
Studies in Informatics and Control, Vol. 18, No. 2, June 2009 127

A Bi-Criteria Approach to the M-machine Flowshop

Scheduling Problem

R. Rajkumar 1#, P. Shahabudeen 2, P. Nagaraj 1, S. Arunachalam 3 and T. Page 4

1 Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu,
INDIA. Email: rrkumarau@gmail.com

2 Department of Industrial Engineering, Anna University, Chennai, INDIA.

3 School of Computing and Technology, University of East London, London.

4 Department of Design and Technology, Loughborough University, Loughborough, UK.

Corresponding author

Abstract: This paper considers the problem of permutation flowshop scheduling with the objectives of
minimising the makespan and total flowtime of jobs, and presents an Improved Genetic Algorithm (IGA). The
initial population of the genetic algorithm is created using the popular NEH constructive heuristic (Nawaz et al.,
1983). In IGA, multi-crossover operators and multi-mutation operators are applied randomly to subpopulations
divided from the original population to enhance the exploring potential and to enrich the diversity of the
crossover templates. The performance of the proposed algorithm is demonstrated by applying it to benchmark
problems available in the OR-Library. Computation results based on some permutation flowshop scheduling
benchmark problems show that the IGA gives better solution when compared with the earlier reported results.

Keywords: Flowshop scheduling, Makespan, Total flowtime, Genetic Algorithm

Dr. R. Rajkumar is currently Assistant Professor at Mepco Schlenk Engineering college, in the Department of
Mechanical Engineering. His areas of specialisation are Operation research, Manufacturing scheduling, Meta-
Heuristics, etc. He had his Bachelor degree in Mechanical Engineering and Master Degree in Industrial
Engineering from Madurai Kamaraj University and Ph.D from Anna University, Chennai. Dr.R.Rajkumar is
grateful to the Management, the Principal and the Head of Mechanical Engineering Department of MEPCO
Schlenk Engineering College, Sivakasi, Tamilnadu, India for their support of this paper.

Dr. P. Shahabudeen is currently Professor & Head of Industrial Engineering Department at College of
Engineering, Anna University, Chennai, India. His areas of specialisation are Simulation, Optimisation,
Information Systems, Design of Manufacturing systems etc. He had his Bachelor degree in Mechanical
Engineering from Madurai Kamaraj University Madurai, Master Degree as well as Doctoral degree in Industrial
Engineering from Anna University. Currently he is guiding doctoral students in areas like Supply Chain
Management, Manufacturing Scheduling, Kanban systems, Taguchi Methods in Manufacturing, E commerce
applications etc.

Dr. P. Nagaraj is currently Professor & Head in the Department of Mechanical Engineering, Mepco Schlenk
Engineering College, Sivakasi, India. His areas of specialisation are Operation Research, Fuzzy logic, Inventory
control etc. He had his Bachelor degree in Mechanical Engineering and Master Degree in Industrial Engineering
from Madurai Kamaraj University and Ph.D from Bharathiyar University, Coimbatore, India.

Dr. Subramaniam Arunachalam is a senior lecturer in Manufacturing Systems Engineering in university of
East London, UK. He has many years of experience in teaching and developing course materials in
manufacturing and operations management disciplines. His fields of research interest include lean concepts,
manufacturing systems engineering, strategy and management, quality management, supply chain management,
manufacturing simulation, production management, total quality management and project management.

Dr T. Page is a lecturer in Electronic Product Design in the Department of Design and Technology at
Loughborough University UK. Tom is an external examiner on Engineering and Manufacturing programmes at
Sheffield Halllam University. Dr Page is a visiting scholar at Iceland University and the University of Lapland
in Finland and has been an external examiner on undergraduate fields in Product Design and Manufacturing
Engineering at the University of East London. Dr Page is co-founder of the European Society for Virtual
Reality Learning Environment Research and Development.

 Studies in Informatics and Control, Vol. 18, No. 2, June 2009 128

1. Introduction and Literature
Review

The problem of scheduling in permutation
flow shops has been extensively investigated
by many researchers. Its aim is to determine
the sequence for processing jobs on a given
set of machines. The need for scheduling
arises from the limited resources available to
the decision-maker and it is an important
aspect of operational level shop floor
decisions. Its importance and relevance to
industry has prompted researchers to study it
from different perspectives. Flowshop is the
classical and most studied manufacturing
environment in scheduling literature. A
general flowshop in which n jobs to be
processed through m machines has been
considered. The processing times are fixed
and non-negative. Further assumptions are
that each job can be processed on only one
machine at a time, the operations are not pre-
emptable, the jobs are available for
processing at time zero and setup times are
sequence independent. Here we consider the
permutation flowshop shop problem, the
same job order is chosen on every machine.
The objective then is to find a sequence, i.e.,
a permutation of the numbers 1,…,n that
minimizes the makespan and total flow time.
Makespan and total flow-time are two
commonly used performance measures in
flowshop scheduling literature (Baker, 1974;
Garey et al., 1976; Nagar et al., 1995).
Flowtime is defined as the time spent by each
job in the system and makespan is the time at
which the last job completes its processing on
the last machine. Minimising makespan is
important in situations where a
simultaneously received batch of jobs is
required to be completed as soon as possible,
for example, a multi-item order submitted by
a single customer that must be delivered in
the minimal possible time. The makespan
criterion increases the use of resources.
There are other real-life situations in which
each completed job is required as soon as it is
processed. In such situations, we are
interested in minimising the mean or sum of
flowtimes of all jobs rather than minimising
makespan. This objective is particularly
important in real-life situations in which
reducing inventory or maintaining cost is of

primary concern. We have so far seen the
development of various heuristic methods
that consider a single measure of
performance, viz., makespan. However, the
desirability of a schedule being evaluated by
more than one performance measure is often
cited in the literature. Apart from the
makespan objective, other significant
objectives in flowshop scheduling problem is
the minimisation of total (or mean) flowtime
of all jobs.

Optimisation algorithms for the two- and
three-machine flowshop problems with
respect to different objectives have been
developed by Johnson (1954) and Ignall and
Schrage (1965). The NP- completeness of
various scheduling problems has been
discussed widely in the literature (Garey et
al., 1976, Pinedo, 2002). As the vast majority
of flowshop scheduling problems is NP-
complete, research is mostly directed towards
the development of heuristic or near-optimal
methods. Some of the heuristic procedures
developed so far are due to Campbell et al.,
(1970), Dannenbring (1977), King and
Spachis (1980), Nawaz et al., (1983),
Widmer and Hertz (1989), Osman and Potts
(1989), Ogbu and Smith (1990), Ishibuchi et
al., (1995), and Ben-Daya and Al-Fawzan
(1998). Nagar et al., (1995) gave a survey of
the existing multicriteria approaches of
scheduling problems. Nagar et al., (1995)
were the first to address the two-machine
flowshop problem using the weighted sum of
makespan and flow-time criteria. They
presented a branch-and-bound algorithm that
works well for special cases. Yeh (1999)
developed additional branch-and-bound
algorithms for the same problem. For the
problem of scheduling in a flowline-based
manufacturing cell with missing operations
for jobs in a part-family, Logendran and
Nudtasomboon (1991), Sridhar and
Rajendran (1993) and Ravindran et al. (2005)
have proposed heuristics to minimise
makespan and total flowtime, respectively.

In this paper an attempt is made to present an
efficient Improved Genetic Algorithm (IGA)
to solve the Bi-criteria flowshop scheduling
problem for minimising makespan and total
Flowtime of jobs. As discussed in the
literature review, we have identified that
among the flowshop scheduling heuristics,

Studies in Informatics and Control, Vol. 18, No. 2, June 2009 129

the algorithm by Rajendran (1995) and
Ravindran et al. (2005) aims at minimising
not only makespan, but also total flowtime of
jobs. Ravindran et al. (2005) claimed that
their heuristic procedure giving better results
than Rajendran (1995). Hence in this work,
we have chosen to compare the performance
of the proposed algorithm IGA with that of
Ravindran et al. (2005) algorithm. The
proposed algorithm is coded in C and run on
a PC Pentium 2.80 GHz under the Windows
operating environment. The results of the
evaluation of performance of the proposed
algorithm and that of Ravindran et al. (2005)
are presented for benchmark problems. An
extensive experimental investigation has been
conducted to relatively evaluate the
performances.

2. Problem Description and
Notation

Consider an m-machine flowshop where
there are n jobs to be processed on the m
machines in the same order. We only
consider the permutation schedules, i.e.,
the same job order on each machine. The
objective of this paper is to develop an
Improved Genetic Algorithm and hence
to find the optimal or near optimal
sequence in flowshop environment by
minimising makespan and total flowtime.
The processing time t (i,j) is given for any
job i on any machine j. Given a
permutation (processing sequence) of the
jobs {J1, J2, . . , Jn,}, the completion
times of jobs on the machines, makespan
and the total flowtime TFT of the jobs in
the flowshop can be calculated as
follows:

C(J1,1) = t(J1,1)
C(Ji,1) = C(Ji-1,1)+ t(Ji,1), i =
2, . . ., n
C(J1,1) = C(J1,J-1)+ t(J1,j), j =
2, . . ., m

C(J1,1) = max{ C(Ji-1,j), C(Ji,j-1)}+t(Ji,j)
 i = 2 , . . . , n; j = 2, . . ., m

(i) Makespan Cmax: the length of time
required to finish processing all jobs, i.e.

max{ , ,..., }.max 1 2C C C Cn=

Where Cn is the completion time
of job n.

(ii) Total flowtime (TFT): the total amount of

time that all jobs spend in the production
system, i.e. Error!

Where C(i,m) is the completion
time of ith job on last machine m.

The weighted sum of the above two objective
values are taken as the combined objective
function.

Combined objective function,

() ()1 1 2 2COF w f x w f x= × + ×

Where w1=0.5 and w2=0.5.

The objective is to find a permutation of jobs
so as to minimize the makespan and total
flowtime of jobs. Since flow-shop
scheduling problem has been shown to be
NP−complete problem, for practical
purposes, it is often more appropriate to
apply an approximation method which
generates a near optimal solution effectively.
In this paper an attempt is made to improve
the existing genetic algorithm procedures to
apply to permutation flowshop scheduling
problems to give better results. The
following notations are used in this paper.

n number of jobs

m number of machines

pij processing time of job i on
machine j

Cmax Makespan

TFT Total Flow time of jobs

k current generation number

ps population size

pc probability of crossover

pm probability of mutation

P(k) population at kth generation

r real random number between
0 and 1

Ng maximum generation

 Studies in Informatics and Control, Vol. 18, No. 2, June 2009 130

Gp generation limit for inserting
new randomly generated chromosomes

Gm generation limit constant for
changing mutation probability

3. Simple Genetic Algorithm

Genetic Algorithms are a class of optimisation
algorithms that seek improved performance by
sampling areas of the solution space that have
high probability of leading to a good solution.
They imitate the natural evolutionary process
in that, in each generation, the fittest
individuals have a better chance to produce
off-springs by mixing features of the parents
or by altering one or more of the parent
characteristics whereas, the worst individuals
are most likely to die. Since their introduction,
genetic algorithms have been applied to a wide
variety of combinatorial optimization
problems including the well known Travelling
Salesman Problem (Goldberg and Lingle
1985) and the Scheduling Problem (Biegal and
Davem 1990, Vempati et al 1993, Neppalli et
al 1994 and Chen et al 1995). A survey on
applications of GAs can be found in Goldberg
(1989). Researchers have used successfully
this GA in a wide variety of applications
including packing, scheduling, neural
networks, traveling salesman, and transport
problems (Yenlay 2001, Jaszkiewicz 2002 and
Ruben Ruiz et al 2003).

Decisions that have to be made for applying
GA include individual or chromosome
representation, method of crossover,
probability of crossover, method of mutation,
probability of mutation, and population size.
GA is naturally parallel and exhibits implicit
parallelism, which does not evaluate and
improve a single solution, but analyses and
modifies a set of solutions simultaneously
(Goldberg, 1989). The ability of a GA to
operate on many solutions simultaneously and
gather information from all current solutions
to direct search reduces the possibility of being
trapped in a local optimum.

The GA attempts to simulate nature's genetic
processes by representing a solution to the
problem as a string of genes that can take on
some value from a specified finite range or
alphabet. This string of genes, which
represents a solution, is known as a

chromosome. Then an initial population of
legal chromosomes is constructed at random.
At each generation, the fitness of each
chromosome in the population is measured.
The fitter chromosomes are then selected to
produce offspring for the next generation,
which inherit the best characteristics of both
the parents. After many generations of
selection for the fitter chromosomes, the
result is hopefully a population that is
substantially fitter than the original.

In general, Simple Genetic Algorithm (SGA)
consists of the following steps:

Step 1: Initialize a population of
chromosomes.

Step 2: Evaluate the fitness of each
chromosome.

Step 3: Create new chromosomes by
applying genetic operators such as
crossover and mutation to current
chromosomes.
Step 4: Evaluate the fitness of the

new population of chromosomes.
Step 5: If the termination condition is
satisfied, stop and return the best
chromosome; otherwise, go to Step 3.

4. The Bi-criteria Improved
Genetic Algorithm for
Flowshop Scheduling

4.1 Framework of the Multi-objective
Improved Genetic Algorithm

Genetic algorithms have aroused intense
interest in the past few years because of their
flexibility, versatility, and effectiveness in
solving problems in which traditional
optimisation methods are insufficient. GAs
need no simplifying assumptions of linearity,
continuity, etc., and thus can solve highly
complex real-world problems. A GA may
lose solutions and substructures because of
disruptive effects of genetic operators, and it
is not easy to regulate a GA’s convergence
and hence a pure GA may easily produce
premature and poor results (Leung et al.,
1997). To enhance the performance of
genetic searches and to avoid premature
convergence, an Improved Genetic Algorithm
is proposed. To enhance the performance of

Studies in Informatics and Control, Vol. 18, No. 2, June 2009 131

genetic searches and to avoid premature
convergence, IGA is incorporated with the
following changes.

4.1.1 Initial population

NEH heuristic’s (Nawaz et al., 1983)
sequence is incorporated in the generation of
initial population as the NEH sequence can
generate suboptimal solution rapidly. The
diversity of the initial population can be
maintained to a certain extent, because the
other solutions are still generated randomly.

4.1.2 Selection procedure

One of the simplest methods to combine
multiple objective functions into a scalar
fitness solution is the following weighted
sum approach (Venkata Ranga Neppalli 1996
and Murata et al 1996).

1()
1 (() ())1 1 2 2

f x
w f x w f x

=
+ × + ×

 (1)

where ()f x is a combined fitness function
(CFF),

 1()f x is the makespan objective function,

2 ()f x is the total flowtime objective function,

iw is a weight assigned for each objective
function (w1=0.5 and w2=0.5)

4.1.3 Crossover operation

In the GA, a single type of crossover operator
is applied to the whole population from start
to finish, which is not good for retaining
useful information and maintaining diversity
if the evolution tends to be premature. In
IGA, a set of crossover operators two point
crossover, partially mapped crossover,
similar job order crossover and linear order
crossover are used each with certain
probabilities. Multiple crossover operators
ensure that the diversity can be enhanced and
the search region can be extended.

4.1.4 Mutation operation

Mutation generates an offspring solution by
randomly modifying the parent’s feature. It
helps to preserve a reasonable level of
population diversity, and provides a
mechanism to escape from local optima. For
each child obtained from crossover, the
mutation operator is applied independently
with a probability pm. In this work, three
types of mutation operators arbitrary three-
job change, arbitrary two-job change and
shift change are used. A probability is
attached to each type of mutation and each
time any one type is selected using Monte
arlo simulation.

4.1.5 Elite preserve strategy

Computation shows that when the best
solution keeps unimproved for a certain
number of generations in the GA process, the
solution quality will be difficult to be
improved further even if the generation
continues. Therefore, in this IGA the
following changes are incorporated to avoid
premature convergence.

a. Elitist strategy: In multi-objective
optimisation problems, a solution with the best
value of each objective can be regarded as an
elite individual. Therefore we have n elite
individuals for an n objective problem. It is
natural to think that such solutions are to be
preserved to the next generation in genetic
algorithms. Therefore, worst chromosomes are
removed from the current population and the
best chromosome is added into that population.

b. Hypermutation: When the number of
generations with out improving the best
solution is greater than a pre-specified
constant, premature convergence can be
assumed then increase the probability of
mutation (hypermutation) and continue the
search (Venkata Ranga Neppalli et al., 1996).
The purpose of increasing the probability is
to diversify the population of MOIGA.

Thus, we provide a framework for the Bi-
Criteria Improved Genetic Algorithm. IGA
preserves the generality of SGA and can be
easily implemented and applied to any kind
of optimisation problems.

 Studies in Informatics and Control, Vol. 18, No. 2, June 2009 132

4.2 Steps of Improved Genetic
Algorithm

Step 0 (Initialisation): Generate an initial
population containing Npop strings where Npop
is the number of strings in each population.
One chromosome in the initial population is
arrived from NEH heuristic and others are
generated randomly.

Step 1 (Evaluation): Calculate the combined
fitness function (Makespan and total
flowtime) of the objective functions for the
generated strings.

Step 2 (Selection): Select a pair of strings from
the current population by tournament selection
and roulette wheel selection with a certain
probability attached with each. This step is
repeated 2popN times to produce Npop offspring
by the crossover operation in Step 3.

Step 3 (Crossover): For each selected pair,
apply a crossover operation viz, Two point,
Partially Mapped Crossover or Similar Job
Order crossover, to generate an offspring
with the crossover probability pc. A
probability is attached to each type of
crossover operators and each time any one
type is selected using monte carlo simulation.
Npop strings should be generated by the
crossover operation.

Step 4 (Mutation): For each string generated
by the crossover operation, apply a mutation
viz, Two-job change mutation or Shift change
mutation with a pre specified mutation
probability pm. A probability is attached to
each type of mutation operators and each
time any one type is selected using monte
carlo simulation.

Step 5 (Elitist strategy): Adopt Elitist
Strategy. Insert the two best chromosomes
into the current population by removing two
worst chromosomes (having minimum
combined objective function value).

Step 6: (Termination test): If a pre specified
stopping condition is not satisfied, return to
Step 1.

IGA1: The sequences obtained in all the
iterations are compared and the sequence

which is having minimum makespan is
selected and corresponding total flow time is
taken for the resultant sequence. If more
sequences having same minimum makespan
then the sequence with minimum total flow
time among all the sequence of minimum
makespan is taken as the resultant sequence.

IGA2: The sequences obtained in all
iterations are compared and the sequence
which is having minimum total flow time is
selected and corresponding makespan time is
taken for the resultant sequence. If more
sequences having the same minimum total
flow time then the sequence with minimum
makespan time among all the sequence of
minimum total flow time is taken as the
resultant sequence.

IGA3: The resultant sequence from the last
iteration is taken as the final sequence.

5. Computational Results and
Comparisons

To test the performance of the IGA,
benchmark problems proposed by Taillard
(1993) are selected. Various sizes of the
problems with 20 jobs and 5, 10, 20 machines
were tested using Improved Genetic
Algorithm.

5.1 Result and analysis

Based on the implementation discussed in
Section 4, the IGA algorithms are coded in C
and run on a personal computer with Pentium
2.8 GHz CPU and 512 Mb RAM. The
performance of the IGA for the benchmark
problems are compared with the result
reported by other heuristics of earlier
reported results with the following notations.

IGA1 – Best makespan sequence of
proposed Improved Genetic Algorithm

IGA2 – Best total flowtime sequence of
Improved Genetic Algorithm

IGA3 – Last iteration sequence of
Improved Genetic Algorithm

HAMC1– Best makespan sequence of Hybrid

Studies in Informatics and Control, Vol. 18, No. 2, June 2009 133

Algorithm for Multi Criterion 1 of Ravindran
et al. (2005)

HAMC2– Best total flowtime sequence of
Hybrid Algorithm for Multi Criterion 2 of
Ravindran et al. (2005)

HAMC3– Last iteration sequence of Hybrid
Algorithm for Multi Criterion 3 of Ravindran
et al. (2005)

5.1.1 Percentage Improvement

To evaluate our IGA, experiments were
conducted to make a comparison with
existing HAMC algorithms (Ravindran et al.,
2005) on the benchmark problem provided by
Taillard (1993).

A comparison of makespan and total flowtime
obtained using IGA algorithms with HAMC
algorithms were made. The Percentage
improvement is calculated as follows.

Percentage improvement =
X

IGAX

C
CC −

 (2)

where

CX = Performance measures reported by
Ravindran et al. (2005)

CIGA = Performance measures obtained using
IGA algorithms

Percentage improvement of IGA algorithms
over the earlier literature results was found.
It was observed that for all the problems quite
consistent results were obtained. It is
observed that IGA1 provides a 10.20 %
average improvement in Makespan and 8.69
% average improvement in total flowtime

with respect to HAMC1. IGA2 provides an
8.74 % average improvement in Makespan
and 8.02 % average improvement in total
flowtime with respect to HAMC2. IGA3
provides a 9.52 % average improvement in
Makespan and 8 % average improvement in
total flowtime with respect to HAMC3.
Also it can be observed that IGA provides
overall average improvement percentage as
8.86 with HAMC.

The average difference of makespan and total
flow time values between IGA and earlier
reported result of HAMC are 186.26 and
2087.45 respectively. For example, IGA1
provides 882 difference in makespan time
and 8665 difference in total flowtime with
respect to HAMC1 for the problem TA022.
Hence, in this work considerable reduction of
makespan time and in total flowtime are
achieved from IGA for all the Benchmark
problems considered.

Figure 1 to 3 illustrates graphically the overall
performance of each one of the IGA
algorithms over the HAMC's algorithms. Each
histogram in Figure 1 to Figure 3 corresponds
to the percentage improvement from the
result achieved by HAMC algorithm for the
benchmarks. Thus, the effectiveness of the
IGA versus the HAMC is clearly illustrated
in the Figure 1 to 3.

The above discussions show that the
proposed IGA is better than the HAMC for
all the benchmark problems and it gives
superior results. It can be observed that the
proposed IGA algorithm is more effective
than the existing one for scheduling with the
dual objectives of minimising makespan &
total flowtime and also this work may be
extended for minimising other suitable
objectives either combined or individually.

 Studies in Informatics and Control, Vol. 18, No. 2, June 2009 134

Figure 1. Comparison of IGA1 with HAMC1

Figure 2. Comparison of IGA2 with HAMC2

Figure 3. Comparison of IGA3 with HAMC3

Studies in Informatics and Control, Vol. 18, No. 2, June 2009 135

6. Conclusion

This paper has addressed the problem of
scheduling in flowshop manufacturing
systems with the objective of minimizing
makespan and total flowtime. A correct
formulation of makespan and total flowtime
in a flowshop environment is first presented.
Then the Improved Genetic Algorithm
approach is highlighted under the multi
objective criteria. Finally, the proposed
methods are applied to a number of multi
machine and multi machine combinations
which are available as benchmark problems
in OR Library. The results show that
Improved Genetic Algorithm gives better
result than the results of earlier literature.
Further this IGA can be extended to handle
other types of objectives like minimizing
total tardiness, number of tardy job, machine
idle time etc. in various manufacturing
environments.

REFERENCES

1. BAKER, K. R. (1974) Introduction to
sequencing and scheduling. Wiley, New
York.

2. BEN-DAYA, M. and AL-FAWZAN, M.
(1998). A tabu search approach for the
flow shop scheduling problem.
European Journal of Operational
Research, Vol. 109, pp. 88-95.

3. BIEGAL J.E. and DAVEM J.J. (1990),
Genetic algorithms and job shop
scheduling, Computers and Industrial
Engineering Vol. 19, pp. 81-91.

4. CAMPBELL, H. G., DUDEK, R. A. and
SMITH, M. L. (1970) A heuristic
algorithm for the n-job, m-machine
sequencing problem. Management
Science, Vol. 16, Part B, pp. 630-637.

5. CHEN, C. L., VEMPATI, V. S., and
ALJABER, N. (1995), An application of
genetic algorithms for flow shop
problems, European Journal of Operational
Research, Vol. 80, No. 2, pp. 389–396.

6. DANNENBRING, D. G. (1977), An
evaluation of flow-shop sequencing

heuristics. Management Science, Vol.
23, pp. 1174-1182.

7. GAREY M. R., JOHNSON D. S. and
SETHI R. (1976), Complexity of
flowshop and jobshop scheduling,
Mathematics of Operations Research;
Vol.1. pp. 117-129.

8. GOLDBERG, D. E. (1989), Genetic
algorithms in search, optimisation and
machine learning, Addison Wesley,
Reading, MA.

9. GOLDBERG D.E. and LINGLE JR. R.
(1985), Alleles, loci and the Travelling
Salesman Problem, Proceedings of
International Conference on Genetic
Algorithms and their Applications,
Carnegie-Mellon University, Pittsburgh, PA,
pp. 154-159.

10. IGNALL, E. and SCHRAGE, L. (1965),
Application of the branch-and-bound
technique to some flowshop scheduling
problems, Operations Research. Vol. 13,
pp. 400-412.

11. ISHIBUCHI, H., MISAKI, S. and
TANAKA H. (1995), Modified
simulated annealing algorithms for the
flow shop sequencing problems.
European Journal of Operational
Research, Vol. 81, pp. 388-398.

12. JOHNSON, S. M. (1954), Optimal two
and three-stage production schedules
with setup times included, Nav Res Log
Vol. 1, pp. 61-68.

13. KING, J. R. and SPACHIS, A. S. (1980),
Heuristics for flow-shop scheduling.
International Journal of Production
Research, Vol. 18, pp. 345-357.

14. LEUNG, Y., GAO, Y. and XU Z. B.
(1997), Degree of population diversity
– a perspective on premature
convergence in genetic algorithms and
its Markov-chain analysis, IEEE
Transaction Neural Networks Vol. 8, No.
5, pp. 1165-1176.

15. LOGENDRAN, R. and
NUDTASOMBOON, N. (1991),
Minimising the makespan of a group
scheduling problem: a new heuristic.
International Journal of Production
Research, Vol. 22, pp. 217-230.

 Studies in Informatics and Control, Vol. 18, No. 2, June 2009 136

16. MURATA T., ISHIBUCHI H. and
TANAKA H. (1996), Multi-objective
genetic algorithm and its application to
flowshop scheduling, Computers Ind.
Eng., Vol. 30, No. 4, pp. 957-968.

17. NAGAR, A., HADDOCK, J. and
HERAGU, S. (1995), Multiple and
bicriteria scheduling: A Literature
survey, European Journal of Operational
Research Vol. 81, pp. 88-104.

18. NAWAZ, M., ENSCORE, E. and HAM,
I. (1983), A heuristic algorithm for the
m- machine, n- machine flow shop
sequencing problem. Omega Vol. 11,
No.1, pp. 91-95.

19. NEPPALLI V.R. CHEN C.L. and
ALJABER N.J. (1994), An effective
heuristic for the flow shop problem
with weighted tardiness, Proceedings of
the Third Industrial Engineering
Research Conference, pp. 634-638.

20. OGBU, F. A. and SMITH D. K. (1990),
The applications of the simulated
annealing algorithm to the solution of
the n/m/Cmax flowshop problem.
Computers and Operations Research Vol.
17. No. 3, pp. 243-253.

21. OSMAN, I. and POTTS, C. (1989),
Simulated annealing for permutation
flow-shop scheduling. OMEGA, The
International Journal of Management
Science, Vol. 17, No. 6, pp. 551–557.

22. PINEDO, M. (2002), Scheduling:
Theory, Algorithms, and Systems,
Second Edition, Prentice Hall.

23. RAJENDRAN C. (1995), Heuristic for
scheduling in flow shop with multiple
objectives. European Journal of operational
Research, Vol. 82: pp. 540-555.

24. RAVINDRAN, D., NOORUL HAQ, A.,
SELVAKUMAR, S. J. AND
SIVARAMAN, R., (2005), Flow shop
scheduling with multiple objective of
minimising makespan and total flow
time. International Journal of Advanced
Manufacturing Technology; Vol. 25, pp.
1007-1012.

25. RUBEN RUIZ, CONCEPCION
MAROTO and JAVIER ALCARAZ
(2003), New genetic algorithms for the

permutation flowshop scheduling
problem, Proceedings of the Fifth
Metaheuristics International Conference,
Kyoto, Japan, August 25-28, pp 63.1-
63.8.

26. SRIDHAR, J. and RAJENDRAN, C.
(1993), Scheduling in a cellular
manufacturing system - a simulated
annealing approach. International
Journal of Production Research; Vol. 31,
pp. 2927-2945.

27. TAILLARD, E. (1993), Benchmarks of
basic scheduling problems. European
Journal of Operational Research Vol. 64,
pp. 278–285.

28. NEPPALLI, V. R., CHEN, C-L, and
GUPTA, J. N. D. (1996), The Two-
Stage Bicriteria Flowshop Problem - A
Genetic Algorithms Approach,
European Journal of Operational
Research, Vol. 95, pp. 356-373.

29. VEMPATI V.S., CHEN C.L. and
BULLINGTON S.F. (1993), An
application of genetic algorithms to the
Flow Shop Problem, Proceedings of
15th International Conference of
Computers and Industrial Engineering.

30. WIDMER, M. and HERTZ, A. (1989), A
new heuristic method for the flow shop
sequencing problem. European Journal
of Operational Research, Vol. 41, No. 2,
pp. 186–193.

31. YEH, W. C. (1999), A new branch-and-
bound approach for the n/2/flowshop/
αF+βCmax flowshop scheduling
problem, Computers and Operations
Research, Vol. 26, pp. 1293–1310.

32. YENLAY O. (2001), A comparison of
the performance between a Genetic
Algorithm and the Taguchi method
over artificial problems, Turkish
Journal of Engineering Environmental
Science, Vol. 25, pp. 561-568.

