πU Ri L L cos( ) L sin( )vi

λ 2 dt λ λ 2
 = + + − + −  

   (19) 

0 1
C

C C 1 C
di2πx 2π 2πxU Ri L L cos( π) L sin( π)v i

λ dt λ λ
 = + + − + −  

    (20) 

0 1
D

D D 1 D
di2πx 3π 2π 2πx 3πU Ri L Lcos( ) L sin( )vi

λ 2 dt λ λ 2
 = + + − + −  

    (21) 
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2

2

1

2 2 2 21
A B C D

C
0

πLd x 2πx 2πx π 2πx 2πx 3πi sin( ) i sin( ) i sin( π) i sin( )
mλ λ λ 2 λ λ 2dt

Fdx ξ dxF sign( )
m dt m dt m

 =− + − + − + −  

− − −
  (22) 

The studied machine has the following electrical and mechanical parameters: 

m 5 Kg=  ; 10,16 mmλ = ; ξ 65 Nm/s= ; 0F = 0.1N ; 0L 225mH= ; 1L 50 mH= ; R = 18Ω ; 
nU 18 V= . 

3. Problem Statement  

At low stepping rates the open-loop single step position response of a linear variable reluctance 
stepping motor presents some oscillations, overshoot and a long settling time. Moreover, if the 
inertia of the motor increases the overshoot and the oscillations increases also, figure 2. This 
case corresponds to an inertial load applied on the motor plunger. 
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Figure 2. One step position evolutions of the LTSRSM for various plunger weight values 

 

These characteristics disturb the normal operation of this kind of motors. At some speeds, the 
magnitude of oscillatory response increases with time. As a result, the motor can loose 
synchronism inducing dynamic unstability and erratic working, figure 3. In applications 
requiring frequent accurate positioning this poorly damped response is a great disadvantage. 
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Figure 3. Four steps position evolution for the case of an erratic working 

There are several solutions allowing the elimination of the oscillations of the linear stepping 
motors. These solutions can be classified into mechanical solutions and control solutions. 

The mechanical solutions, consists of: 
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- connecting a mechanical reductor to the motor which is often costly, 

- increasing friction at the expense of machine output, 

- using a method of electric braking which obviously needs regular maintenance. 

These mechanical solutions are cumbersome and they reduce the linear stepping motor nominal force. 

The control solutions, more flexible than the mechanical ones, are classified into open loop and 
closed loop control solutions which require some sensors.  

A stepping motor is a machine designed to be controlled in an open loop mode. The open loop 
control techniques have the merits of simplicity and consequent low cost. Thus, we propose to 
apply the bang-bang control technique allowing the elimination of the oscillations and the 
overshoot. It consists of the successive excitation of two of the motor phases. The first one (i+1) 
is used as a pull winding dragging the plunger to the equilibrium position. The second phase (i) 
is the braking phase. It is used to absorb the kinetic energy developed when the pull winding is 
excited. The excitation sequences of the Bang-Bang control are as follows: first  phase (i+1) is 
excited until an instant 1t . At 1t  the excitation is switched from the phase (i+1) to the phase (i). 
The phase (i) remains excited until an instant 2t . Finally at 2t the excitation is switched from the 
phase (i) to the phase (i+1) again to maintain the plunger on the equilibrium position. The bang-
bang control voltages applied to the two motor phases are represented in figure 4. 
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Figure 4. Sequence of the control voltages of the bang-bang control  

The major difficulty for the application of the bang-Bang control solution is the determination 
of the switching instants 1t  and 2t . 

Thus, we propose in the following a solution, based on stability analysis of the LTSRSM, 
allowing the determination of the bang-bang switching instants.  

4. Determination of the Bang-Bang Switching Instants  

It is known that Lyapunov’s direct method allows checking stability of an equilibrium point of a 
system without explicitly integrating its differential equations. Thus, such method is suitable for 
studying stability of nonlinear systems or linear systems with uncertainty. The basic idea of the 
method of Lyapunov is the study of the rate of change of the energy of the system to ascertain 
stability. However, it is not necessary to have knowledge of the true physical energy. It is 
sufficient to find a Lyapunov candidate function which proves stability of equilibrium point.  
However, finding a Lyapunov candidate function remains the main difficulty in applying 
Lyapunov’s direct method [10, 11].  

Let us consider the mechanical dynamic equations of the LTSRSM expressed by the 
following system:  
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0( ) ( )dvm F x Fc v F sign v
dt

dx v
dt

ξ = − − −

 =


       (23) 

The four motor phases are supposed to be identical. In order to simplify the mathematical 
formulation of the problem, only two successive motor phases (i+1) and (i) are considered in 
what follows. Indeed, the electrical cycle of the LTSRSM consists of four steps or four dials.  
For all the control modes of the LTSRSM at most two successive phases can be excited 
simultaneously. For example, if the excitation of the phase B allows a full step positioning, the 
simultaneous excitation of the phases A and B gives an equilibrium position smaller than the 
full step called microstep.  

Table 1. Definition of the pull phase and the braking phase for one electrical cycle 

Step order  1 2 3 4 

Phase (i+1)  B C D A 

Phase (i) A B C D 

If we neglect 0F  and consider the change of variable 1 0x x x= −  , where 0x is the equilibrium 
position relative to the phase (i+1), the dynamical model is expressed as follows: 

1 12
2

1
2

( )i cF x Fdx x
dt m m m

dx
x

dt

ξ+ = − −

 =


        (24) 

where 1
1i max

2πxF (x) F sin( )
λ+ = −        (25) 

and 
21

max n
πLF I
λ

=          (26) 

In this work, we will consider the case of an inertial load which increases the plunger weight m , 
so the force cF  is considered null. 

Let us consider the function defined by: 

2 max 1
1 2 2

21( , ) 1 cos( )
2 2

F xV x x x
m

λ π
π λ

 = + − 
 

      (27) 

For ] [1x λ λ∈ − , corresponding to the domain of the plunger displacement, such function is positive 
definite.  

The time derivative of the equation (27) is given by: 
2

1 2 2( , )V x x x
m

= −& ξ
         (28) 

So 1 2( , )V x x&  is a negative definite function and 1 2( , )V x x  is a Lyapunov candidate function. The 
figure 5 represents in the plunger position and speed phase plane the simulated motor trajectory 
obtained by excitation of the phase (i+1). The obtained trajectory is inside an equilibrium 
boundary which corresponding to the function ( )1 2 0,V x x V= . If the initial point of the 
trajectory is inside the stable boundary the system is stable. However, if the initial point of the 
trajectory exists outside the stable boundary, the system loses stability.  
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Figure 5. Simulated motor trajectory and stable boundary  

To illustrate the notion of stable and unstable equilibrium position in practice, let us consider 
the stable equilibrium position obtained by the excitation of the phase A. In this case, there is a 
coincidence between the stator and the plunger teeth. In fact, after a disturbance, the plunger 
return to this stable equilibrium position where the resultant force in the plunger tooth is null, 
figure 6-a.  

Let us suppose now that initially the plunger is located in the same position obtained by 
excitation of the phase A. In theory by excitation of the phase C the plunger does not move. In 
this case the plunger tooth is located between two stator teeth which generate two opposite 

vector forces 1F
→

 and 2F
→

having in theoretically the same norm and applied to the plunger tooth. 
This second case corresponds to an initial point located outside the stable boundary 
corresponding to the phase C, figure 6-b. This position is unstable because for any disturbance 
the plunger moves away from this equilibrium position to an unknown position where the 
plunger and the stator tooth are in coincidence. For the normal operation of the studied motor 
and for the initial condition considered for this case the phase B or D have to be excited to 
perform one step evolution and to obtain a stable equilibrium. 

Phase A Phase B Phase C Phase D 

stable equilibrium  
(a) stable equilibrium position 

Phase A Phase B Phase C Phase D 

F1F2

Unstable equilibrium  
(b) unstable equilibrium position 

Figure 6. Stable and unstable equilibrium positions  

The exploitation of the energy levels defined by the Lyapunov function is a method which 
was proposed by Senju and al., 1994 for the rotary stepping motors [12]. In this work such 
method is followed for the LTSRSM.  

Let us consider the two energy levels relative to the phases (i) and (i+1) defined 
respectively by the functions 1 2( , )iV x x  and 1 1 2( , )iV x x+ : 

1 2

1 1 2

( , )
( , )

i e

i e

V x x V
V x x V+

=
 =

         (29) 

eV  is the energy level chosen so that the energy level of the phase (i) passes through the 
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equilibrium position obtained by excitation of the phase (i+1) and the energy level of the 
phase (i+1) passes through the initial equilibrium position.   

These two energy levels have the same shape because the two phases are supposed to be 

electrically identical. However, they are 
4
λ shifted. This distance corresponds to the shift 

between two successive equilibrium positions, figure 8. By excitation of the phase (i+1), the 
plunger follows the corresponding energy level. On the switching point, defined by the 
intersection of the two energy levels, the phase (i+1) is switched off and the phase (i) is 
switched on. Thus, the plunger follows the energy level defined by the phase (i) until it 
reaches the equilibrium position. Finally, the phase (i+1) is switched on again and the phase 
(i) is switched off to maintain the plunger in this final equilibrium position.   

1t  Corresponds to the instant of time for which the plunger reaches the position
8
λ . It can be determined 

experimentally or by simulation. The second time instant 2t can be determined by numerical 
resolution of the equation 1 2( , )i eV x x V=  defining the energy level of the phase (i). In the case of 
the studied LTSRSM, the commutation instants are 1 0.043st =  and 2 0.080st = . These instants 
will be used for all the electrical cycle of the LTSRSM.  

 

-4 -3 -2 -1 0 1 2 3 4 5 6
x 10

-3

-0.1

-0.05

0

0.05

0.1

0.15

X1 , m

X
2 ,

 m
/s

Phase i+1 Phase i 

Initial position   Equilibrium position 

Switching point  Motor  trajectory   

 
Figure 7. Definition of the switching point of the bang-bang control 

5. Tests results  

In order to validate the proposed approach some simulation and experimental tests are performed.  

The test bench has been built with, figure 8: 

- a control board with a 16F876 microcontroller,    

- a power board with four legs converter connected to the four motor phases. 

- the studied LTSRSM, 

- a LVDT position sensor, 

- a DC power supply. 

The power board is composed of four identical converter legs corresponding to the four motor 
phases. One converter leg is composed of: an optocoupler allowing the electrical insulation 
between the control board and the power board, a free wheeling diode, and a switching aid 
device, figure 9.   
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(a) Test bench photo 
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(b) Test bench organization  

Figure 8. Test bench description 
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Figure 9. Structure of one converter leg 
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All the simulations are performed by the resolution of the LTSRSM mathematical model, presented 
in section 2, by the Runge- Kutta method.  

Figure 9 shows in the phase plane the simulated trajectory of the motor. The obtained trajectory 
follows, with a small gap, the desired trajectory defined by the energy levels of the phases A and B. 
The small difference can be explained by the fact that only the mechanical part was considered in the 
proposed method and some frictions were neglected.  

 

-4 -3 -2 -1 0 1 2 3 4 5 6

x 10-3

-0.1 
-0.05 

0 
0.05 
0.1 

0.15 

Position, m

S
pe

ed
, m

/s
 

Motor trajectory 

Phase B energy level Phase A energy level 

 
Figure 9. Simulated motor trajectory by application of the bang-bang control 

The figure 10 shows the simulated and the experimental positions and currents responses where A is 
the braking phase and B the pulling phase. We can notice a similarity between the experimental and 
the simulated results. The obtained results prove the efficiency of the proposed method for the 
determination of the switching instants of the Bang-Bang control approach. In order to generalize the 
obtained result, the Bang-Bang control solution is applied to four steps position evolution. We can 
notice that the overshoots obtained for the normal four steps position evolution are reduced. The 
difference between the four damped position responses can be explained by the fact that in reality 
the four phases are not identical. In reality, a linear stepping motor presents some specificities in 
comparison with its rotary counterpart such as [7,9]:  

- the edge effects, 

- the mechanical geometry.   
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(a) Simulated phase B current 
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(c) Simulated phase A current 
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(d) Experimental phase A current 
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(e) Simulated position 
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Figure 10. Simulated and experimental results obtained by application of the bang-bang 
control strategy 
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Figure 11. Four steps position evolution  
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application of the bang-bang control 

6. Conclusion  

The LTSRSM position evolutions present some oscillations which harm some application 
requiring high positioning quality and resolution. In this paper a method allowing the 
determination of the switching instants of the bang-bang control is presented. The bang-
bang control is classical open-loop control solution allowing the attenuation of the stepping 
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motors oscillations. It is difficult to determine analytically the two bang-bang switching 
instants because of the complexity of the nonlinear dynamical model of the studied 
LTSRSM. Also, the experimental determination of these two parameters is a tedious 
approach. In this work the Lyapunov’s direct method is introduced to study stability of the 
LTSRSM. So, a Lyapunov candidate function is proposed to estimate the stability. The 
proposed method exploits the energy interpretation of Lyapunov’s direct method to 
approximate the switching instants. The simulations and the experimental results prove the 
efficiency of the proposed approach.  The experimental tests are performed on a test bench. 
Thanks to the good approximation of the switching instants, the experimental 
implementation of the bang-bang control is very easy.   

 

Nomenclature 

Fm : electromagnetic force  
0F  : dry friction force  
CF  : resistant force 

v  : linear speed  
x  : plunger position  
m  : plunger weight  
ξ  : dynamic viscosity coefficient  
R  : statoric resistance 

nU : nominal voltage 
iU  : voltage applied to phases i=A,B,C and D 

ji  : CURRENT OF THE PHASES j=A,B,C AND D 

nI  : nominal current 
0L   : average phase inductance  
1L  : amplitude of the inductance variation 

Φ  : fluxes density  
λ  : four step length  
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