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1. Introduction and Literature 
Review 

The problem of scheduling in permutation 
flow shops has been extensively investigated 
by many researchers.  Its aim is to determine 
the sequence for processing jobs on a given 
set of machines. The need for scheduling 
arises from the limited resources available to 
the decision-maker and it is an important 
aspect of operational level shop floor 
decisions.  Its importance and relevance to 
industry has prompted researchers to study it 
from different perspectives.  Flowshop is the 
classical and most studied manufacturing 
environment in scheduling literature. A 
general flowshop in which n jobs to be 
processed through m machines has been 
considered. The processing times are fixed 
and non-negative.  Further assumptions are 
that each job can be processed on only one 
machine at a time, the operations are not pre-
emptable, the jobs are available for 
processing at time zero and setup times are 
sequence independent.  Here we consider the 
permutation flowshop shop problem, the 
same job order is chosen on every machine.  
The objective then is to find a sequence, i.e., 
a permutation of the numbers 1,…,n that 
minimizes the makespan and total flow time.  
Makespan and total flow-time are two 
commonly used performance measures in 
flowshop scheduling literature (Baker, 1974; 
Garey et al., 1976; Nagar et al., 1995).  
Flowtime is defined as the time spent by each 
job in the system and makespan is the time at 
which the last job completes its processing on 
the last machine. Minimising makespan is 
important in situations where a 
simultaneously received batch of jobs is 
required to be completed as soon as possible, 
for example, a multi-item order submitted by 
a single customer that must be delivered in 
the minimal possible time. The makespan 
criterion increases the use of resources.  
There are other real-life situations in which 
each completed job is required as soon as it is 
processed. In such situations, we are 
interested in minimising the mean or sum of 
flowtimes of all jobs rather than minimising 
makespan. This objective is particularly 
important in real-life situations in which 
reducing inventory or maintaining cost is of 

primary concern.  We have so far seen the 
development of various heuristic methods 
that consider a single measure of 
performance, viz., makespan.  However, the 
desirability of a schedule being evaluated by 
more than one performance measure is often 
cited in the literature.  Apart from the 
makespan objective, other significant 
objectives in flowshop scheduling problem is 
the minimisation of total (or mean) flowtime 
of all jobs. 

Optimisation algorithms for the two- and 
three-machine flowshop problems with 
respect to different objectives have been 
developed by Johnson (1954) and Ignall and 
Schrage (1965).  The NP- completeness of 
various scheduling problems has been 
discussed widely in the literature (Garey et 
al., 1976, Pinedo, 2002).  As the vast majority 
of flowshop scheduling problems is NP-
complete, research is mostly directed towards 
the development of heuristic or near-optimal 
methods. Some of the heuristic procedures 
developed so far are due to Campbell et al., 
(1970), Dannenbring (1977), King and 
Spachis (1980), Nawaz et al., (1983), 
Widmer and Hertz (1989), Osman and Potts 
(1989), Ogbu and Smith (1990), Ishibuchi et 
al., (1995), and Ben-Daya and Al-Fawzan 
(1998). Nagar et al., (1995) gave a survey of 
the existing multicriteria approaches of 
scheduling problems.  Nagar et al., (1995) 
were the first to address the two-machine 
flowshop problem using the weighted sum of 
makespan and flow-time criteria.  They 
presented a branch-and-bound algorithm that 
works well for special cases.  Yeh (1999) 
developed additional branch-and-bound 
algorithms for the same problem.  For the 
problem of scheduling in a flowline-based 
manufacturing cell with missing operations 
for jobs in a part-family, Logendran and 
Nudtasomboon (1991), Sridhar and 
Rajendran (1993) and Ravindran et al. (2005) 
have proposed heuristics to minimise 
makespan and total flowtime, respectively. 

In this paper an attempt is made to present an 
efficient Improved Genetic Algorithm (IGA) 
to solve the Bi-criteria flowshop scheduling 
problem for minimising makespan and total 
Flowtime of jobs. As discussed in the 
literature review, we have identified that 
among the flowshop scheduling heuristics, 
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the algorithm by Rajendran (1995) and 
Ravindran et al. (2005) aims at minimising 
not only makespan, but also total flowtime of 
jobs.  Ravindran et al. (2005) claimed that 
their heuristic procedure giving better results 
than Rajendran (1995).  Hence in this work, 
we have chosen to compare the performance 
of the proposed algorithm IGA with that of 
Ravindran et al. (2005) algorithm.  The 
proposed algorithm is coded in C and run on 
a PC Pentium 2.80 GHz under the Windows 
operating environment.  The results of the 
evaluation of performance of the proposed 
algorithm and that of Ravindran et al. (2005) 
are presented for benchmark problems.  An 
extensive experimental investigation has been 
conducted to relatively evaluate the 
performances. 

2. Problem Description and 
Notation 

Consider an m-machine flowshop where 
there are n jobs to be processed on the m 
machines in the same order.  We only 
consider the permutation schedules, i.e., 
the same job order on each machine.  The 
objective of this paper is to develop an 
Improved Genetic Algorithm and hence 
to find the optimal or near optimal 
sequence in flowshop environment by 
minimising makespan and total flowtime.  
The processing time t (i,j) is given for any 
job i on any machine j.  Given a 
permutation (processing sequence) of the 
jobs {J1, J2, .  .  ,  Jn,}, the completion 
times of jobs on the machines, makespan 
and the total flowtime TFT of the jobs in 
the flowshop can be calculated as 
follows: 
 

C(J1,1) = t(J1,1) 
C(Ji,1) = C(Ji-1,1)+ t(Ji,1), i = 
2, .  .  ., n 
C(J1,1) = C(J1,J-1)+ t(J1,j), j = 
2, .  .  ., m 

C(J1,1) = max{ C(Ji-1,j), C(Ji,j-1)}+t(Ji,j)
 i = 2 , .  .  .  , n; j = 2, .  .  ., m 
 

(i) Makespan Cmax: the length of time 
required to finish processing all jobs, i.e.  

max{ , ,..., }.max 1 2C C C Cn=
 

Where Cn  is the completion time 
of job n. 

 
(ii) Total flowtime (TFT): the total amount of 

time that all jobs spend in the production 
system, i.e.  Error! 

Where C(i,m) is the completion 
time of ith job on last machine m. 

The weighted sum of the above two objective 
values are taken as the combined objective 
function. 

Combined objective function,  

( ) ( )1 1 2 2COF w f x w f x= × + ×
 

Where w1=0.5 and w2=0.5. 

The objective is to find a permutation of jobs 
so as to minimize the makespan and total 
flowtime of jobs.  Since flow-shop 
scheduling problem has been shown to be 
NP−complete problem, for practical 
purposes, it is often more appropriate to 
apply an approximation method which 
generates a near optimal solution effectively.  
In this paper an attempt is made to improve 
the existing genetic algorithm procedures to 
apply to permutation flowshop scheduling 
problems to give better results.  The 
following notations are used in this paper. 

n  number of jobs 

m  number of machines 

pij  processing time of job i on 
machine j 

Cmax  Makespan 

TFT  Total Flow time of jobs 

k  current generation number 

ps  population size 

pc  probability of crossover 

pm   probability of mutation 

P(k)  population at kth generation 

r  real random number between 
0 and 1 

Ng  maximum generation 



 Studies in Informatics and Control, Vol. 18, No. 2, June 2009 130

Gp  generation limit for inserting 
new randomly generated chromosomes 

Gm  generation limit constant for 
changing mutation probability 

3. Simple Genetic Algorithm 

Genetic Algorithms are a class of optimisation 
algorithms that seek improved performance by 
sampling areas of the solution space that have 
high probability of leading to a good solution.  
They imitate the natural evolutionary process 
in that, in each generation, the fittest 
individuals have a better chance to produce 
off-springs by mixing features of the parents 
or by altering one or more of the parent 
characteristics whereas, the worst individuals 
are most likely to die. Since their introduction, 
genetic algorithms have been applied to a wide 
variety of combinatorial optimization 
problems including the well known Travelling 
Salesman Problem (Goldberg and Lingle 
1985) and the Scheduling Problem (Biegal and 
Davem 1990, Vempati et al 1993, Neppalli et 
al 1994 and Chen et al 1995). A survey on 
applications of GAs can be found in Goldberg 
(1989). Researchers have used successfully 
this GA in a wide variety of applications 
including packing, scheduling, neural 
networks, traveling salesman, and transport 
problems (Yenlay 2001, Jaszkiewicz 2002 and 
Ruben Ruiz et al 2003).  

Decisions that have to be made for applying 
GA include individual or chromosome 
representation, method of crossover, 
probability of crossover, method of mutation, 
probability of mutation, and population size.  
GA is naturally parallel and exhibits implicit 
parallelism, which does not evaluate and 
improve a single solution, but analyses and 
modifies a set of solutions simultaneously 
(Goldberg, 1989).  The ability of a GA to 
operate on many solutions simultaneously and 
gather information from all current solutions 
to direct search reduces the possibility of being 
trapped in a local optimum. 

The GA attempts to simulate nature's genetic 
processes by representing a solution to the 
problem as a string of genes that can take on 
some value from a specified finite range or 
alphabet. This string of genes, which 
represents a solution, is known as a 

chromosome. Then an initial population of 
legal chromosomes is constructed at random. 
At each generation, the fitness of each 
chromosome in the population is measured. 
The fitter chromosomes are then selected to 
produce offspring for the next generation, 
which inherit the best characteristics of both 
the parents. After many generations of 
selection for the fitter chromosomes, the 
result is hopefully a population that is 
substantially fitter than the original. 

In general, Simple Genetic Algorithm (SGA) 
consists of the following steps: 
 

Step 1: Initialize a population of 
chromosomes. 

Step 2: Evaluate the fitness of each 
chromosome. 

Step 3: Create new chromosomes by 
applying genetic operators such as 
crossover and mutation to current 
chromosomes. 
Step 4: Evaluate the fitness of the 

new population of chromosomes. 
Step 5: If the termination condition is 
satisfied, stop and return the best 
chromosome; otherwise, go to Step 3. 

4. The Bi-criteria Improved 
Genetic Algorithm for 
Flowshop Scheduling 

4.1 Framework of the Multi-objective 
Improved Genetic Algorithm 

Genetic algorithms have aroused intense 
interest in the past few years because of their 
flexibility, versatility, and effectiveness in 
solving problems in which traditional 
optimisation methods are insufficient.  GAs 
need no simplifying assumptions of linearity, 
continuity, etc., and thus can solve highly 
complex real-world problems.  A GA may 
lose solutions and substructures because of 
disruptive effects of genetic operators, and it 
is not easy to regulate a GA’s convergence 
and hence a pure GA may easily produce 
premature and poor results (Leung et al., 
1997).  To enhance the performance of 
genetic searches and to avoid premature 
convergence, an Improved Genetic Algorithm 
is proposed.  To enhance the performance of 
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genetic searches and to avoid premature 
convergence, IGA is incorporated with the 
following changes. 

4.1.1 Initial population 

NEH heuristic’s (Nawaz et al., 1983) 
sequence is incorporated in the generation of 
initial population as the NEH sequence can 
generate suboptimal solution rapidly.  The 
diversity of the initial population can be 
maintained to a certain extent, because the 
other solutions are still generated randomly. 

4.1.2 Selection procedure 

One of the simplest methods to combine 
multiple objective functions into a scalar 
fitness solution is the following weighted 
sum approach (Venkata Ranga Neppalli 1996 
and Murata et al 1996). 

1( )
1 ( ( ) ( ))1 1 2 2

f x
w f x w f x

=
+ × + ×

 (1) 

where ( )f x  is a combined fitness function 
(CFF), 

 1( )f x is the makespan objective function, 

2 ( )f x is the total flowtime objective function, 

iw is a weight assigned for each objective 
function (w1=0.5 and w2=0.5) 

4.1.3 Crossover operation 

In the GA, a single type of crossover operator 
is applied to the whole population from start 
to finish, which is not good for retaining 
useful information and maintaining diversity 
if the evolution tends to be premature.  In 
IGA, a set of crossover operators two point 
crossover, partially mapped crossover, 
similar job order crossover and linear order 
crossover are used each with certain 
probabilities.  Multiple crossover operators 
ensure that the diversity can be enhanced and 
the search region can be extended. 

4.1.4 Mutation operation  

Mutation generates an offspring solution by 
randomly modifying the parent’s feature.  It 
helps to preserve a reasonable level of 
population diversity, and provides a 
mechanism to escape from local optima.  For 
each child obtained from crossover, the 
mutation operator is applied independently 
with a probability pm.  In this work, three 
types of mutation operators arbitrary three-
job change, arbitrary two-job change and 
shift change are used.  A probability is 
attached to each type of mutation and each 
time any one type is selected using Monte 
arlo simulation. 

4.1.5 Elite preserve strategy 

Computation shows that when the best 
solution keeps unimproved for a certain 
number of generations in the GA process, the 
solution quality will be difficult to be 
improved further even if the generation 
continues.  Therefore, in this IGA the 
following changes are incorporated to avoid 
premature convergence. 

a. Elitist strategy: In multi-objective 
optimisation problems, a solution with the best 
value of each objective can be regarded as an 
elite individual. Therefore we have n elite 
individuals for an n objective problem.  It is 
natural to think that such solutions are to be 
preserved to the next generation in genetic 
algorithms. Therefore, worst chromosomes are 
removed from the current population and the 
best chromosome is added into that population. 

b. Hypermutation: When the number of 
generations with out improving the best 
solution is greater than a pre-specified 
constant, premature convergence can be 
assumed then increase the probability of 
mutation (hypermutation) and continue the 
search (Venkata Ranga Neppalli et al., 1996).  
The purpose of increasing the probability is 
to diversify the population of MOIGA.   

Thus, we provide a framework for the Bi-
Criteria Improved Genetic Algorithm.  IGA 
preserves the generality of SGA and can be 
easily implemented and applied to any kind 
of optimisation problems. 
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4.2 Steps of Improved Genetic 
Algorithm 

Step 0 (Initialisation): Generate an initial 
population containing Npop strings where Npop 
is the number of strings in each population.  
One chromosome in the initial population is 
arrived from NEH heuristic and others are 
generated randomly. 

Step 1 (Evaluation): Calculate the combined 
fitness function (Makespan and total 
flowtime) of the objective functions for the 
generated strings. 

Step 2 (Selection): Select a pair of strings from 
the current population by tournament selection 
and roulette wheel selection with a certain 
probability attached with each. This step is 
repeated 2popN times to produce Npop offspring 
by the crossover operation in Step 3. 

Step 3 (Crossover): For each selected pair, 
apply a crossover operation viz, Two point, 
Partially Mapped Crossover or Similar Job 
Order crossover, to generate an offspring 
with the crossover probability pc.  A 
probability is attached to each type of 
crossover operators and each time any one 
type is selected using monte carlo simulation.  
Npop strings should be generated by the 
crossover operation. 

Step 4 (Mutation): For each string generated 
by the crossover operation, apply a mutation 
viz, Two-job change mutation or Shift change 
mutation with a pre specified mutation 
probability pm.  A probability is attached to 
each type of mutation operators and each 
time any one type is selected using monte 
carlo simulation. 

Step 5 (Elitist strategy): Adopt Elitist 
Strategy.  Insert the two best chromosomes 
into the current population by removing two 
worst chromosomes (having minimum 
combined objective function value). 

Step 6: (Termination test): If a pre specified 
stopping condition is not satisfied, return to 
Step 1. 

IGA1: The sequences obtained in all the 
iterations are compared and the sequence 

which is having minimum makespan is 
selected and corresponding total flow time is 
taken for the resultant sequence.  If more 
sequences having same minimum makespan 
then the sequence with minimum total flow 
time among all the sequence of minimum 
makespan is taken as the resultant sequence. 

IGA2: The sequences obtained in all 
iterations are compared and the sequence 
which is having minimum total flow time is 
selected and corresponding makespan time is 
taken for the resultant sequence.  If more 
sequences having the same minimum total 
flow time then the sequence with minimum 
makespan time among all the sequence of 
minimum total flow time is taken as the 
resultant sequence. 

IGA3: The resultant sequence from the last 
iteration is taken as the final sequence.   

5. Computational Results and 
Comparisons 

To test the performance of the IGA, 
benchmark problems proposed by Taillard 
(1993) are selected.  Various sizes of the 
problems with 20 jobs and 5, 10, 20 machines 
were tested using Improved Genetic 
Algorithm.   

5.1 Result and analysis 

Based on the implementation discussed in 
Section 4, the IGA algorithms are coded in C 
and run on a personal computer with Pentium 
2.8 GHz CPU and 512 Mb RAM.  The 
performance of the IGA for the benchmark 
problems are compared with the result 
reported by other heuristics of earlier 
reported results with the following notations. 

IGA1 – Best makespan sequence of 
proposed Improved Genetic Algorithm 

IGA2 – Best total flowtime sequence of 
Improved Genetic Algorithm 

IGA3 – Last iteration sequence of 
Improved Genetic Algorithm 

HAMC1– Best makespan sequence of Hybrid 
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Algorithm for Multi Criterion 1 of Ravindran 
et al.  (2005) 

HAMC2– Best total flowtime sequence of 
Hybrid Algorithm for Multi Criterion 2 of 
Ravindran et al.  (2005) 

HAMC3– Last iteration sequence of Hybrid 
Algorithm for Multi Criterion 3 of Ravindran 
et al.  (2005) 

5.1.1 Percentage Improvement 

To evaluate our IGA, experiments were 
conducted to make a comparison with 
existing HAMC algorithms (Ravindran et al., 
2005) on the benchmark problem provided by 
Taillard (1993).  

A comparison of makespan and total flowtime 
obtained using IGA algorithms with HAMC 
algorithms were made. The Percentage 
improvement is calculated as follows. 

Percentage improvement = 
X

IGAX

C
CC −

 (2) 

where 

CX  = Performance measures reported by 
Ravindran et al. (2005) 

CIGA = Performance measures obtained using 
IGA algorithms 

Percentage improvement of IGA algorithms 
over the earlier literature results was found.  
It was observed that for all the problems quite 
consistent results were obtained.  It is 
observed that IGA1 provides a 10.20 % 
average improvement in Makespan and 8.69 
% average improvement in total flowtime  

with respect to HAMC1. IGA2 provides an 
8.74 % average improvement in Makespan 
and 8.02 % average improvement in total 
flowtime with respect to HAMC2.  IGA3 
provides a 9.52 % average improvement in 
Makespan and 8 % average improvement in 
total flowtime with respect to HAMC3.  
Also it can be observed that IGA provides 
overall average improvement percentage as 
8.86 with HAMC. 

The average difference of makespan and total 
flow time values between IGA and earlier 
reported result of HAMC are 186.26 and 
2087.45 respectively.  For example, IGA1 
provides 882 difference in makespan time 
and 8665 difference in total flowtime with 
respect to HAMC1 for the problem TA022.  
Hence, in this work considerable reduction of 
makespan time and in total flowtime are 
achieved from IGA for all the Benchmark 
problems considered.  

Figure 1 to 3 illustrates graphically the overall 
performance of each one of the IGA 
algorithms over the HAMC's algorithms. Each 
histogram in Figure 1 to Figure 3 corresponds 
to the percentage improvement from the 
result achieved by HAMC algorithm for the 
benchmarks.  Thus, the effectiveness of the 
IGA versus the HAMC is clearly illustrated 
in the Figure 1 to 3. 

The above discussions show that the 
proposed IGA is better than the HAMC for 
all the benchmark problems and it gives 
superior results.  It can be observed that the 
proposed IGA algorithm is more effective 
than the existing one for scheduling with the 
dual objectives of minimising makespan & 
total flowtime and also this work may be 
extended for minimising other suitable 
objectives either combined or individually. 
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Figure 1. Comparison of IGA1 with HAMC1 

 
Figure 2. Comparison of IGA2 with HAMC2 

 
Figure 3. Comparison of IGA3 with HAMC3 
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6. Conclusion 

This paper has addressed the problem of 
scheduling in flowshop manufacturing 
systems with the objective of minimizing 
makespan and total flowtime. A correct 
formulation of makespan and total flowtime 
in a flowshop environment is first presented. 
Then the Improved Genetic Algorithm 
approach is highlighted under the multi 
objective criteria. Finally, the proposed 
methods are applied to a number of multi 
machine and multi machine combinations 
which are available as benchmark problems 
in OR Library. The results show that 
Improved Genetic Algorithm gives better 
result than the results of earlier literature. 
Further this IGA can be extended to handle 
other types of objectives like minimizing 
total tardiness, number of tardy job, machine 
idle time etc. in various manufacturing 
environments.  
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